
Paul Rosen
paul.rosen@utah.edu
@paulrosenphd
https://cspaul.com

Visualization for Data Science
DS-4630 / CS-5630 / CS-6630

TREES & GRAPHS

Dataset types

nk d

cnn.com

boingboing.net

apple.com

wired.com

Webpages as Graphs

Paul Butler

http://paulbutler.org/archives/visualizing-facebook-friends/

Kailie Parrish

http://datavisualization.ch/showcases/in-my-dreams/

DEFINITIONS

GRAPH

• A graph G consists of
• V - a collection of vertices (or nodes)

• E - a set of edges consisting of vertex pairs

• An edge exy = (x,y) connects two vertices x and y

• Example
• V={1,2,3,4}

• E={(1,2),(1,3),(2,3),(3,4),(4,1)}

1

2

3

4

1

2

3

4
1

2
3

4

1

2

3

4

1

2

3

4

1
2

3

4

Adjacency Matrix

• A matrix that where each row/column represents a node and non-
zero values represent edges

• Example
0 1 1
1 0 1
1 1 0

1
0
1

1 0 1 0

1

2

3

4

GRAPHS & TREES

• graphs
• model relationships about data

• nodes and edges

• trees
• graphs with hierarchical structure

• nodes as parents and children

A directed graph

0.1

5

0.3

Weighted

Node depths

0

1
1

2 2 2

A connected acyclic graph,
a.k.a.a tree

An undirected graph Unconnected

A cycle An acyclic graph

A rooted tree
or hierarchy

root

parent

child leaf

a bunch of definitions

Node degrees

2 2

3 2

1

VISUALIZING TREES

http://treevis.net/

http://treevis.net/
http://treevis.net/

ROOTED TREES

• recursion makes it elegant and fast to draw trees

• approaches:
• node link

• layered

• indentation

• enclosure

NODE-LINK DIAGRAMS

• nodes are distributed in space, connected by
straight or curved lines

• typical approach is to use 2D space to break
apart breadth and depth

• often space is used to communicate
hierarchical orientation

http://mbostock.github.io/d3/talk/20111018/tree.html

http://mbostock.github.io/d3/talk/20111018/tree.html

http://bl.ocks.org/mbostock/4339184

http://bl.ocks.org/mbostock/4339184

http://bl.ocks.org/mbostock/4063550

http://bl.ocks.org/mbostock/4063550

REINGOLD-TILFORD

• repeatedly divide space for subtrees by leaf count
• breadth of tree along one dimension

• depth along the other dimension

REINGOLD-TILFORD

• goal
• make smarter use of space

• maximize density and symmetry

REINGOLD-TILFORD

• design concerns
• clearly encode depth level

• no edge crossings

• isomorphic subtrees drawn identically

• compact

REINGOLD-TILFORD

• approach
• bottom up recursive approach

• for each parent make sure every subtree is drawn

• pack subtrees as closely as possible

• center parent over subtrees

LAYERED DIAGRAMS

• recursive subdivision of space

• structure encoded using:
• layering

• adjacency

• alignment

http://mbostock.github.io/d3/talk/20111018/partition.html

http://mbostock.github.io/d3/talk/20111018/partition.html

http://bl.ocks.org/mbostock/raw/4348373/

http://bl.ocks.org/mbostock/raw/4348373/

SCALE PROBLEM

• tree breadth often grows exponentially—quickly run out of space!

• solutions
• scrolling or panning

• filtering or zooming

• hyperbolic layout

INDENTATION

• indentation used to show parent/child
relationships

• breadth and depth contend for space

• problem: often requires a great deal of
scrolling

ENCLOSURE DIAGRAMS

• encode structure using spatial enclosure
• often referred to as treemaps

• benefits
• provides single view of entire tree

• easier to spot small / large nodes

• problems
• difficult to accurately read depth

=

A

C

D E

B

CB

D

E
A

http://www.derlien.com/

http://www.derlien.com/

TREEMAPS

• recursively fill space based on a size
metric for nodes

• enclosure indicates hierarchy

• additional measures can control aspect
ratio of cells

• most often use rectangles, but other
shapes possible
• square, circle, voronoi tessellation

A:10

C:3

D:3

B:7

E:1 F:3

G:1 H:2

BDC G H

E

F

http://hci.stanford.edu/jheer/files/zoo/

http://hci.stanford.edu/jheer/files/zoo/

https://www.nytimes.com/interactive/2017/02/27/us/politics/most-important-problem-gallup-polling-question.html?smid=pl-share

https://www.nytimes.com/interactive/2017/02/27/us/politics/most-important-problem-gallup-polling-question.html?smid=pl-share
https://www.nytimes.com/interactive/2017/02/27/us/politics/most-important-problem-gallup-polling-question.html?smid=pl-share

VISUALIZING GRAPHS

1 2 3 4 5 6 7 8 9 10

1 0 0 1 0 0 1 1 0 0 0

2 0 0 1 0 0 1 0 1 1 0

3 1 1 0 0 0 0 0 0 0 1

4 0 0 0 0 1 0 1 0 1 0

5 0 0 0 1 0 0 0 1 0 0

6 1 1 0 0 0 0 0 0 1 1

7 1 0 0 1 0 0 0 1 0 0

8 0 1 0 0 1 0 1 0 0 0

9 0 1 0 1 0 1 0 0 0 0

10 0 0 1 0 0 1 0 0 0 0

Graph Drawing Exercise
• create an aesthetically pleasing node-link diagram representation

GRAPH DRAWING EXERCISE

• create an aesthetically pleasing node-link diagram representation

39 http://www.visualcomplexity.com/vc/

http://www.visualcomplexity.com/vc/
http://www.visualcomplexity.com/vc/

VISUALIZING GRAPHS

• node link layouts
• Reingold-Tilford (discussed previously)

• Sugiyama (directed acyclic graphs)

• Force directed

• Attribute-based

• adjacency matrices

• aggregate views
• Motif Glyphs

• PivotGraph

SPATIAL LAYOUT

• primary concern of graph drawing is the spatial layout of nodes and
edges

• often (but not always) the goal is to effectively depict the graph
structure
• connectivity, path-following

• network distance

• clustering

• ordering (e.g., hierarchy level)

UNIX
ancestry

SUGIYAMA

• great for graphs that have an
intrinsic ordering

• depth not strictly encoded

• What is the depth of V7M?

SUGIYAMA

• + nice, readable top down flow

• + relatively fast (depending on heuristic used for crossing
minimization)

• - not really suitable for graphs that don’t have an intrinsic top down
structure

• - hard to implement

• use free graphviz lib: http://www.graphviz.org

http://www.graphviz.org/

FORCE-DIRECTED

• no intrinsic layering, now what?

• physically-based model

FORCE-DIRECTED

• many variations, but usually physical
analogy of repulsion and attraction

• Generally…
• edges = springs

• nodes = repulsive particles

• Requires an iterative calculation, should be updated
each time the draw loop is called

Physics Review

• 𝐹 = 𝑚𝑎
• (Force = mass * acceleration)

• Δ𝑣 = 𝑎 Δ𝑡
• (change in velocity = acceleration * time step)

𝑝′ = 𝑝 + 𝑣 Δ𝑡 +
1

2
𝑎Δ𝑡2

• (new position = old position + velocity * time step)

For a Given Node 𝑖

𝑎𝑖
′ =

𝐹𝑖

𝑚𝑖

• (acceleration = Force / mass)

𝑣𝑖
′ = 𝑣𝑖 + 𝑎𝑖

′Δ𝑡
• (new velocity = old velocity + acceleration * time step)

ሶ𝑝𝑖
′ = ሶ𝑝𝑖 + 𝑣𝑖

′Δ𝑡 +
1

2
𝑎𝑖

′Δ𝑡2

• (new position = old position + new velocity * time step + ½ acceleration* time
step2)

FORCE MODEL

• Use force to update acceleration

• Use acceleration to update velocity

• Use velocity and acceleration to update position

FORCE MODEL

• many variations, but usually physical analogy of repulsion and
attraction

• Every node feels repulsion (or attraction) to every other node

FORCE MODEL: Repulsive Forces

𝑓𝑅 𝑑 =
𝐶𝑅 𝑚1 𝑚2

𝑑2

• 𝐶𝑅 is a strength constant

• 𝑚1, 𝑚2 are node masses

• 𝑑 is a distance between nodes

FORCE MODEL: Attractive Forces

• fA(d) = CA * (d – L)

• CA is a strength constant

• d is a distance between nodes

• L is the rest length of the spring (i.e. Hooke’s Law)

FORCE MODEL: Attractive Forces

𝑓𝐴 𝑑 = CA ∙ 𝑚𝑎𝑥 0, d − L

• 𝐶𝐴 is a strength constant

• 𝑑 is a distance between nodes

• 𝐿 is the rest length of the spring (i.e. Hooke’s Law)

FORCE MODEL

• Every node feels repulsion to every other node

• Only connected nodes feel attracted

FORCE MODEL

• Repulsive force:
• FR(P) = Σall neighbors(Q) fR(||Q-P||) * (Q-P)

• Attractive force:
• FA(P) = Σconnected neighbors (Q) fA(||P-Q||) * (P-Q)

ALGORITHM

• start from random layout

• (global) loop:
• for every node pair compute repulsive force

• for every edge compute attractive force

• accumulate forces per node and update velocity

• update each node position in direction of velocity

• stop when layout is ‘good enough’

What values do we set for…

• time step Δ𝑡 ?

• initial position 𝑝𝑖 ?

• initial velocity 𝑣𝑖 ?

• mass 𝑚𝑖 ?

• Force 𝐹𝑖 ?

What values do we set for…

• time step Δ𝑡 ?
• Fixed timestep, time since last frame was drawn, …

• initial position 𝑝𝑖 ?
• Start with a random position

• initial velocity 𝑣𝑖 ?
• Zero

• mass 𝑚𝑖 ?
• Depends, however, the heavier it is, the slower it moves

• Force 𝐹𝑖 ?
• That is what we still need to calculate…

Improving initial starting position

• Use concepts from topology to
initialize a graph

• Graph initialized in a 2-step
process that lays out the maximal
spanning tree in a layered or
radial configuration

Doppalapudi et al. “Untangling Force-Directed Layouts Using Persistent Homology”, TopoInVis 2022.

Example: Rate of Convergence

Doppalapudi et al. “Untangling Force-Directed Layouts Using Persistent Homology”, TopoInVis 2022.

Example: Convergence Quality

Doppalapudi et al. “Untangling Force-Directed Layouts Using Persistent Homology”, TopoInVis 2022.

What values for…

• Repulsive constant 𝐶𝑅 ?

• Attractive constant 𝐶𝐴 ?

• Rest length of the spring 𝐿 ?

What values for…

• Repulsive constant 𝐶𝑅 ?
• Start with something small (weaker force)

• Attractive constant 𝐶𝐴 ?
• Start with something small (weaker force)

• Rest length of the spring 𝐿 ?
• Closest you would like 2 nodes to be together (they will be closer) – 10-20

pixels is a good start

http://bl.ocks.org/mbostock/4062045

http://bl.ocks.org/mbostock/4062045
http://bl.ocks.org/mbostock/4062045

FORCE DIRECTED

• + very flexible, aesthetic layouts on many
types of graphs

• + can add custom forces

• + relatively easy to implement

http://bl.ocks.org/mbostock/4062045

http://bl.ocks.org/mbostock/4062045
http://bl.ocks.org/mbostock/4062045

FORCE DIRECTED

• - repulsion loop is O(n2) per iteration
• can speed up to O(n log n) using quadtree or k-d

tree

• - prone to local minima
• can use simulated annealing

• - doesn’t work well on highly connected (low
diameter) graphs

http://bl.ocks.org/mbostock/4062045

http://bl.ocks.org/mbostock/4062045
http://bl.ocks.org/mbostock/4062045

Ideas to make it better

• Add extra forces, such as repulsion from the boundary or attraction to
the center of the screen.

• Allow overriding node positions using the mouse (dragging vertices)

• Allow fixing the position of certain nodes

OTHER LAYOUTS

• orthogonal
• great for UML diagrams
• algorithmically complex

• circular layouts
• emphasizes ring topologies
• used in social network diagrams

• nested layouts
• recursively apply layout algorithms
• great for graphs with hierarchical structure

• Attribute driven layouts
• Use “extra data” to help inform layout
• (more next lecture)

52

http://gephi.github.io/

NODE LINK

• + understandable visual mapping

• + can show overall structure, clusters,
paths

• + flexible, many variations

• - all but the most trivial algorithms are
> O(n2)

• - not good for dense graphs
• hairball problem!

A

CB

D E

A

B

C

D

E

A B C D E

ALTERNATIVE:
ADJACENCY MATRIX
• instead of node link diagram,

use adjacency matrix
representation

SPOTTING PATTERNS IN MATRICES

Henry 2006

Les Misérables

• character co-occurrence

http://bost.ocks.org/mike/miserables/

http://bost.ocks.org/mike/miserables/
http://bost.ocks.org/mike/miserables/

Adjacency Diagram

• + great for dense graphs

• + visually scalable

• + can spot clusters

• - row order affects what you can see

• - abstract visualization

• - hard to follow paths

AGGREGATE VIEWS

MOTIF GLYPHS

Dunne 2013

Connector

Fan

Clique

MOTIF GLYPHS

Dunne 2013

MOTIF GLYPHS

Dunne 2013

RECAP

TREES

• indentation
• simple, effective for small trees

• node link and layered
• looks good but needs exponential space

• enclosure (treemaps)
• great for size related tasks but suffer in structure related tasks

GRAPHS

• node link
• familiar, but problematic for large or dense graphs

• adjacency matrices
• abstract, hard to follow paths

• aggregation can help
• not always possible, not always appropriate

• extracting structure can help
• unclear how crosscutting it will be

TAKE HOME MESSAGE
No best solution!

	Slide 1: Visualization for Data Science DS-4630 / CS-5630 / CS-6630
	Slide 2: Dataset types
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7: DEFINITIONS
	Slide 8: GRAPH
	Slide 9
	Slide 10: Adjacency Matrix
	Slide 11: GRAPHS & TREES
	Slide 12: a bunch of definitions
	Slide 13: VISUALIZING TREES
	Slide 14
	Slide 15: ROOTED TREES
	Slide 16: NODE-LINK DIAGRAMS
	Slide 17
	Slide 18
	Slide 19
	Slide 20: REINGOLD-TILFORD
	Slide 21: REINGOLD-TILFORD
	Slide 22: REINGOLD-TILFORD
	Slide 23: REINGOLD-TILFORD
	Slide 24: LAYERED DIAGRAMS
	Slide 25
	Slide 26
	Slide 27: SCALE PROBLEM
	Slide 28: INDENTATION
	Slide 29: ENCLOSURE DIAGRAMS
	Slide 30
	Slide 31: TREEMAPS
	Slide 32
	Slide 33
	Slide 34: VISUALIZING GRAPHS
	Slide 35: Graph Drawing Exercise
	Slide 36: GRAPH DRAWING EXERCISE
	Slide 37
	Slide 38: VISUALIZING GRAPHS
	Slide 39: SPATIAL LAYOUT
	Slide 40: SUGIYAMA
	Slide 41: SUGIYAMA
	Slide 42: FORCE-DIRECTED
	Slide 43: FORCE-DIRECTED
	Slide 44: Physics Review
	Slide 46: For a Given Node i.
	Slide 47: FORCE MODEL
	Slide 48: FORCE MODEL
	Slide 49: FORCE MODEL: Repulsive Forces
	Slide 50: FORCE MODEL: Attractive Forces
	Slide 51: FORCE MODEL: Attractive Forces
	Slide 52: FORCE MODEL
	Slide 53: FORCE MODEL
	Slide 54: ALGORITHM
	Slide 55: What values do we set for…
	Slide 56: What values do we set for…
	Slide 57: Improving initial starting position
	Slide 58: Example: Rate of Convergence
	Slide 59: Example: Convergence Quality
	Slide 60: What values for…
	Slide 61: What values for…
	Slide 62
	Slide 63: FORCE DIRECTED
	Slide 64: FORCE DIRECTED
	Slide 65: Ideas to make it better
	Slide 66: OTHER LAYOUTS
	Slide 67
	Slide 70: NODE LINK
	Slide 71: ALTERNATIVE: ADJACENCY MATRIX
	Slide 72: SPOTTING PATTERNS IN MATRICES
	Slide 73: Les Misérables
	Slide 74: Adjacency Diagram
	Slide 75: AGGREGATE VIEWS
	Slide 76: MOTIF GLYPHS
	Slide 77: MOTIF GLYPHS
	Slide 78: MOTIF GLYPHS
	Slide 79: RECAP
	Slide 80: TREES
	Slide 81: GRAPHS
	Slide 82: TAKE HOME MESSAGE No best solution!
	Slide 85

