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Visual Design and Dark Patterns




TUFTE
Design excellence




TUFTE’S LESSONS

* practice—graphical integrity and excellence

* theory—design principles for data graphics
g & | R —
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Envisioning Information

TEMNET NN

R R R N
SECOND EDITION

The Visual Display

of Quantitative Information

EDWARD R. TUFTE

VISUAL EXPLANATIONS




GRAPHICAL INTEGRITY
clear, detailed, and thorough labeling
should be used to defeat graphical
distortion and ambiguity



Graphical excellence

* Design a visualization that gives the viewer:
* the greatest number of ideas,
* in the shortest time,
e with the least ink, and
* in the smallest space.

A. Einstein, “An explanation should be as simple as possible, but no simpler.”



Effective Encoding




Channels: Expressiveness Types and Effectiveness Ranks
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Channels: Expressiveness Types and Effectiveness Ranks

® Magnitude Channels: O or Q attributes
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Channels: Expressiveness Types and Effectiveness Ranks

® Magnitude Channels: O or Q attributes
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Gene Expression Time-Series [Meyer et al. “10]

Color Encoding Position Encoding
g4 g8 glé gl7 gl8 gl19 g20 g21 g22




Artery Visualization [Borkin et al. ‘11]
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The only #climatechange chart you need to
see. natl.re/wPKpro

(h/t @powerlineUS)
Average Annual Global Temperature in Fahrenheit
1880-2015
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Federal Debt Held by the Public, as a share of GDP
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Average Annual Number of Mass Shootings in America
1880-2015
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World population from 10,000 BC to present

5,000,000,000,000

= Population
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MISSING SCALES

1970 | 1971 | 1972

Tufte 2001
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SCALE DISTORTION
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SCALE DISTORTION
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/ero Baseline

US GDP US GDP

* Truncate the y-axis:
* |f the zero doesn’t make sense
* To emphasize the relative position comparisons
* If it is the norm (e.g., stock charts)

David Yanofsky, Quartz, 2015
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Outliers

e Option #1: Clip them out
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Outliers

e Option #1: Clip them out
America &
East Asia & Pacific -
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Outliers

* Option #2: Scale Breaks
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Outliers
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* Option #3: Log Scales
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Outliers

* Option #3: Log Scales
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Outliers

* Option #3: Log Scales

|

America -
East Asia & Pacific -
Europe & Central Asia -

Middle East & North Africa - , ) .
Direct visual comparison

of values within and across
orders of magnitude—no
clipping required!
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Outliers
* Option #3: Log Scales

Linear Scale

Absolute change

10 visual units (pixels) =10 additional data units

0
Jan 2005 Jan 2006 Jan 2007 Jan 2008 Jan 2009 Jan 2010

1,000

Log Scale a0
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400

10 visual units = multiplication of 10 data units g 0
log(u) + log(v) = log(uxv) 200
d(100, 200) = d(300, 600)
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date (year-month)




Outliers

* Option #3: Log Scales

Log Scale

Percentage change

10 visual units = multiplication of 10 data units
log(u) + log(v) = log(uxv)
d(100, 200) = d(300, 600)

Jan 2005 Jan 2006 Jan 2007 Jan 2008 Jan 2009 Jan 2010
date (year-month)

Constraints

Positive, non-zero values

Audience familiarity?




Aspect Ratio




Average world life expectancy at birth (years)
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(Source: World Bank Data)

1960 1970 1980 1990 2000 2010 2016

50—

1 1
1960 2016 75—
50—

| I |
1960 2010 2016

[Alberto Cairo. How Charts Lie, 2019]




Approximate the proportion ofthe  35% increase =1/3rd
chart to match the depicted trend. =~ 3:1aspect ratio

“pect ai

Average world life expectancy at birth (years)
75—

70 —

60 —

50—

1 ] 1 1 I I 1
1960 1970 1980 1990 2000 2010 2016

[Alberto Cairo. How Charts Lie, 2019]
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Approximate the proportion of the
chart to match the depicted trend.
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(1) Approximate proportion of the  (2) Bank to 45°: aspect ratios with
chart to match the depicted trend. 45°avg. line segment orientation.
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(1) Approximate proportion of the  (2) Bank to 45°: aspect ratios with
chart to match thedepicted trend. 45°avg. line segment orientation.

“pect ai
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(1) Approximate proportionofthe  (2) Bank to 45° original data or
chart to match the depicted trend. fitted trend lines.
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Tufte’s integrity principles

* the representation of numbers, as physically measured on the surface
of the graphic itself, should be directly proportional to the numerical
guantities represented.

size of effect shown in graphic

The Lie Factor =
© e ractor size of effect in data



DISTORTION

This line, representing 18 miles per
gallon in 1978, is 0.6 inches long.

Fuel Economy Standards for Autos

Set by Congress and supplemented by the Transportation
24 Depariment. In miles per gallon.

This line, representing 27.5 miles per 5.3
gallon in 198, is 5.3 inches long, Lie factor for the percent = O_ - 38.83 o 8
increase from 1978 to 1985 27.5 T S

Tufte 2001




REQUIRED FUEL ECONOMY STANDARDS:
NEW CARS BUILT FROM 1978 TO 1983
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THE NEN NEWNS OUTLETS

Percentage of US adults who ...

D=1.6, A=0.65*PI Use D=0.8, A=0.16*PI

platfor | 7 87%

Area Ratio = 0.65 (67%/43.5%)
Diameter Ratio = 0.8 (67%/53.6%)

Area Ratio = 0.21 (48%/10.1%)
Diameter Ratio = 0.47 (48%/22.6%)

D=1.05 A=0.28*PI
D=0.8, A=0.16*PI

D=0.5, A=0.06*PI
D=0.35 A=0.03*PI

Area Ratio =0.57 (16%/9.1%)
Diameter Ratio = 0.76 (16%/12.1%)

Area Ratio = 0.5 (4%/2%)
Diameter Ratio = 0.7 (4%/2.8%)

Wired, Jan 2017



Tufte’s integrity principles
show data variation, not design
variation



UNINTENDED SIZE CODING



http://peltiertech.com/WordPress/bad-bar-chart-practices-or-send-in-the-clowns/

UNINTENDED SIZE CODING

World Population in 2008
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http://peltiertech.com/WordPress/bad-bar-chart-practices-or-send-in-the-clowns/

DESIGN PRINCIPLES
(or how to achieve integrity and
excellence)
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maximize the data-in I(
Data-ink Ratio =

total ink used in graphic
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Eurographics / IEEE Symposium on Visualization 2011 (EuroVis 2011) Volume 30 (2011), Number 3

H. Hauser, H. Pfister, and J. J. van Wijk
(Guest Editors)

A User Study of Visualization
Effectiveness Using EEG and Cognitive Load

E.W. Anderson', K. C. Potter!, L. E. Matzen?, J. F. Shepherd?, G. A. Preston’, and C. T. Silva'

1SCI Institute, University of Utah, USA
2Sandia National Laboratories, USA
3Utah State Hospital, USA

Abstract
Effectively evaluating visualization techniques is a difficult task often assessed through feedback from user studies
and expert evaluations. This work presents an alternative approach to visualization evaluation in which brain

COUNTER-POINT

LTUS LT OTTTIGEIOTE LS PIUCEXSCU 1O PIOUVIGE TIETH THO e CORNHIvVE oud trmposca on e viewer. LS paper aescrioes
the design of the user study performed, the extraction of cognitive load measures from EEG data, and how those

measures are used to quantitatively evaluate the effectiveness of visualizations.

Categories and Subject Descriptors (according to ACM CCS): 1.3.3 [Computer Graphics]: General—Human Factors,
Evaluation, Electroencephalography

1. Introduction this paper strives to evaluate visualization techniques objec-

Efficient visualizations facilitate the understanding of data tively by using passive, non-invasive monitoring devices to
meaciire the hnirden nlaced on a near’e coonitive recolireces
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EXPERIMENT

* asked participants to choose box plot with
largest range from a set

* varied representation
* measured cognitive load from EEG brain waves




EXPERIMENTAL RESULTS

* studies showed that the simplest (highest
data-ink ratio) box plot is hardest to interpret

* paper focused on cognitive load as an
evaluation method

—




Chart Junk: attraction or distraction?

DIAMONDS WERE A GIRL'S BEST FRIEND 0% MONSTROUS COSTS
Average price of a one-carat D-flawless Ve 74

Total House and Senate
campaign expenditures,
in millions
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TIME Onart Dy Negel Makowey Seurce: The Dlamond Registry

Nigel Holmes, TIME Magazine



Chart Junk

MONSTROUS COSTS MONSTROUS COSTS

Total House and Senate Total House and Senate campaign expenditures, in millions
campaign expenditures,
in millions

Bateman et al. CHI 2010



Chart Junk

DIAMONDS WERE A GIRL'S BEST FRIEND BDa'Ji DIAMONDS WERE A GIRL'S BEST FRIEND
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Bateman et al. CHI 2010



Chart Junk

EMPLOYMENT COSTS FOR A STEELWORKER PER HOUR
Average of first nine months, 1982

$2399

$1345

$1237

$11.08

$9.32

$2.39

UsS. W. Germany France Japan Britain S. Korea

Bateman et al. CHI 2010



Chart Junk

THE COSMETICS DOLLAR

Salaries
wages A
acdmiprmetr glrorw

Heal, Ngh,
salarnes wages

THE COSMETICS DOLLAR
Where it goes

Salaries, wages, and administration
19 cents

Bateman et al. CHI 2010



Chart Junk

THE RISE IN CIGARETTE PRICES
Average retail price per pack of cigarettes, in cents

'82 819
81 63.0

'80 60.0

79 56.8

78 54.3

Bateman et al. CHI 2010



AVOID CHART JUNK

15%

10%

5%

|

Jan Feb Mar Apr May Jun Jul Aug Sep

7N A




AVOID CHART JUNK

15% &

10% [~

5% —

Jan Feb Mar Apr May Jun Jul Aug Sep




AVOID CHART JUNK

15% =
10% [ o
5°/o e —

Jan Feb Mar Apr May Jun Jul Aug Sep




AVOID CHART JUNK

15%
1 0%
5% | I

Jan Feb Mar Apr May Jun Jul Aug Sep




AVOID CHART JUNK




COUNTER-POINTS

CHI 2010: Graphs

April 10-15, 2010, Atlanta, GA, USA

Useful Junk? The Effects of Visual Embellishment
on Comprehension and Memorability of Charts

Scott Bateman, Regan L. Mandryk, Carl Gutwin,
Aaron Genest, David McDine, Christopher Brooks
Department of Computer Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
scott.bateman@usask.ca, regan@cs.usask.ca, gutwin@cs.usask.ca,
aaron.genest@usask.ca, dam085@mail.usask.ca, cab938@mail.usask.ca

ABSTRACT

Guidelines for designing information charts often state that
the presentation should reduce ‘chart junk’ — visual
embellishments that are not essential to understanding the
data. In contrast, some popular chart designers wrap the
presented data in detailed and elaborate imagery, raising the
questions of whether this imagery is really as detrimental to
understanding as has been proposed, and whether the visual
embellishment may have other benefits. To investigate
these issues, we conducted an experiment that compared
embellished charts with plain ones, and measured both
interpretation accuracy and long-term recall. We found that
people’s accuracy in describing the embellished charts was
no worse than for plain charts, and that their recall after a
two-to-three-week gap was significantly better. Although
we are cautious about recommending that all charts be
produced in this style, our results question some of the
premises of the minimalist approach to chart design.

Author Keywords
Charts, information visualization, imagery, memorability.

Despite these minimalist guidelines, many designers
include a wide variety of visual embellishments in their
charts, from small decorations to large images and visual
backgrounds. One well-known proponent of visual
embellishment in charts is the graphic artist Nigel Holmes,
whose work regularly incorporates strong visual imagery
into the fabric of the chart [7] (e.g., Figure 1).

MONSTROUS COSTS
Total House and Senate
campaign expenditures,
in millions

What Makes a Visualization Memorable?

Michelle A. Borkin, Student Member, IEEE, Azalea A. Vo, Zoya Bylinskii, Phillip Isola, Student Member, IEEE,

Shashank Sunkavalli, Aude Oliva, and Hanspeter Pfister, Senior Member, IEEE
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Fig. 1. Left: The top twelve overall most memorable visualizations from our experiment (most to least memorable from top left to
bottom right). Middle: The top twelve most memorable visualizations from our experiment when visualizations containing human
recognizable cartoons or images are removed (most to least memorable from top left to bottom right). Right: The twelve least
memorable visualizations from our experiment (most to least memorable from top left to bottom right).

Abstract—An ongoing debate in the Visualization community concerns the role that visualization types play in data understanding.
In human cognition, understanding and memorability are intertwined. As a first step towards being able to ask questions about impact
and effectiveness, here we ask: “What makes a visualization memorable?” We ran the largest scale visualization study to date using
2,070 single-panel visualizations, categorized with visualization type (e.g., bar chart, line graph, etc.), collected from news media sites,
government reports, scientific journals, and infographic sources. Each visualization was annotated with additional attributes, including
ratings for data-ink ratios and visual densities. Using Amazon’s Mechanical Turk, we collected memorability scores for hundreds of
these visualizations, and discovered that observers are consistent in which visualizations they find memorable and forgettable. We
find intuitive results (e.g., attributes like color and the inclusion of a human recognizable object enhance memorability) and less
intuitive results (e.g., common graphs are less memorable than unique visualization types). Altogether our findings suggest that
quantifying memorability is a general metric of the utility of information, an essential step towards determining how to design effective
visualizations.

Index Terms—Visualization taxonomy, information visualization, memorability
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Useful Junk? The Effects of Visual Embellishment
on Comprehension and Memorability of Charts

Scott Bateman, Regan L. Mandryk, Carl Gutwin,
Aaron Genest, David McDine, Christopher Brooks
Department of Computer Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
scott.bateman@usask.ca, regan@cs.usask.ca, gutwin@cs.usask.ca,
aaron.genest@usask.ca, dam085@mail.usask.ca, cab938@mail.usask.ca

ABSTRACT

Guidelines for designing information charts often state that
the presentation should reduce °‘chart junk’ — visual
embellishments that are not essential to understanding the
data. In contrast, some popular chart designers wrap the
presented data in detailed and elaborate imagery, raising the
questions of whether this imagery is really as detrimental to
understanding as has been proposed, and whether the visual
embellishment may have other benefits. To investigate
these issues, we conducted an experiment that compared
embellished charts with plain ones, and measured both
interpretation accuracy and long-term recall. We found that
people’s accuracy in describing the embellished charts was
no worse than for plain charts, and that their recall after a
two-to-three-week gap was significantly better. Although
we are cautious about recommending that all charts be
produced in this style, our results question some of the
premises of the minimalist approach to chart design.

Author Keywords
Charts, information visualization, imagery, memorability.

Despite these minimalist guidelines, many designers
include a wide variety of visual embellishments in their
charts, from small decorations to large images and visual
backgrounds. One well-known proponent of visual
embellishment in charts is the graphic artist Nigel Holmes,
whose work regularly incorporates strong visual imagery
into the fabric of the chart [7] (e.g., Figure 1).
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Total House and Senate
campaign expenditures,
in millions




EXPERIMENTAL QUESTIONS

* do visual embellishments cause comprehension problems?

* do embellishments provide additional information that is valuable for
the reader?




EXPERIMENTAL RESULTS

* No significant difference between plain and embellished charts for
Interactive interpretation accuracy

* No significant difference in recall accuracy after a five-minute gap




EXPERIMENTAL RESULTS

 Significantly better recall for embellished charts of both the chart
topic and the details (categories and trend) after long-term gap (2-3
weeks)

* Participants saw value messages in the embellished charts
significantly more often than in the plain charts

* Participants found the embellished charts more attractive, most
enjoyed them, and found that they were easiest and fastest to
remember



What Makes a Visualization Memorable?

Michelle A. Borkin, Student Member, IEEE, Azalea A. Vo, Zoya Bylinskii, Phillip Isola, Student Member, IEEE,
Shashank Sunkavalli, Aude Oliva, and Hanspeter Pfister, Senior Member, IEEE

Fig. 1. Left: The top twelve overall most memorable visualizations from our experiment (most to least memorable from top left to
bottom right). Middle: The top twelve most memorable visualizations from our experiment when visualizations containing human
recognizable cartoons or images are removed (most to least memorable from top left to bottom right). Right: The twelve least
memorable visualizations from our experiment (most to least memorable from top left to bottom right).

Abstract—An ongoing debate in the Visualization community concerns the role that visualization types play in data understanding.
In human cognition, understanding and memorability are intertwined. As a first step towards being able to ask questions about impact
and effectiveness, here we ask: “What makes a visualization memorable?” We ran the largest scale visualization study to date using
2,070 single-panel visualizations, categorized with visualization type (e.g., bar chart, line graph, etc.), collected from news media sites,
government reports, scientific journals, and infographic sources. Each visualization was annotated with additional attributes, including
ratings for data-ink ratios and visual densities. Using Amazon’s Mechanical Turk, we collected memorability scores for hundreds of
these visualizations, and discovered that observers are consistent in which visualizations they find memorable and forgettable. We
find intuitive results (e.g., attributes like color and the inclusion of a human recognizable object enhance memorability) and less
intuitive results (e.g., common graphs are less memorable than unique visualization types). Altogether our findings suggest that
guantifyi fiie s a general metrj ity of information, an essential ste ign effective




Results

e color and human recognizable objects enhance memorability

e common graphs are less memorable than unique visualization types




CHART JUNK? IT DEPENDS

* persuasion
* memorability PROS

* engagement

* unbiased analysis
* trustworthiness

* interpretability

* space efficiency



REQUIRED FUEL ECONOMY STANDARDS:
NEW CARS BUILT FROM 1978 TO 1083
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maximize the . number of entries in data array
Data Density =

area of data graphic



SHRINK THE GRAPHICS — with small multiples
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SHRINK THE GRAPHICS

GRAPHIC PROBLEMS POSED BY TIME SERIES

a Scale in years
With a scale in years, a two-year total {figure 1) shounld be
divided by 2 (figure 2). A total for six months should be
multiplied by 2, '

Pointed curves _
For overly pointed curves (figure 3), the scale of the Q
should be reduced; optimum angular perceptibility occurg
at around 70 degrees (figure 4). :

A )
AT

ANAA A
AAAAAR

s — 4 If the curve is not reducible (large and small variations);
— filled columns can be used (figure 5). :
’ L~ Flat curves '
For overly flat curves (figure 6), the scale of the Q should be
6 7 increased (figure 7).

Small variations &

For small variations in relation to the total (figure 8), the
total loses its importance, and the zero point can be elim
nated, provided the reader is made aware of this el imination
(figure 9). The graphic can be interpreted as an acceleration -
if a precise study of the variations is necessary; here, we use
a logarithmic scale (figure 10). (See also page 240.)

Large range
For a very large range between the extreme number
{figure 11), we must either: :
(1) leave out the smallest variations;
(2) be concerned only with relative differences (logarithmic
scale), without knowing the absolute quantities; '
(3) select different parts (periods) within the ordered
‘component and treat them on different scales above
the common scale (figure 12).

12

Obvious periodicity _
If there is obvious periodicity {figure 13), and the
study involves a comparison of the phases of eac
cycle, it is preferable to break up the cycles in ordet
to superimpose them (figure 14). A polar construction,

can be used, preferably in a spiral shape (figure 15), bu
we should not begin with too small a circle. As striking as
it seems, it is less efficient than an orthogonai construction.

13

7

]
]
I
]
Bl LI a1l

ALl (Ll
D

Annual carves
For annual curves of rainfall or temperature, if a cycle has:
two phases (figure 17}, why depict only one (figure 16)?

contrast
nlike what we see in figure 18, the pertinent or “new”
information must be separated from the background or
ference” information. The background involves: (a) the
invariant, highlighted by a heading (Port St. Michel}; (b) the
nighly visible identification of each component (tonnage and
dates). The new information (the curve) must stand out from
the background (figure 19).

Reference poinis

1t is impossible to utilize a graphic such as figure 20, except
in a general manner. There is confusion concerning the posi-
tion of the points, and no potential comparison is possible,
as it is in figure 21.

Precision reading

A precision reading (utilization on the elementary level, as
in figure 24) is difficult in figure 22, which resuits in a poor
ading of the order of the points, and in figure 23, where
ere is ambiguity concerning the position of the points.
n the other hand, figure 22 does favor overall vision
orrelation).

Null boxes
arves accommodate null boxes poorly (figure 25). Columns
{figure 26) are preferable.

‘Unknown boxes

The drawing must indicate the unknowns of the informa-
jon irt an unambiguous way (figures 28 and 30).The reader
might interpret figure 27 as a change in the structure of the
urve and figure 29 as involving null values.

Very small quantities
Except in seeking a correlation (quite improbable here) the
umber of ships entering into 4 port is represented better by

figare 33 than by figures 31 or 32. The reader can perceive
“the namerical values at first glance.

Positive-negative variation

This is in fact a problem involving three components O, Q.
% (+ -), and it must be visually treated as such. Figure 34
‘can be improved by utilizing a retinal variable (in figure 35

“a value difference; black—white) to differentiate the ¥ com-

onent and thus highlight positive-negative variation.

Bertin 1967
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SHRINK THE GRAPHICS — with sparklines

Degquantification In exchange for an enormous increase in graphical
resolving power, the wordlike size of sparklines precludes the overt
labels and scaling of conventional statistical displays. Most of our
examples have, however, depicted contextual methods for quantifying
sparklines: the gray bar for normal limits and the red encoding to link
data points in sparklines to exact numbers 4 M, glucose 6.6 :
global scale bars and labels for sparkline clusters; and, probably best of
all, surrounding a sparkline with an implicit data-scaling box formed
by nearby numbers that label key data points (such as beginning/end,
high/low) 1.1025 .~ 1.1907 . And now and then
sparklines might be scaled by very small type: ™"

vt ' f '
e "o

we
nn

"

Production methods Data lines produced by conventional statistical
graphics programs must be gathered together, rescaled, and resized into
sparklines. Sometimes this can be quickly done by cutting and pasting
data lines, then resizing the printed output to sparkline resolutions.

To produce and display really elegant sparklines, however, currently
requires elaborate software: (1) a page layout program, (2) a graphic design
program that gives complete control over type, tables, linework, and
(3) a statistical analysis program to generate hundreds of chartjunk-free
sparklines for export into design and layout operations. Once the basic




Small Multiples
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Trellis Plots

e Subdivide space to enable
comparison across multiple
plots

* Typically, nominal or
ordinal variables are used
as dimensions for
subdivision.

Trebi

Wisconsin No. 38
No. 457

Glabron

Peatland

Velvet

No. 475
Manchuria

No. 462
Svansota

Trebi

Wisconsin No. 38
No. 457

Glabron

Peatland

Velvet

No. 475
Manchuria

No. 462
Svansota

Trebi

Wisconsin No. 38
No. 457

Glabron

Peatland

Velvet

No. 475
Manchuria

No. 462
Svansota

Grand Rapids

University Farm

o O
a
o

0 0
o

0
o 0

o

o o)
o O

Crookston

o 0O
o
o) o
O

o
o o
o o
o 0
O

O

o

o)
...t r r r°rr T° 1

30 40 50 60 70
Median of yield

10

20

Duluth

30 50
Median of yield




COUNTER-POINT

Unseen and Unaware:
Implications of Recent Research
on Failures of Visual Awareness for
Human-Computer Interface Design

D. Alexander Varakin and Daniel T. Levin
Vanderbilt University

Roger Fidler
Kent State University

ABSTRACT

Because computers often rely on visual displays as a way to convey information
to a user, recent research suggesting that people have detailed awareness of only a
small subset of the visual environment has important implications for hu-
man-computer interface design. Equally important to basic limits of awareness is
the fact that people often over-predict what they will see and become aware of.

Together, basic failures of awareness and people’s failure to intuitively understand



ILLUSIONS OF VISUAL BANDWIDTH

* people over-predict what they will see and become aware of




overestimate of breadth

 belief that viewers can take in all (or most) of the details of a scene at
once

* adding extra visual features makes it harder to find specifics bits of
information




overestimate of countenance

* belief that user will attend to a higher proportion of the display than
they do

 users typically have expectations about where in a display to look




overestimate of depth

* belief that attending to an object leads to more complete and deep
understanding than is the case




Misleading Encoding
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Dual Axis Charts
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Dual Axis Charts

PLANNED PARENTHOOD FEDERATION OF AMERICA:
ABORTIONS UP — LIFE-SAVING PROCEDURES DOWN
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Dual Axis Charts
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Presented by Rep. Jason Chaffetz.

Insufficient Context!
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Insufficient Context
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Insufficient Context

. White House Archived v
' @ObamaWhiteHouse

High school graduation rates under each president

Good news: America's high school graduatlon rate has 100% = Reagan Bush

Clinton Bush Obama
increased to an all-time high. "

UNDER PRESIDENT OBAMA, 820/0
MORE STUDENTS ARE EARNING THEIR HIGH
SCHOOL DIPLOMAS THAN EVER BEFORE s~ 71%
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(Source: National Center for Education Statistics)




Insufficient Context
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Insufficient Context

Share of the popular vote in the 2016 presidential election

Donald Trump I  46.1% 62,984,825 votes
Hillary Clinton | INNENENEAEGEGGGEEEEEEEEEEE 48.2% 65,853,516 votes

Other candidates 5.7%

Percentage of eligible voters
Didn't vote I 0%

Voted for Donald Trump |GG 28%
Voted for Hillary Clinton |G 29%
Voted for other candidates 3%

Alberto Cairo, How Charts Lie, 2019
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