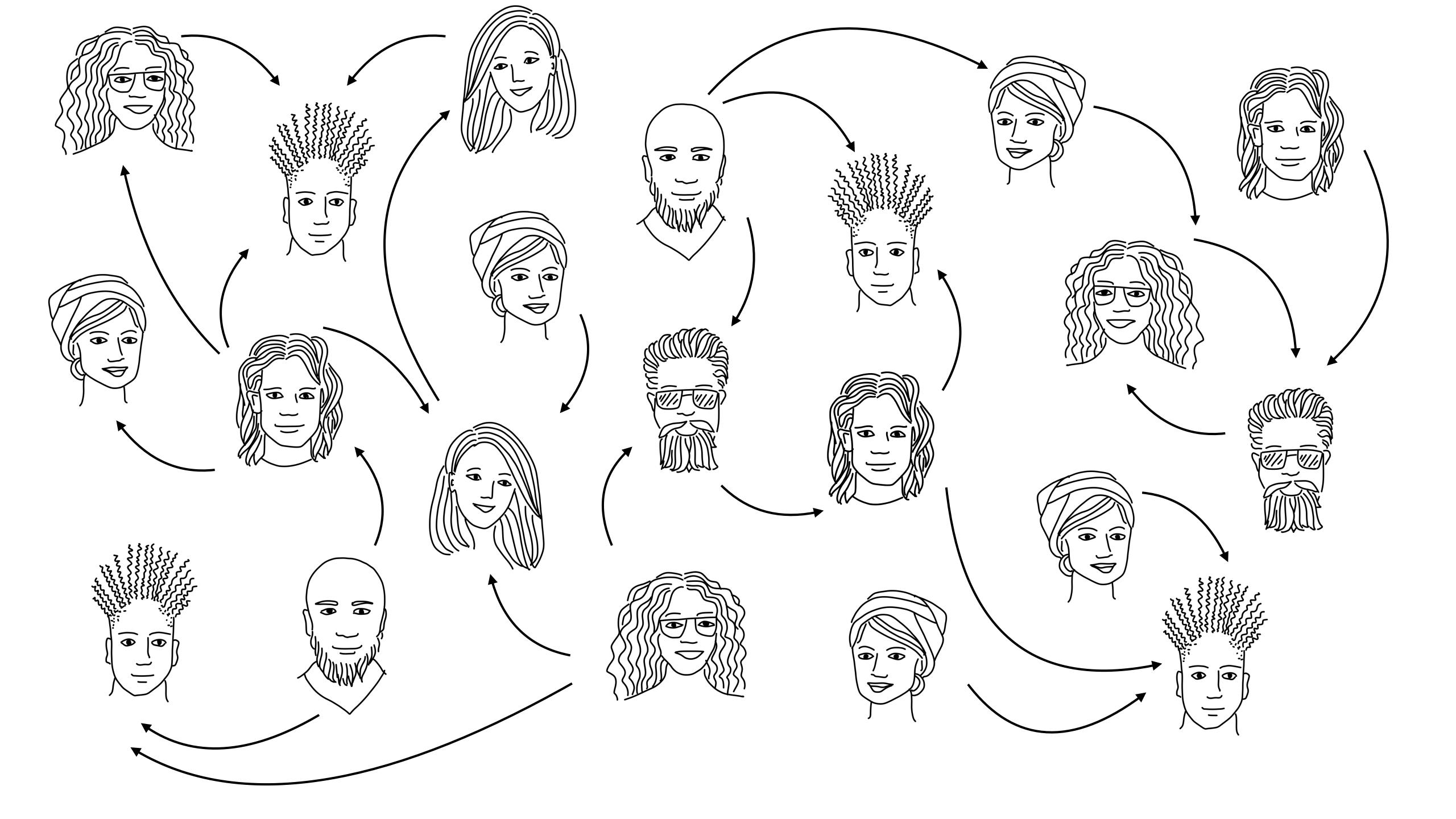
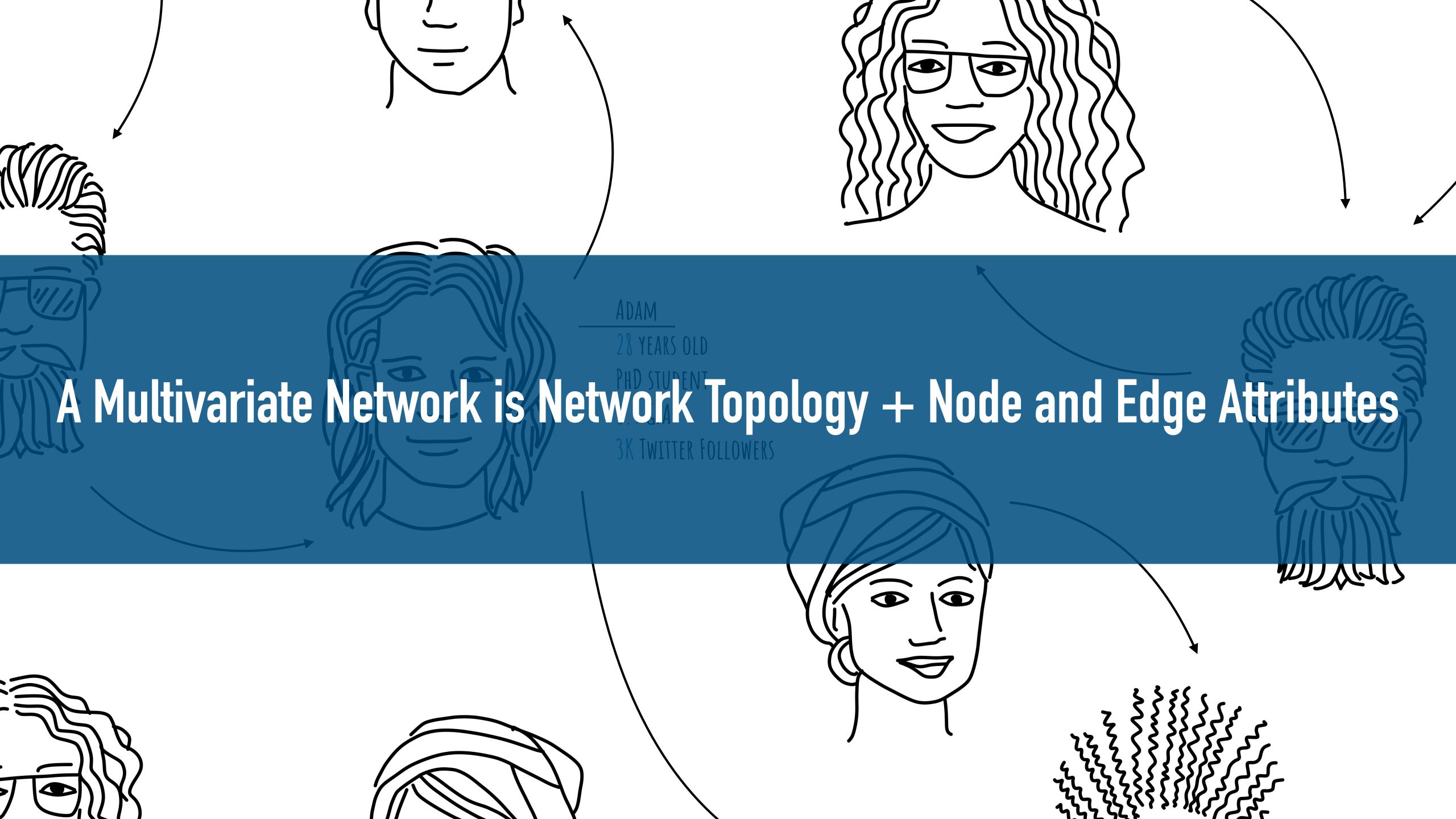
VISUALIZING MULTIVARIATE NETWORKS

Alexander Lex

Based on an IEEE VIS Tutorial held by Carolina Notre, Marc Streit, and Alexander Lex

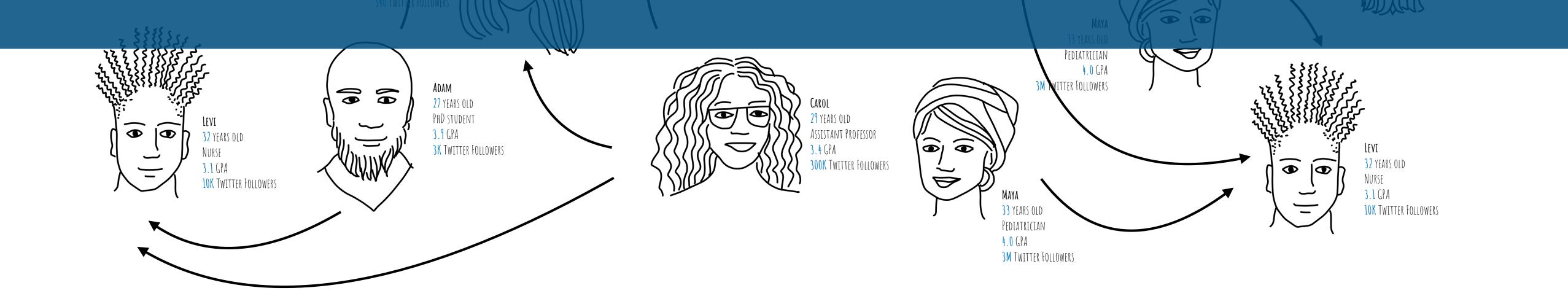






Tradeoff between Topology and Attributes

Choosing efficient encodings for one aspect often interferes with the ability to effectively visualize the other.



The State of the Art in Visualizing Multivariate Networks

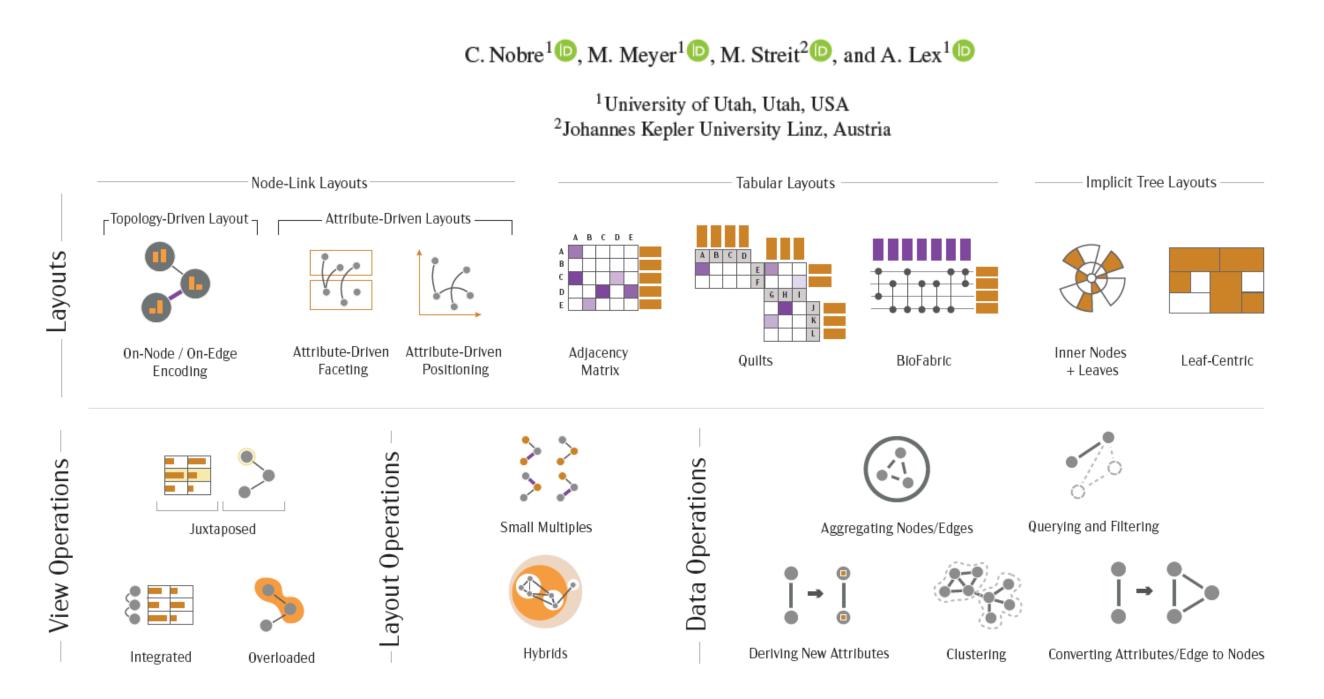
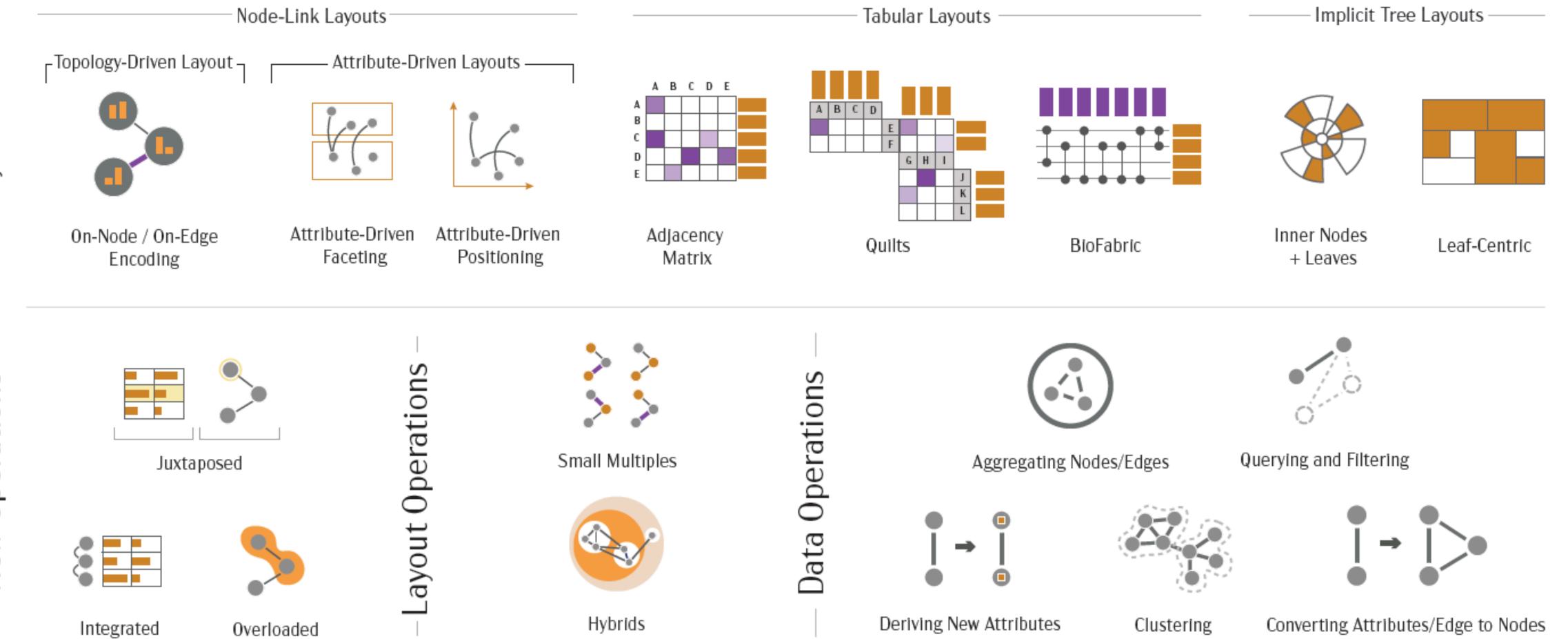


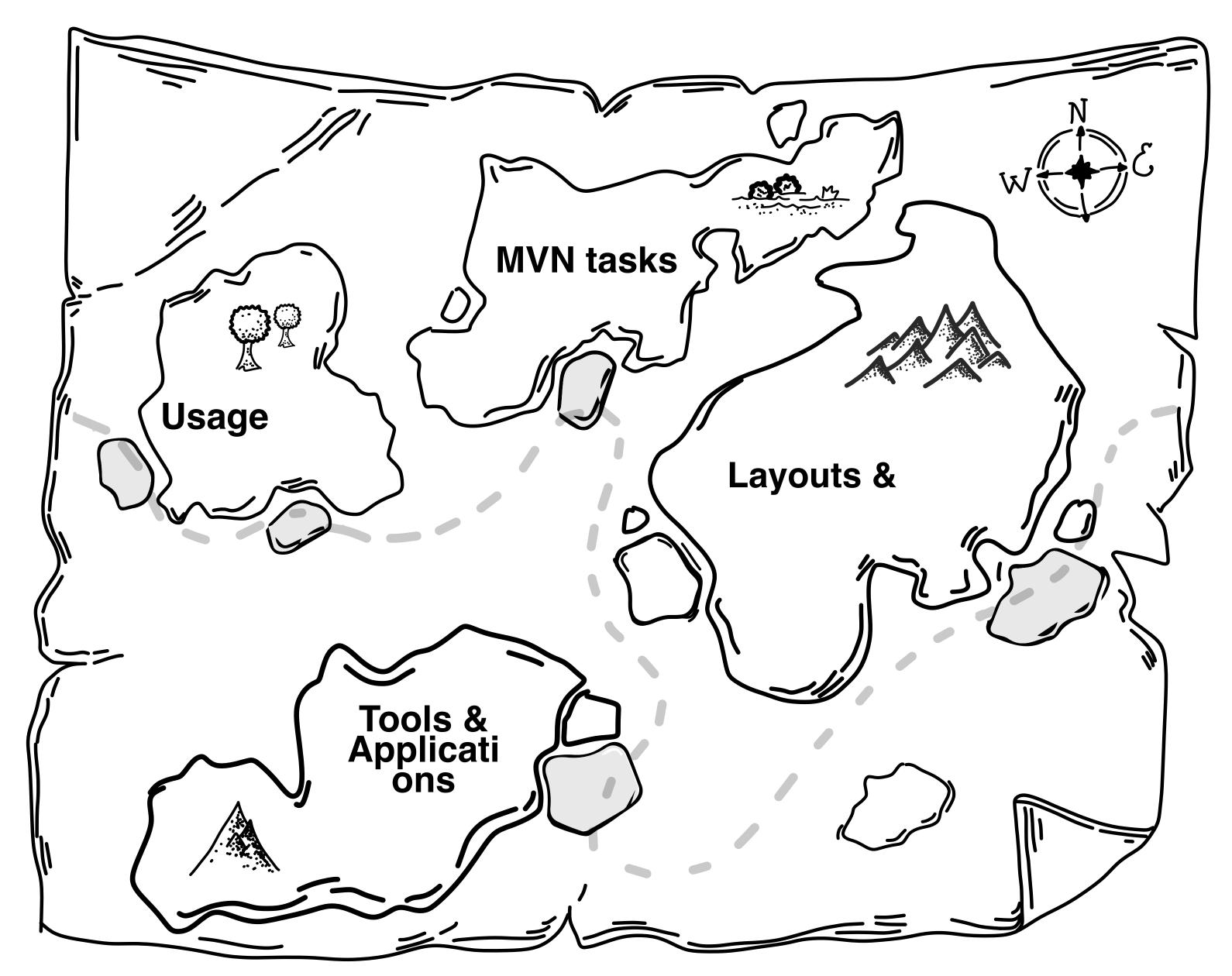
Figure 1: A typology of operations and layouts used in multivariate network visualization. Layouts describe the fundamental choices for encoding multivariate networks. View Operations capture how topology and attribute focused visualizations can be combined. Layout Operations are applied to basic layouts to create specific visualization techniques. Data Operations are used to transform a network or derive attributes before visualizations. The colors reflect node attributes (orange), edge attributes (purple), and topology (grey).

Abstract

Multivariate networks are made up of nodes and their relationships (links), but also data about those nodes and links as attributes. Most real-world networks are associated with several attributes, and many analysis tasks depend on analyzing both, relationships and attributes. Visualization of multivariate networks, however, is challenging, especially when both the topology of the network and the attributes need to be considered concurrently. In this state-of-the-art report, we analyze current practices and classify techniques along four axes: layouts, view operations, layout operations, and data operations. We also provide an analysis of tasks specific to multivariate networks and give recommendations for which technique to use in which scenario. Finally, we survey application areas and evaluation methodologies.



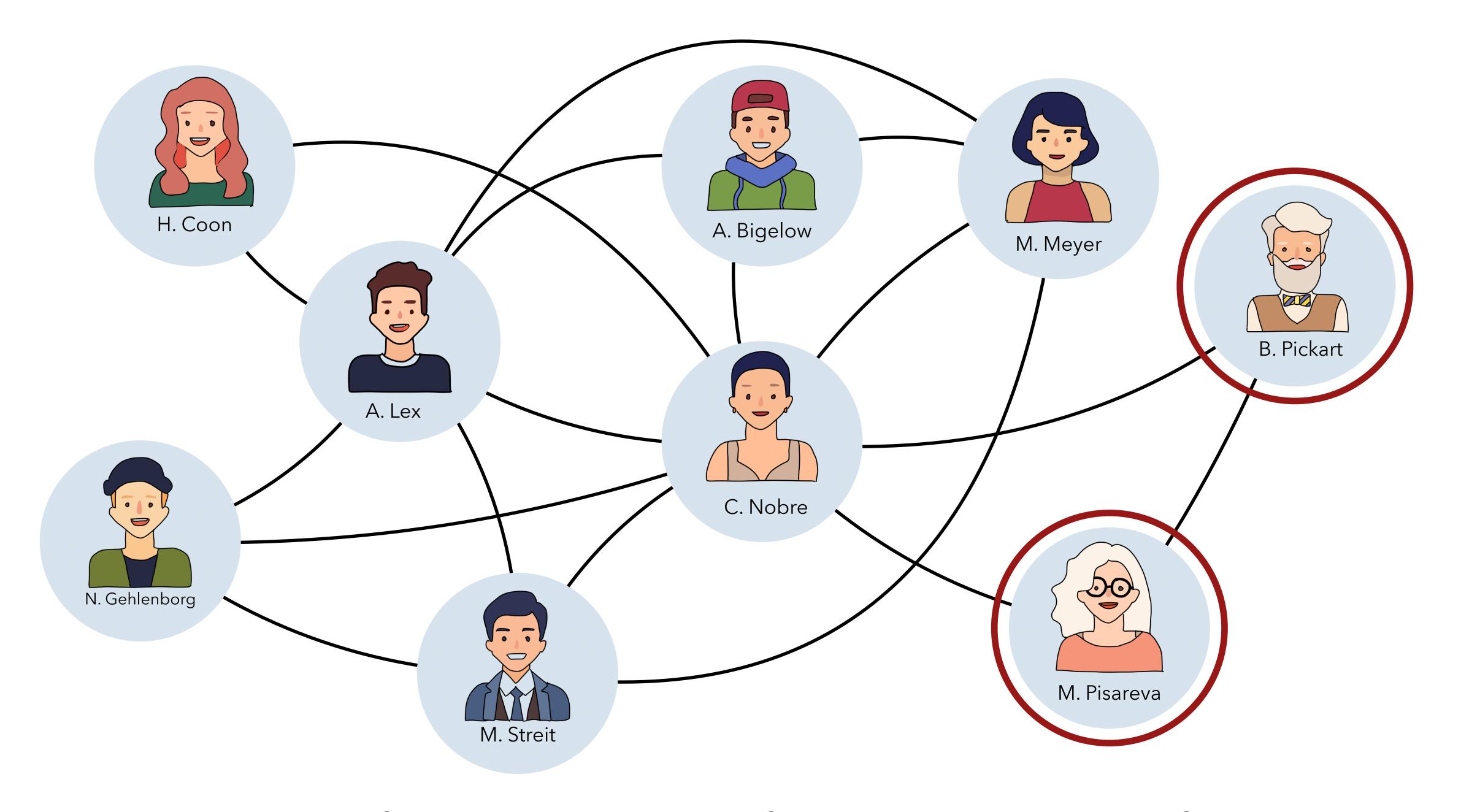
Land of Multivariate



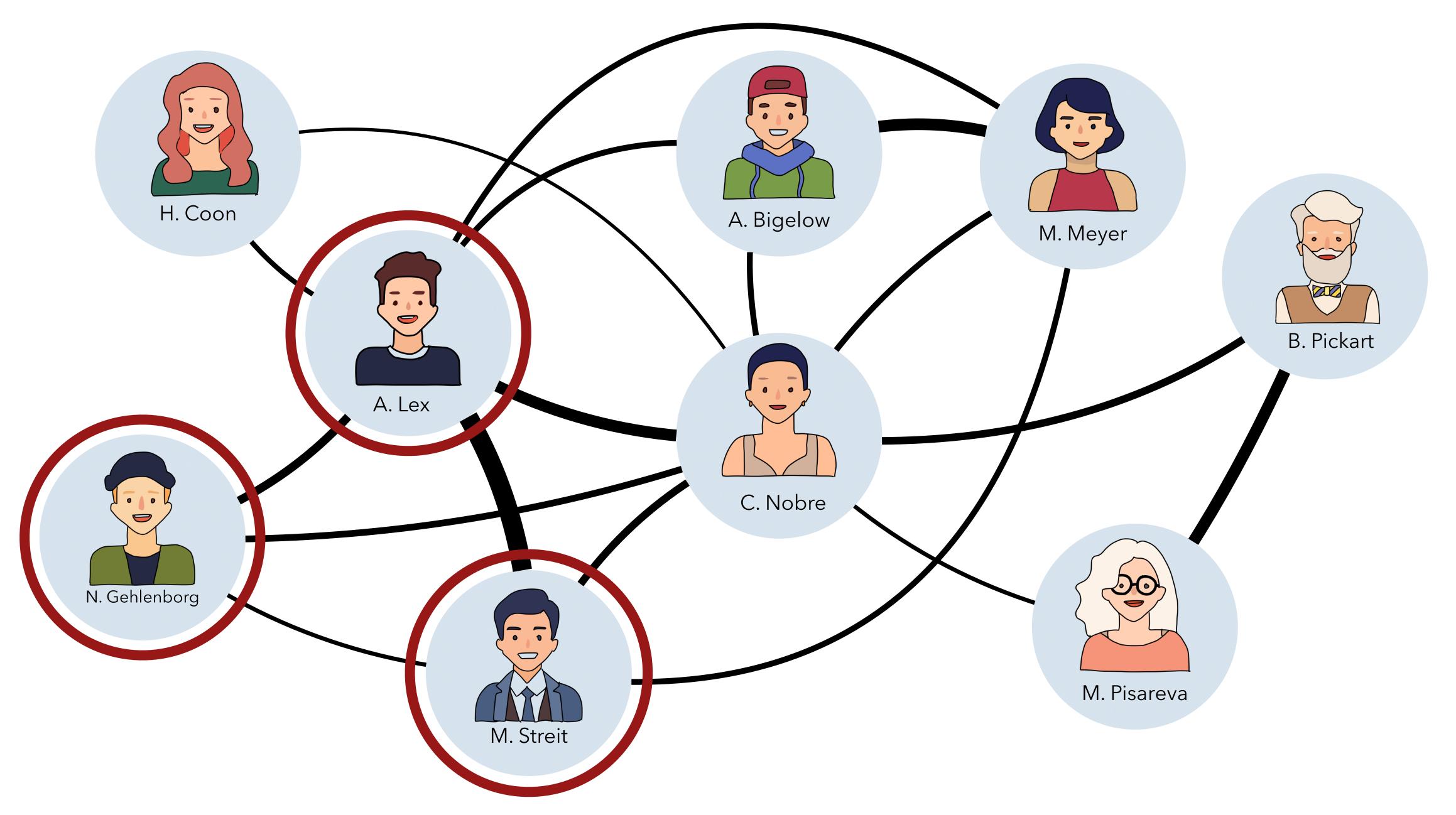
MVNV Tasks

How is an MVN task different than a regular graph task?

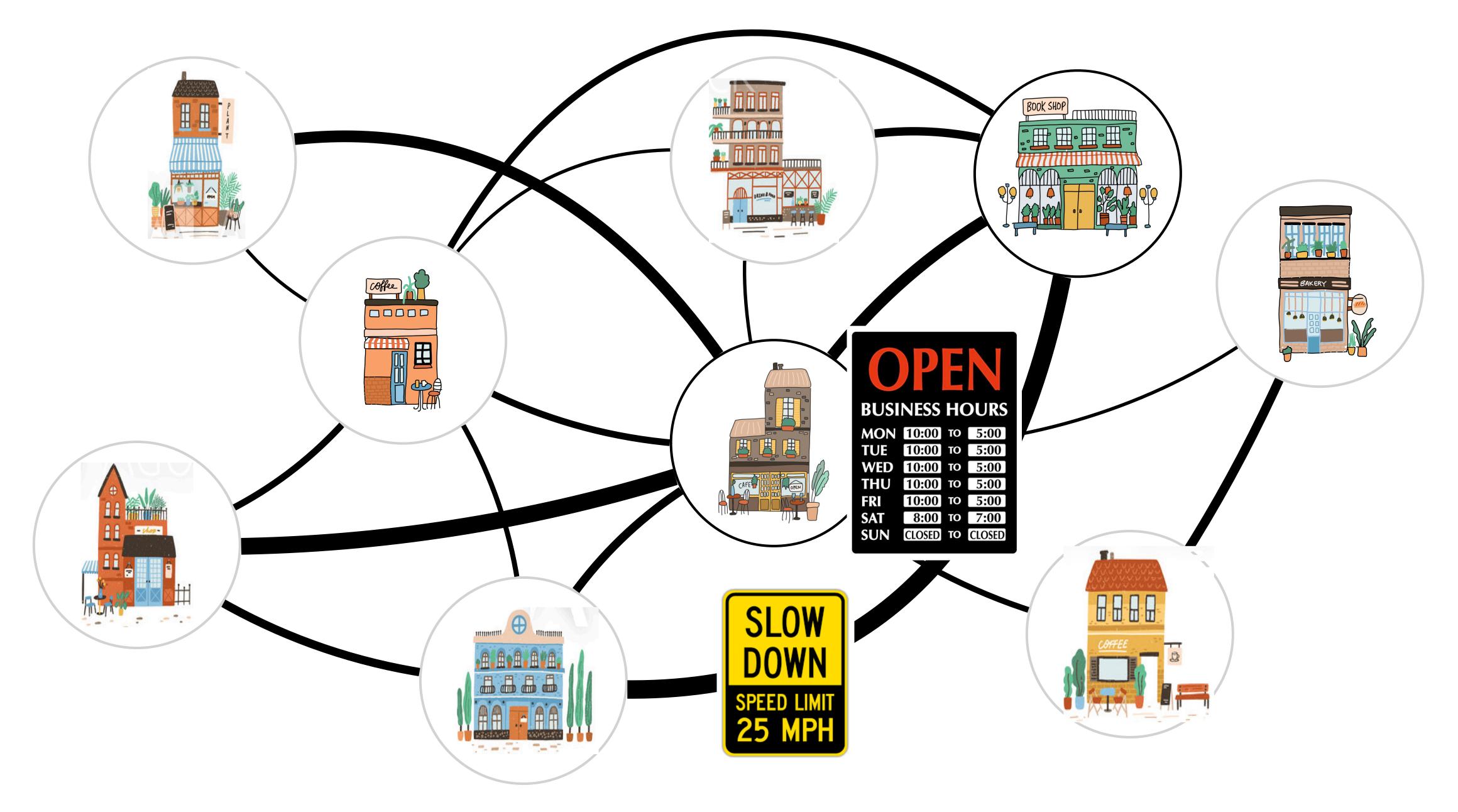
MVN Tasks rely on both the topology of the network and the attributes of the nodes and edges



How many of my collaborators are from the oceanography field?



Which cluster of authors has the highest number of combined collaborations?

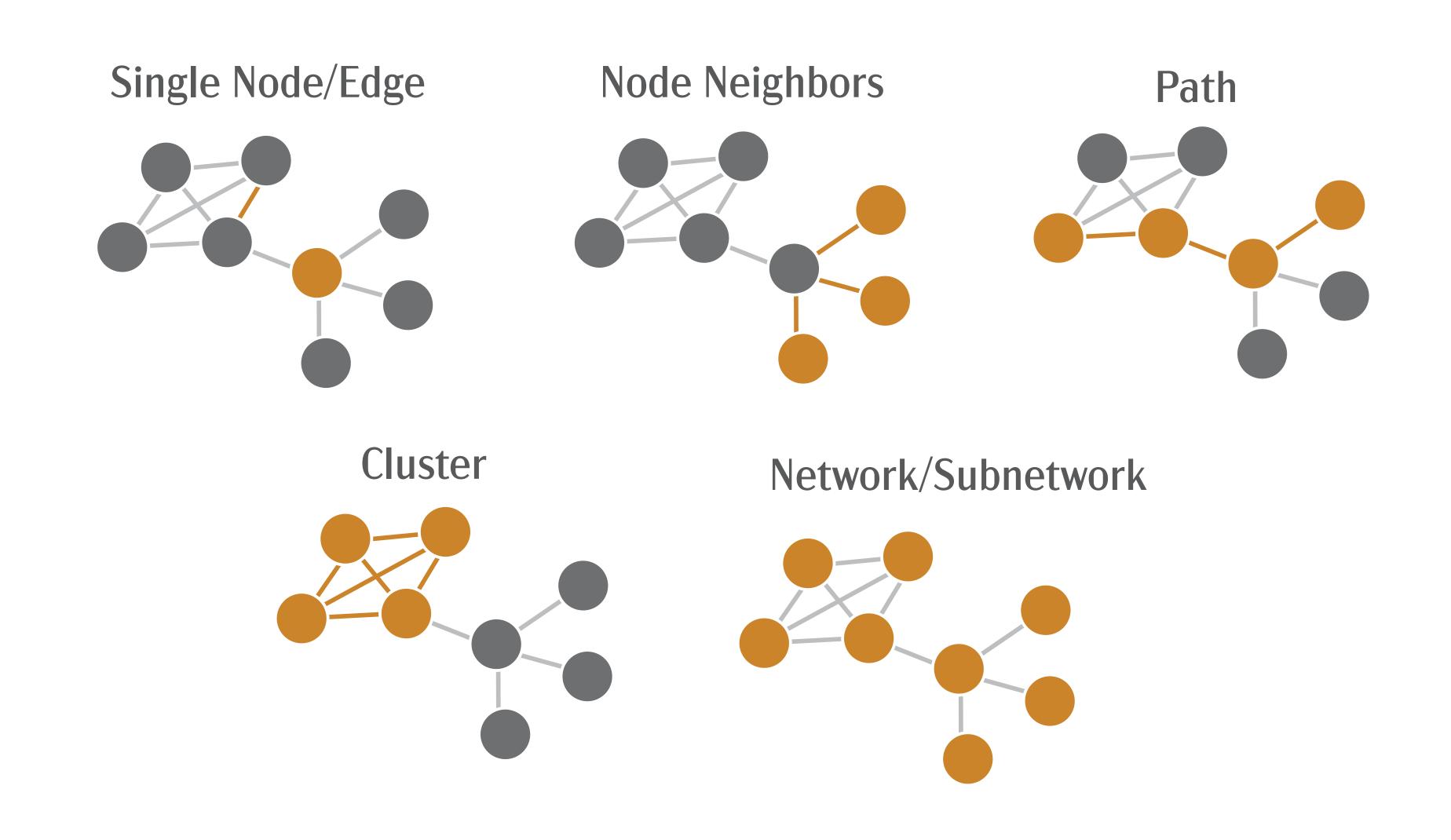


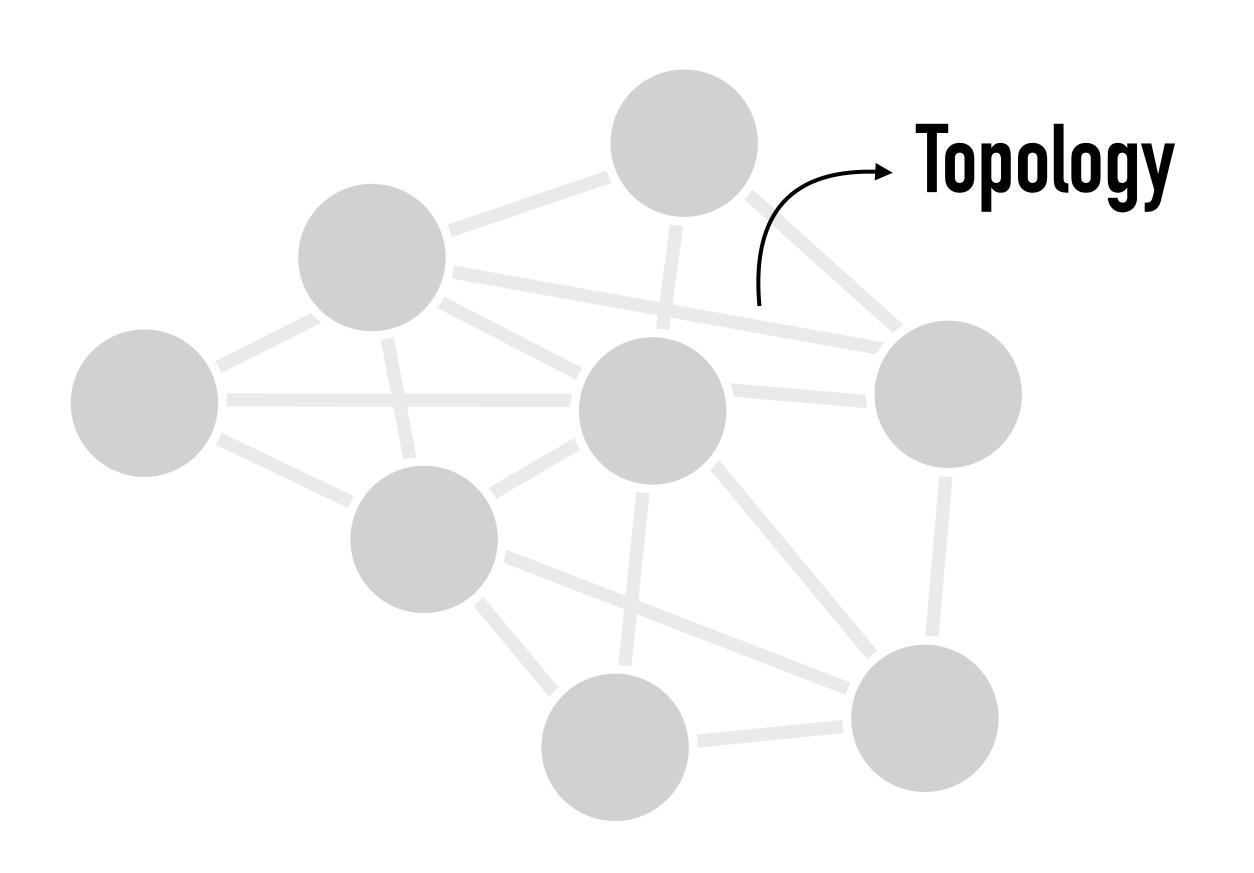
What is an efficient way I can complete all my errands?

- How many of my collaborators are in the oceanography field?
- Which cluster has the highest number of collaborations?
- Nhat is the fastest route to get all my errands done?

Tasks that rely on the topology of the network and the attributes of the nodes and edges

MVNV tasks are applied to topological structures





NAME: MAYA

AGE: 23

NATIONALITY: BRAZILIAN

GPA: 3.8

FRIENDS 3 YEARS

NAME: MAYA AGE: 23 NATIONALITY: BRAZILIAN GPA: 3.8 FRIENDS 3 YEARS DEGREE: 4

NAME: PEDRO

AGE: 25

NATIONALITY: BRAZILIAN

GPA: 3.3

DEGREE: 3

BRAZILIANS

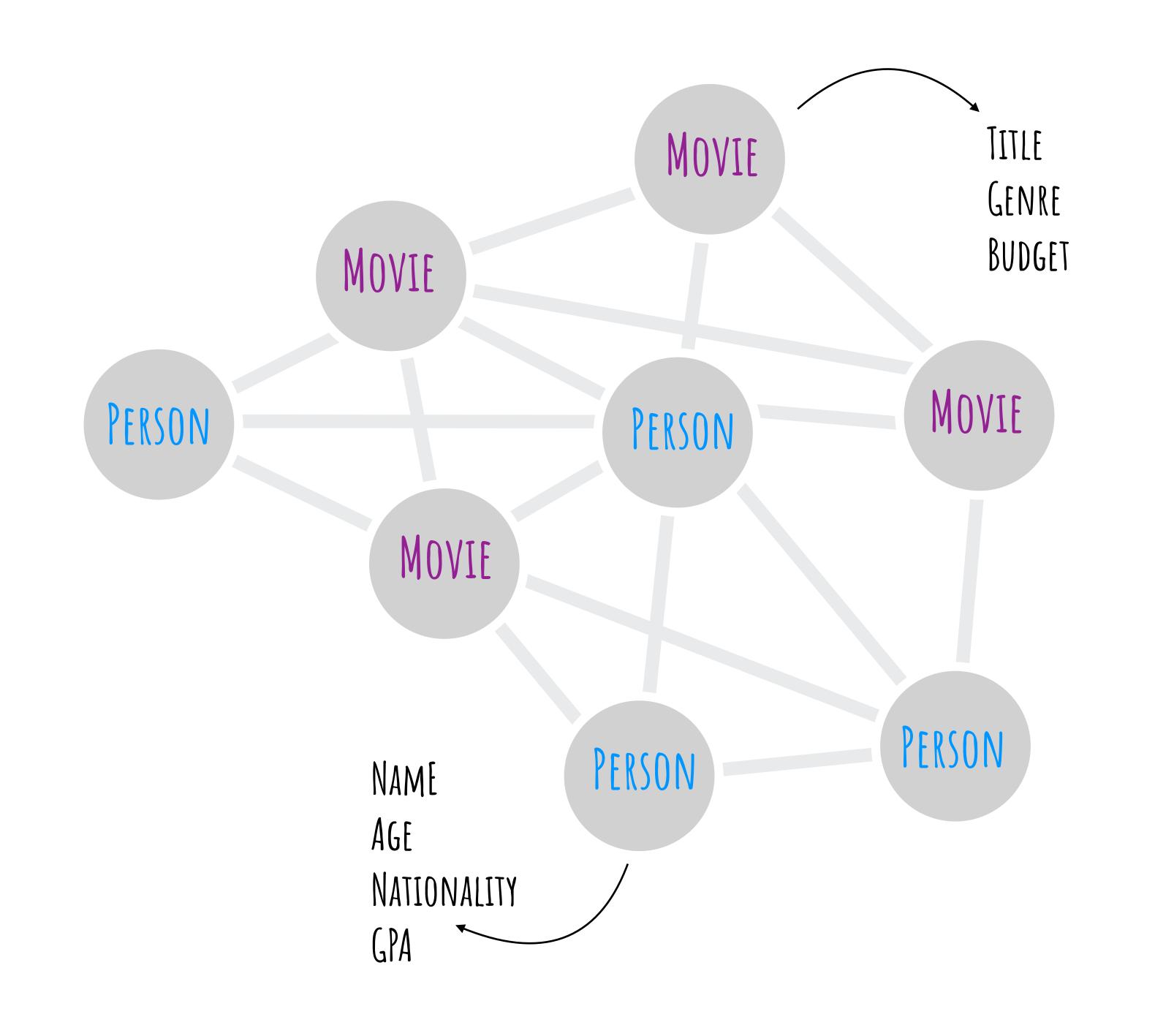
NAME: MAYA

AGE: 23

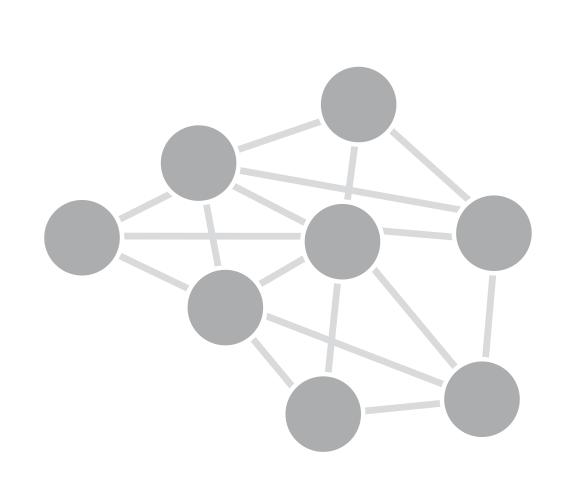
NATIONALITY: BRAZILIAN

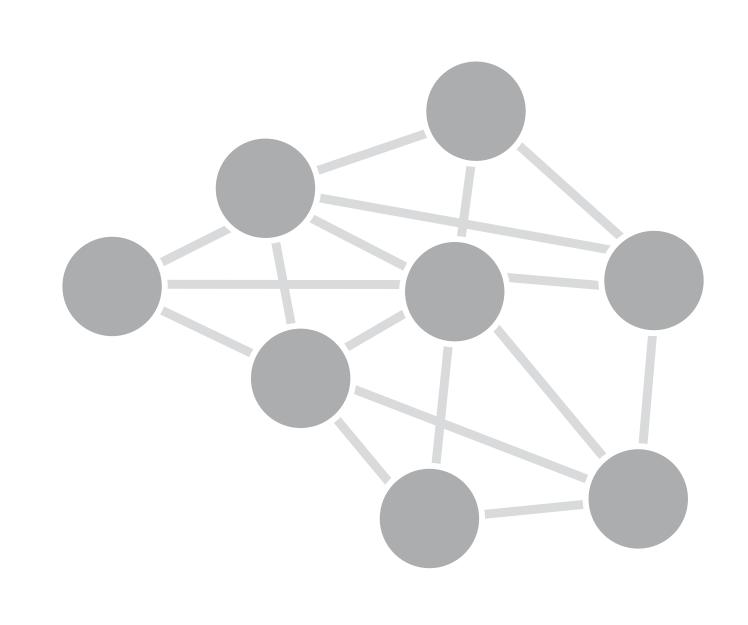
GPA: 3.8

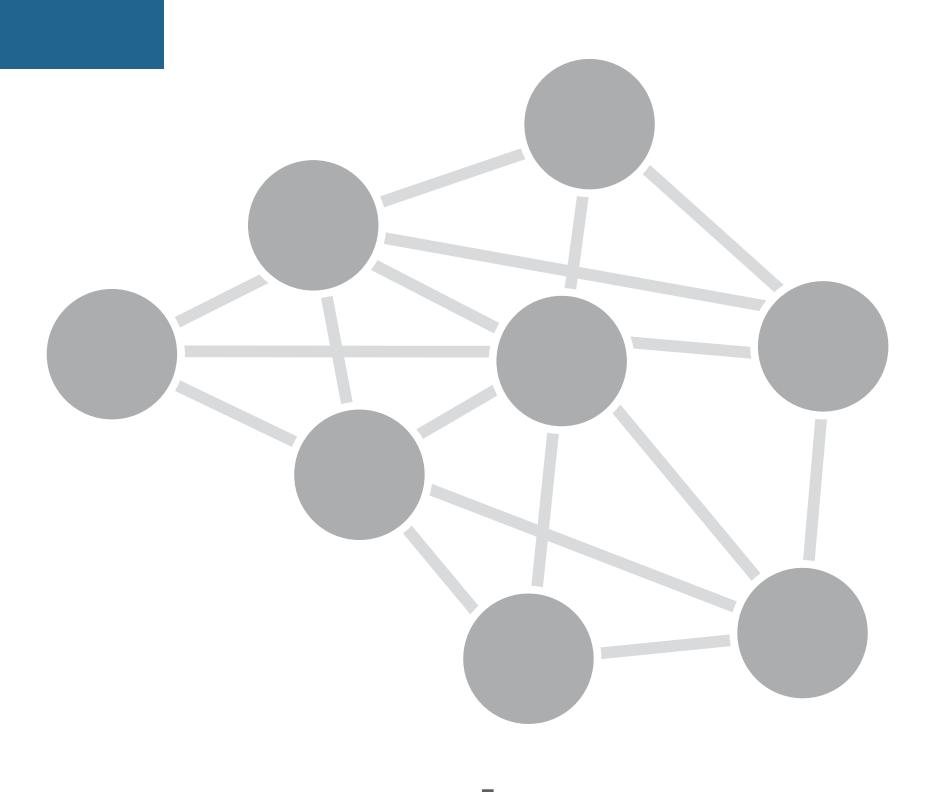
DEGREE: 4



Network Size





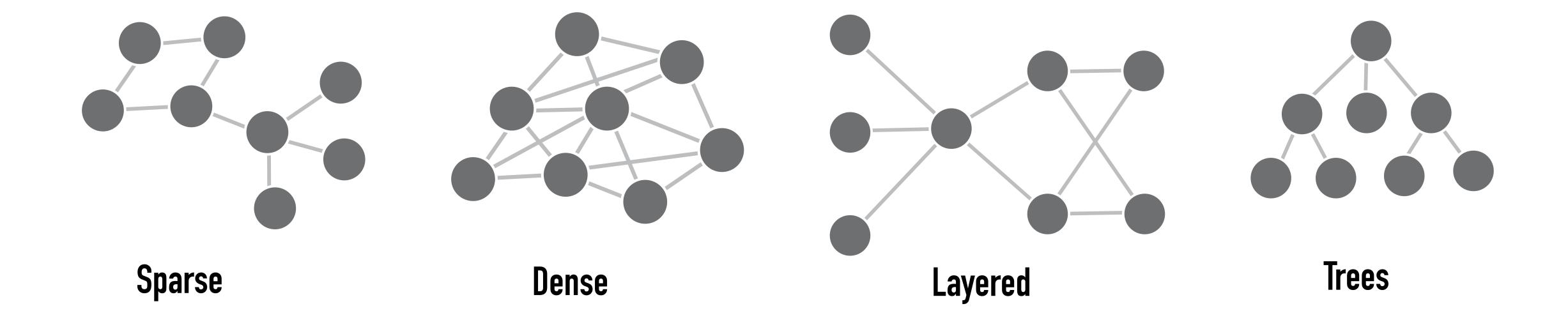


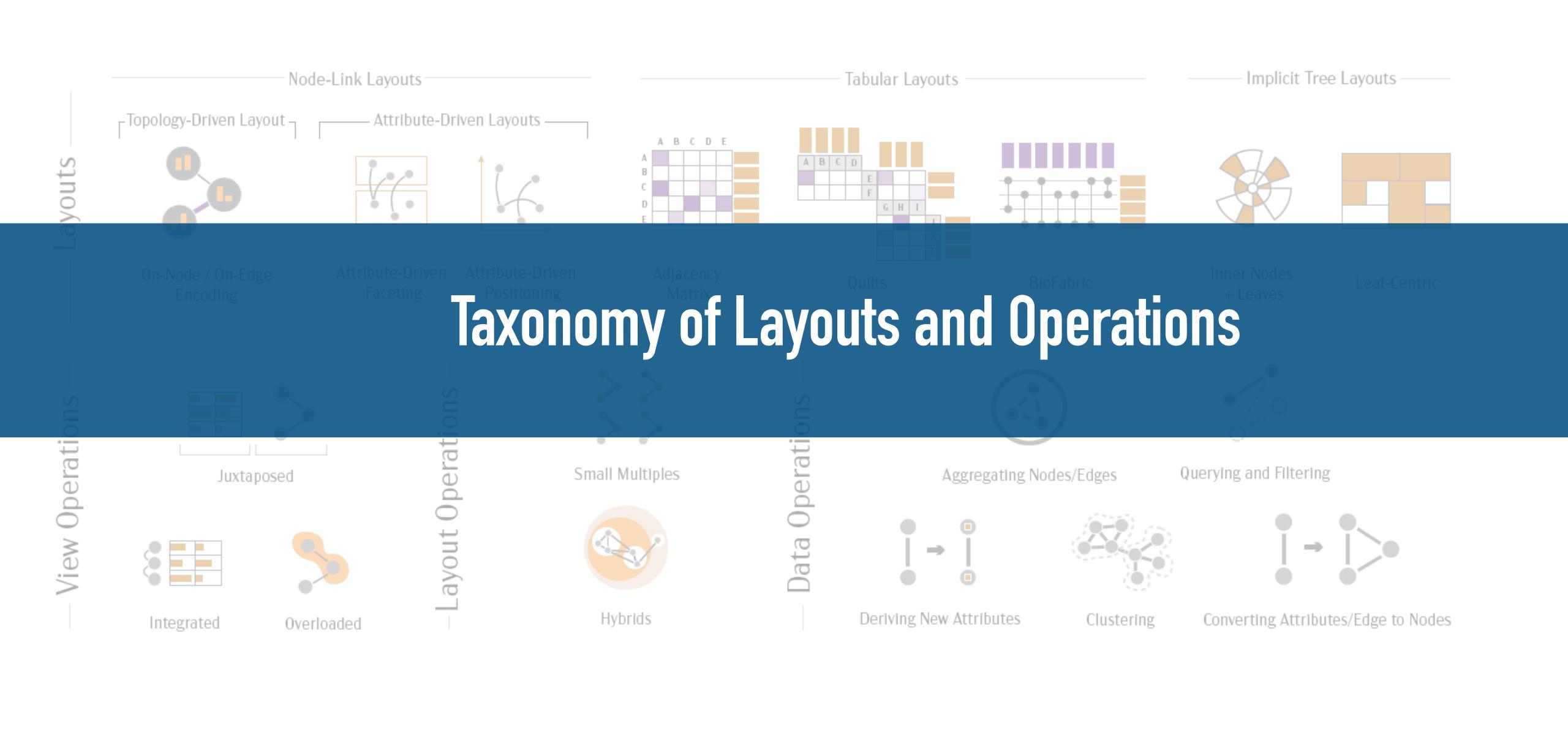
Small <100

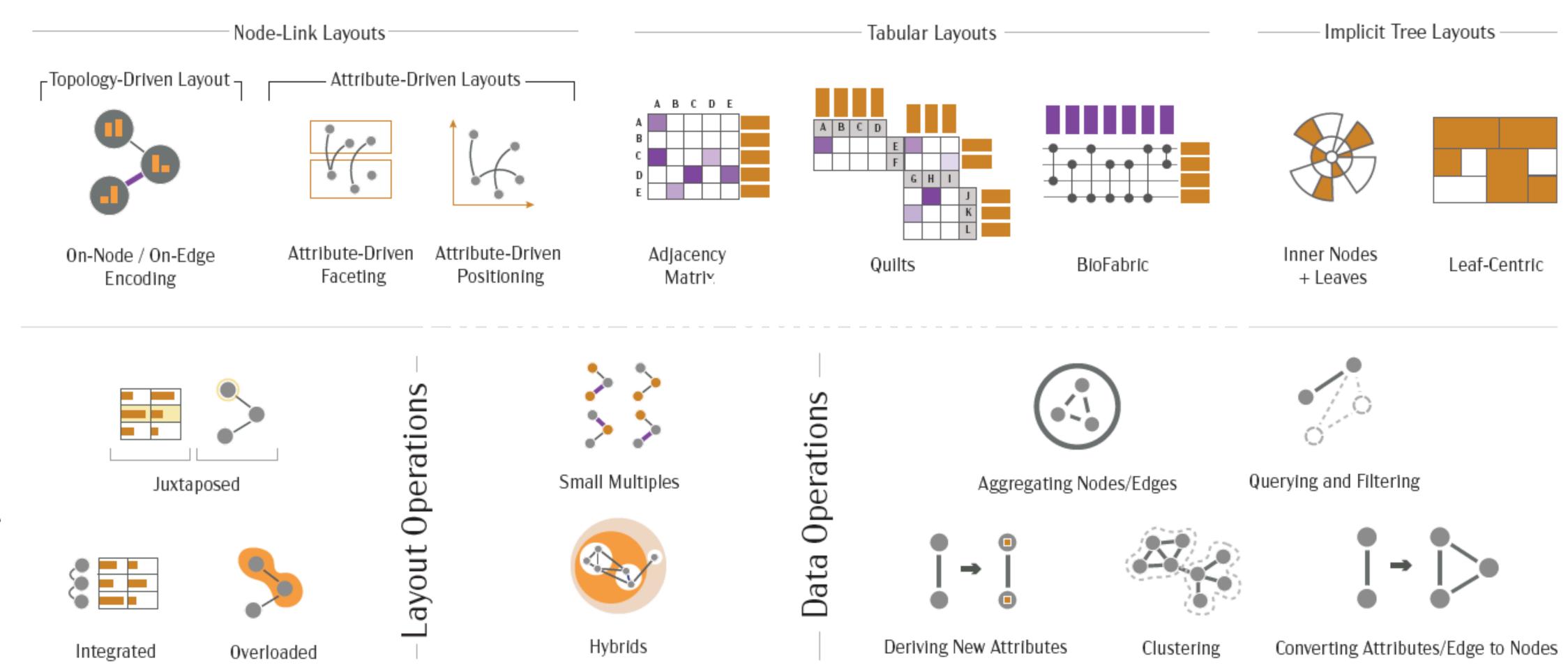
Medium
100-1000

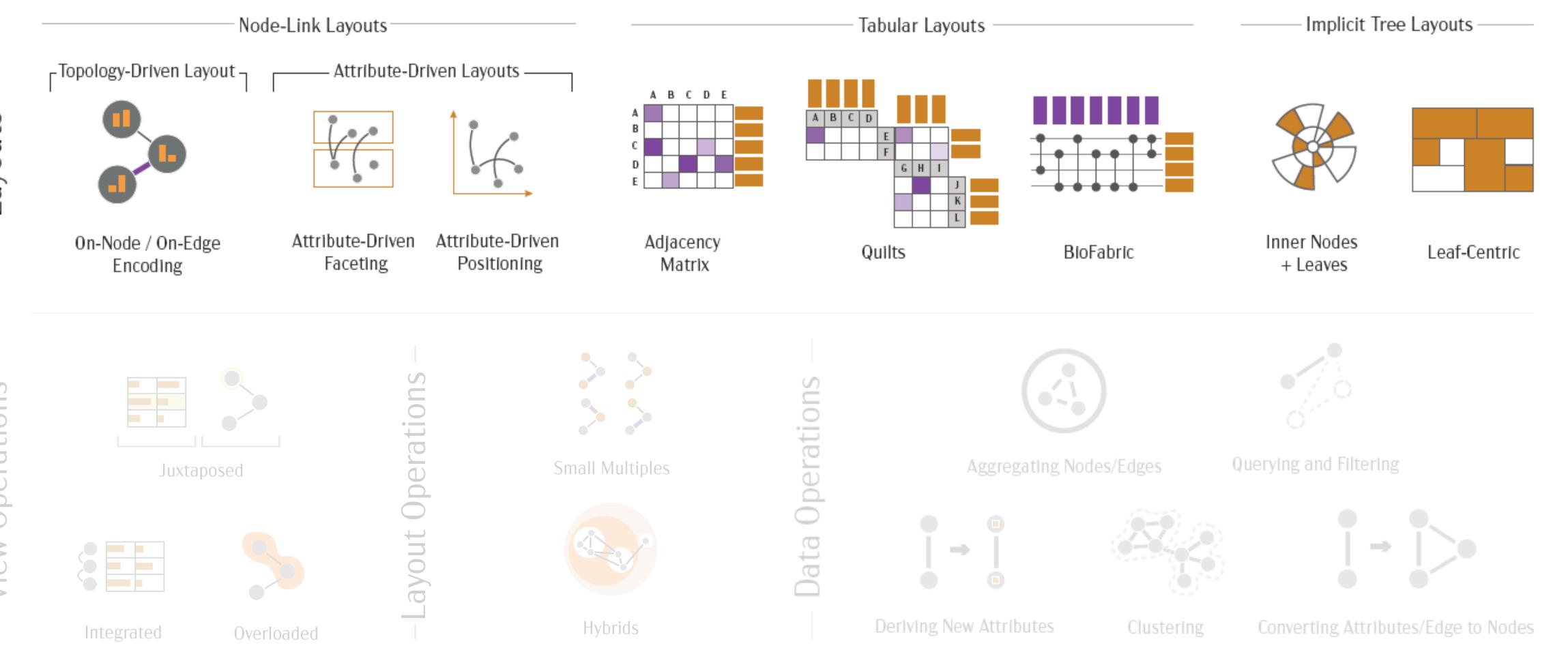
Large > 1000

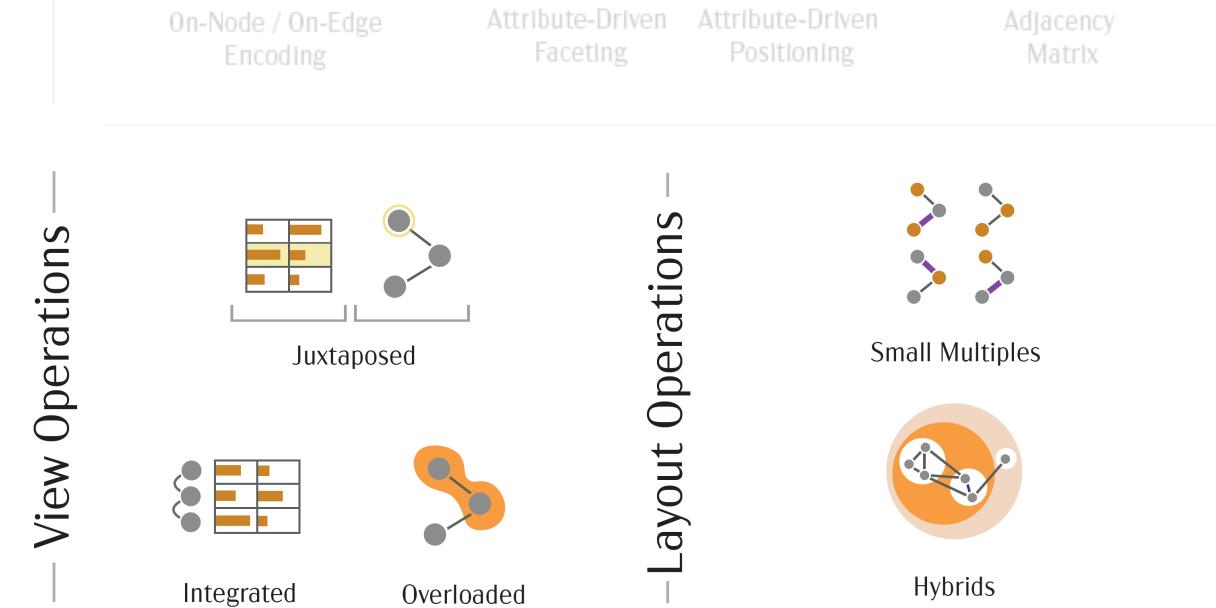
Network Types







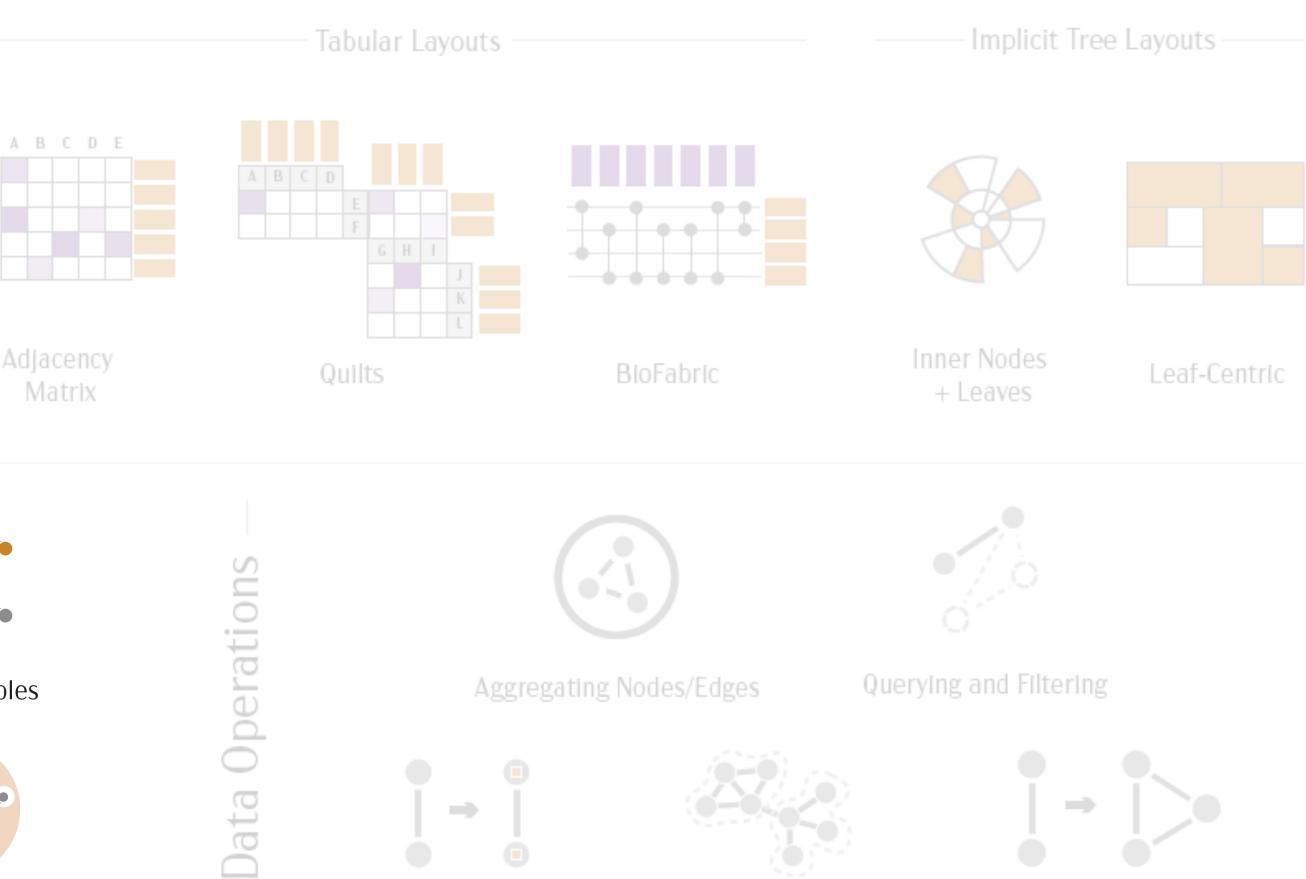




Node-Link Layouts

Attribute-Driven Layouts -

┌Topology-Driven Layout ┐



Clustering

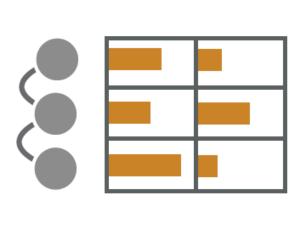
Converting Attributes/Edge to Nodes

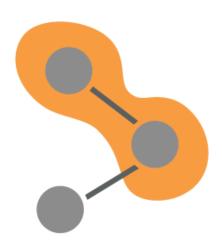
 \Rightarrow

Deriving New Attributes

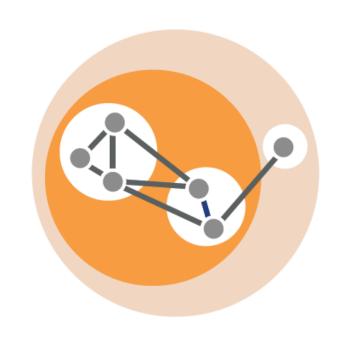
Operations View

Juxtaposed





Overloaded

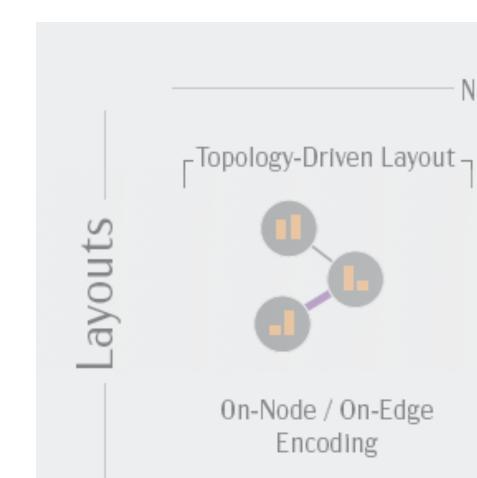


Hybrids

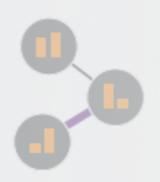
Separate views for Topology and Attributes

Multiple layouts for Topology or Attributes





Attribute-Driven Layouts



On-Node / On-Edge Encoding

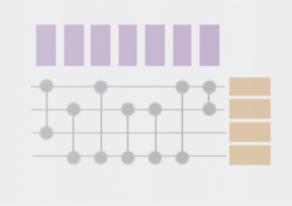
Attribute-Driven Faceting

Attribute-Driven Positioning

Tabular Layouts

Quilts

Adjacency Matrix

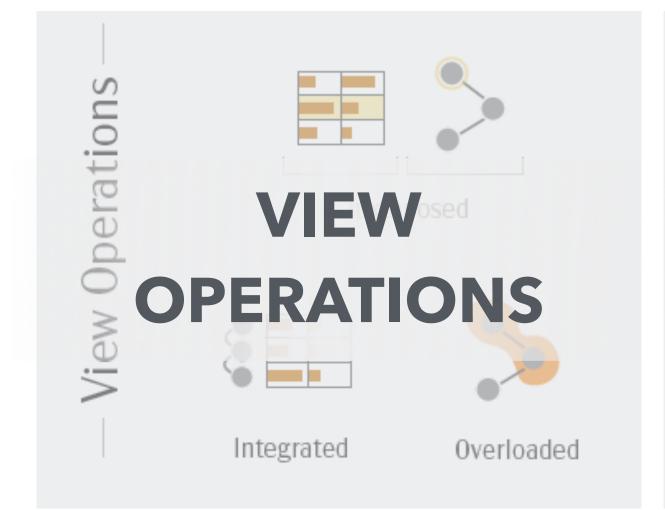


BioFabric

Implicit Tree Layouts

Inner Nodes + Leaves

Leaf-Centric



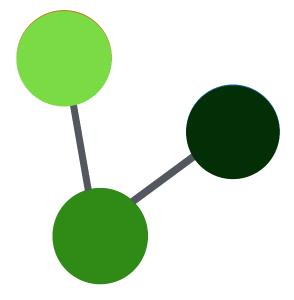
Node-Link Diagram with on-node encoding

LAYOUTS

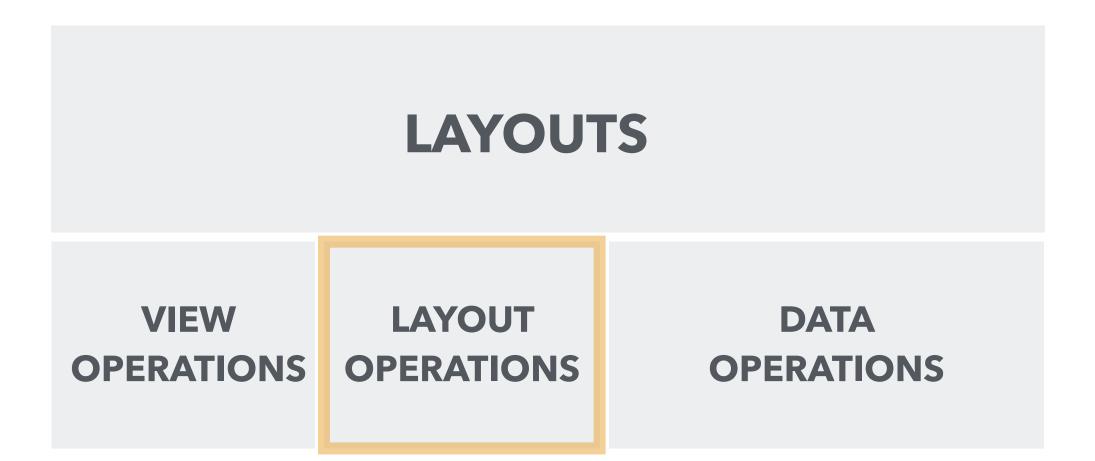
VIEW OPERATIONS OPERATIONS

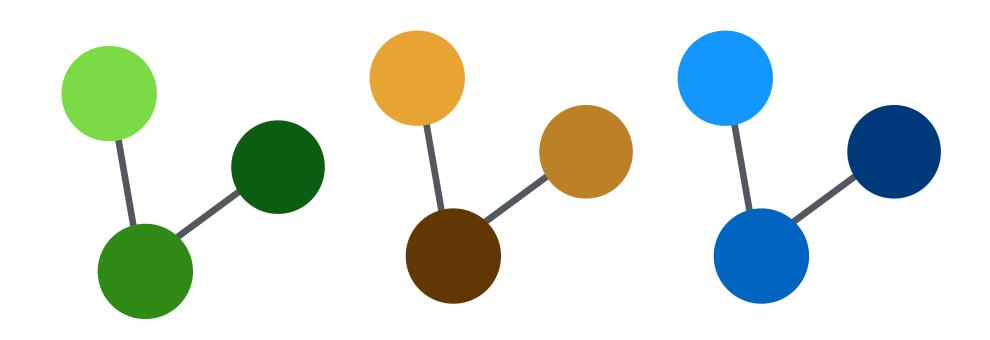
LAYOUT

DATA OPERATIONS



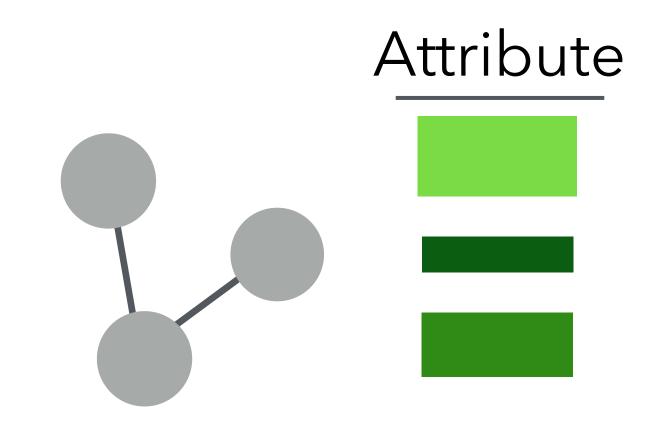
Small Multiples





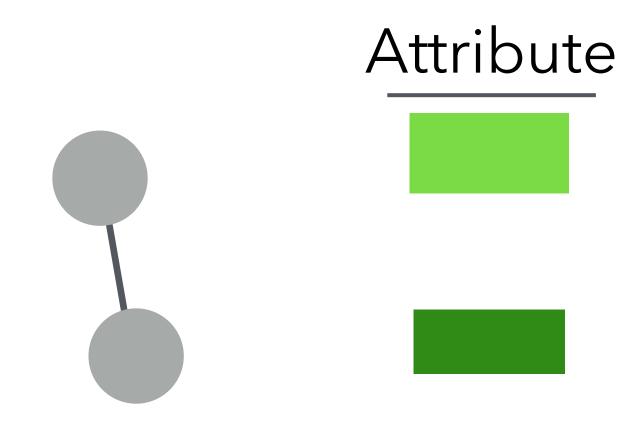
VIEW LAYOUT DATA OPERATIONS OPERATIONS

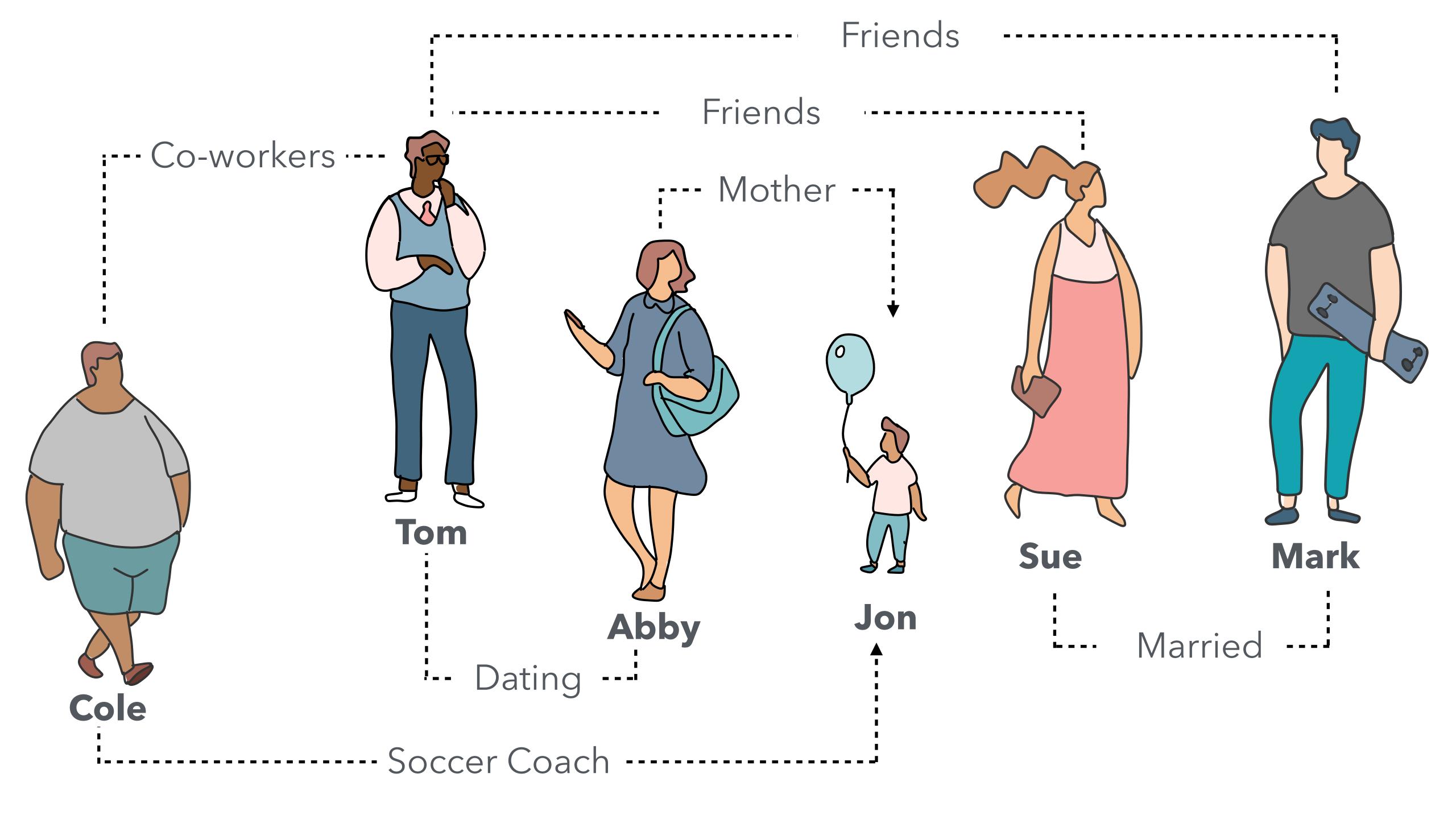
Juxtaposed Views

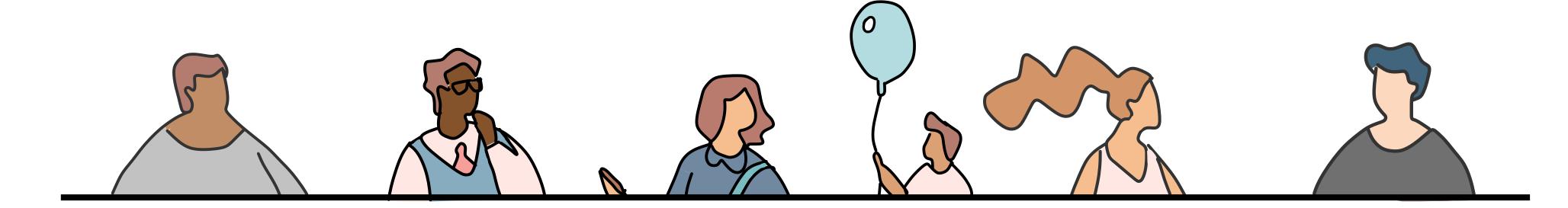


VIEW COPERATIONS LAYOUT DATA OPERATIONS OPERATIONS

Filter Data



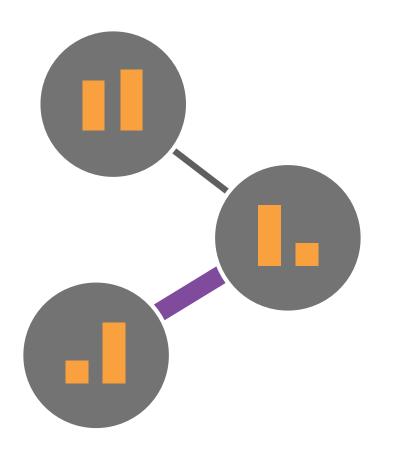


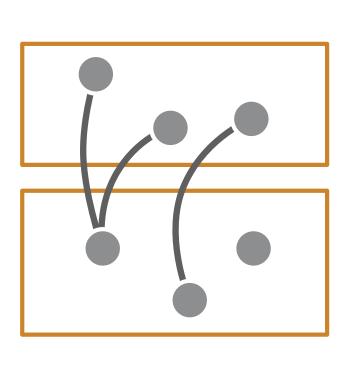


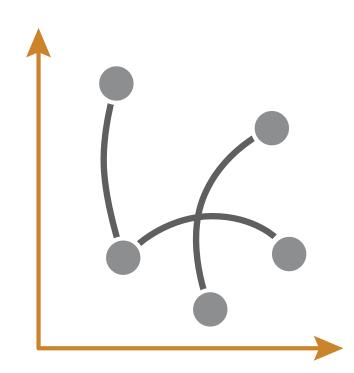
Name	Cole	Tom	Abby	Jon	Sue	Mark
Beverage	Port	Beer	Port	Coke	Coke	Beer
Day 1	1	0	4	3	3	5
Day 2	0	2	5	3	5	5
Day 3	4	1	2	2	4	3

Source	Target	Type	Duration	
		Co-workers	3 years	
		Soccer Coach	2 years	
		Dating	1 year	
		Mother / Son	7 years	
		Friends	12 years	
		Friends	3 years	
		Married	6 years	

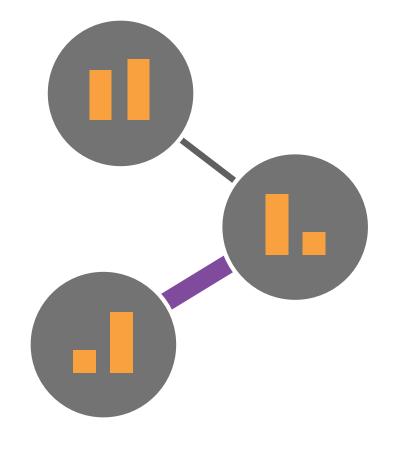
Node-Link Layouts



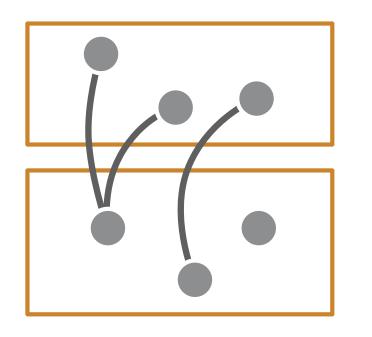


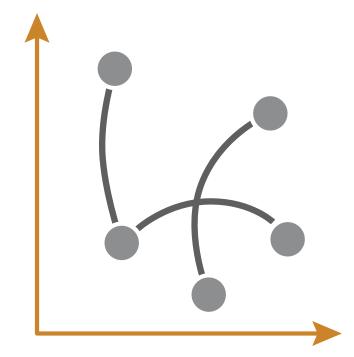


Topology Driven Layout

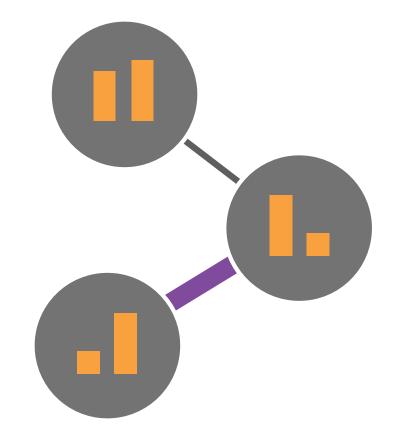


Attribute Driven Layouts



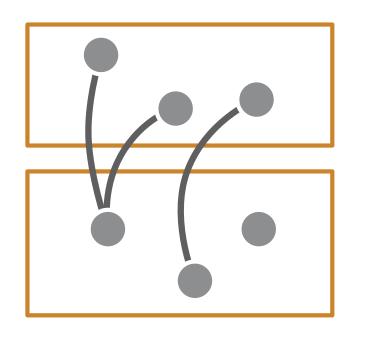


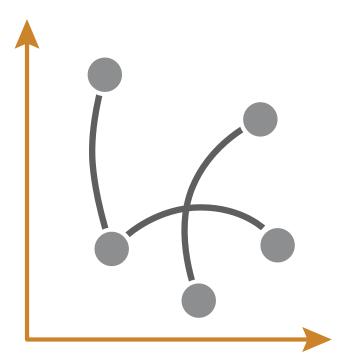
Topology Driven Layout



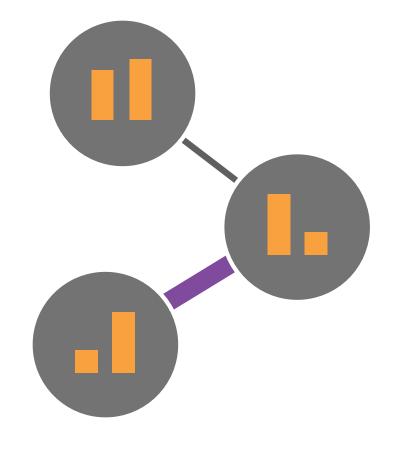
On-Node / On-Edge Encoding

Attribute Driven Layouts



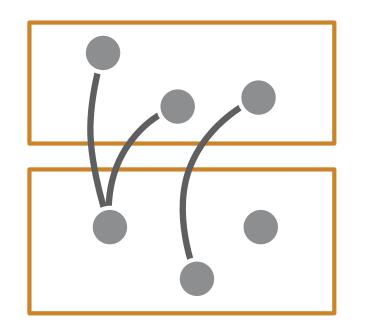


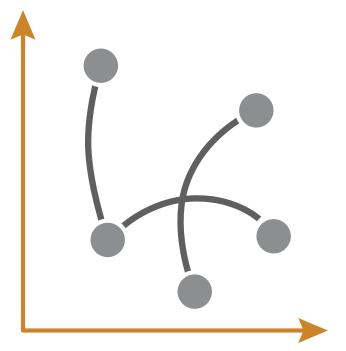
Topology Driven Layout



On-Node / On-Edge Encoding

Attribute Driven Layouts

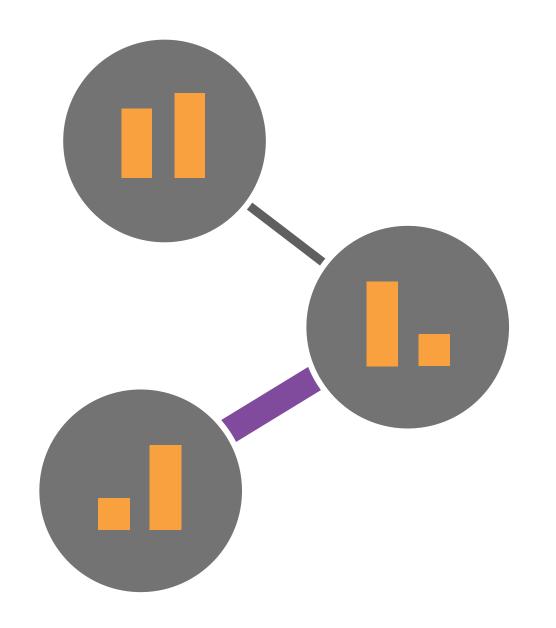


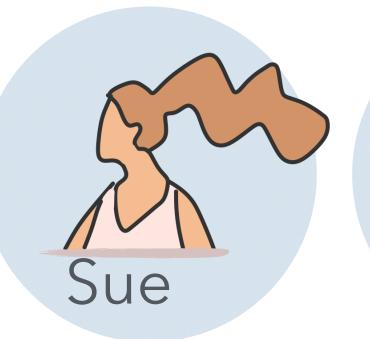


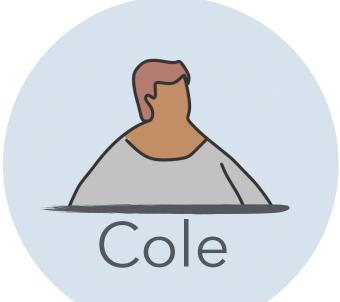
Attribute-Driven Faceting

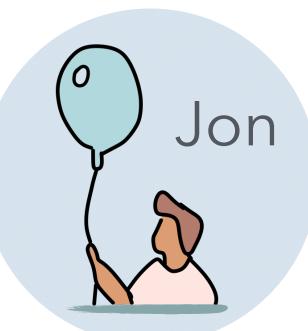
Attribute-Driven Positioning

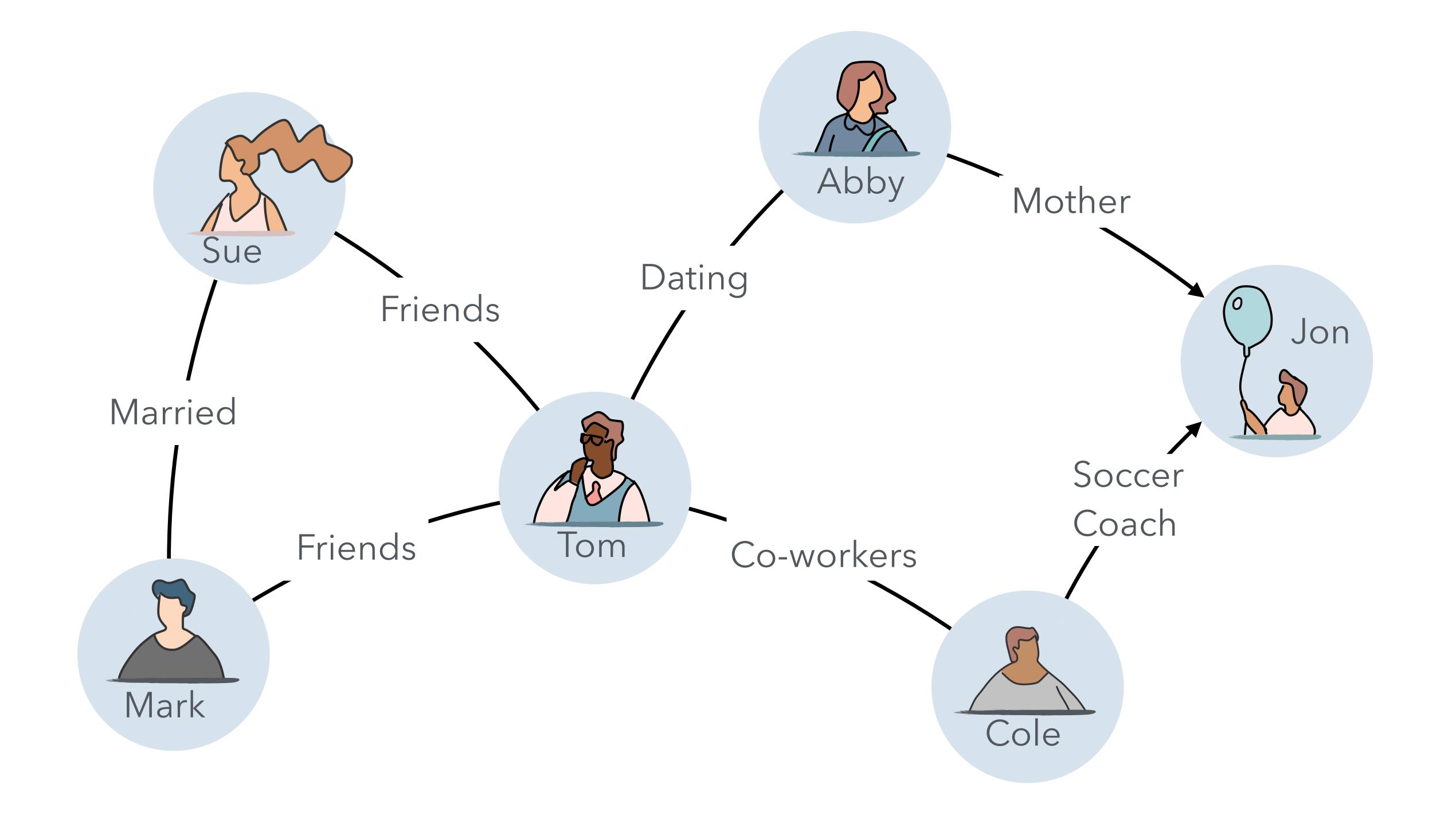
On-Node / On-Edge Encoding

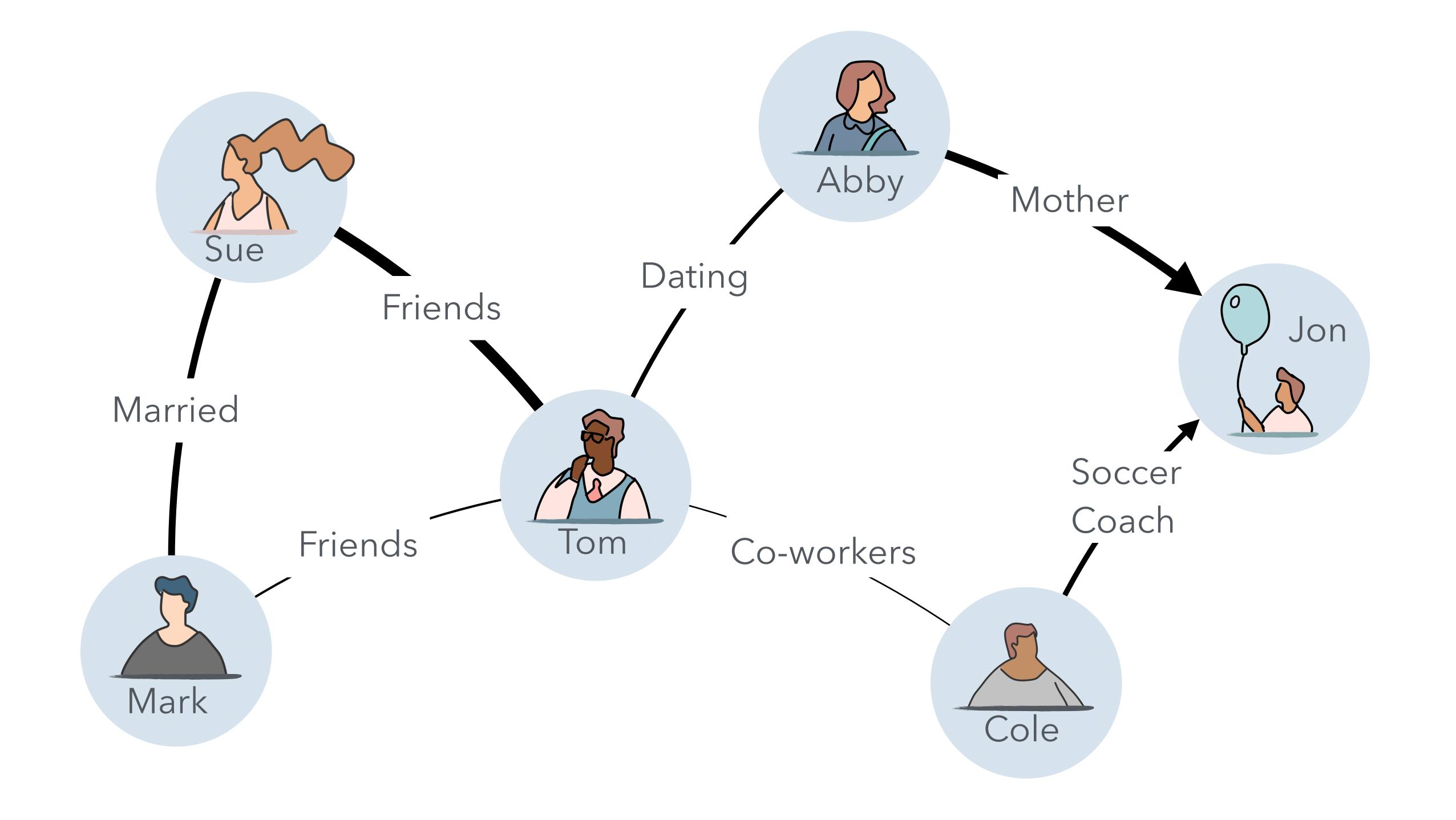


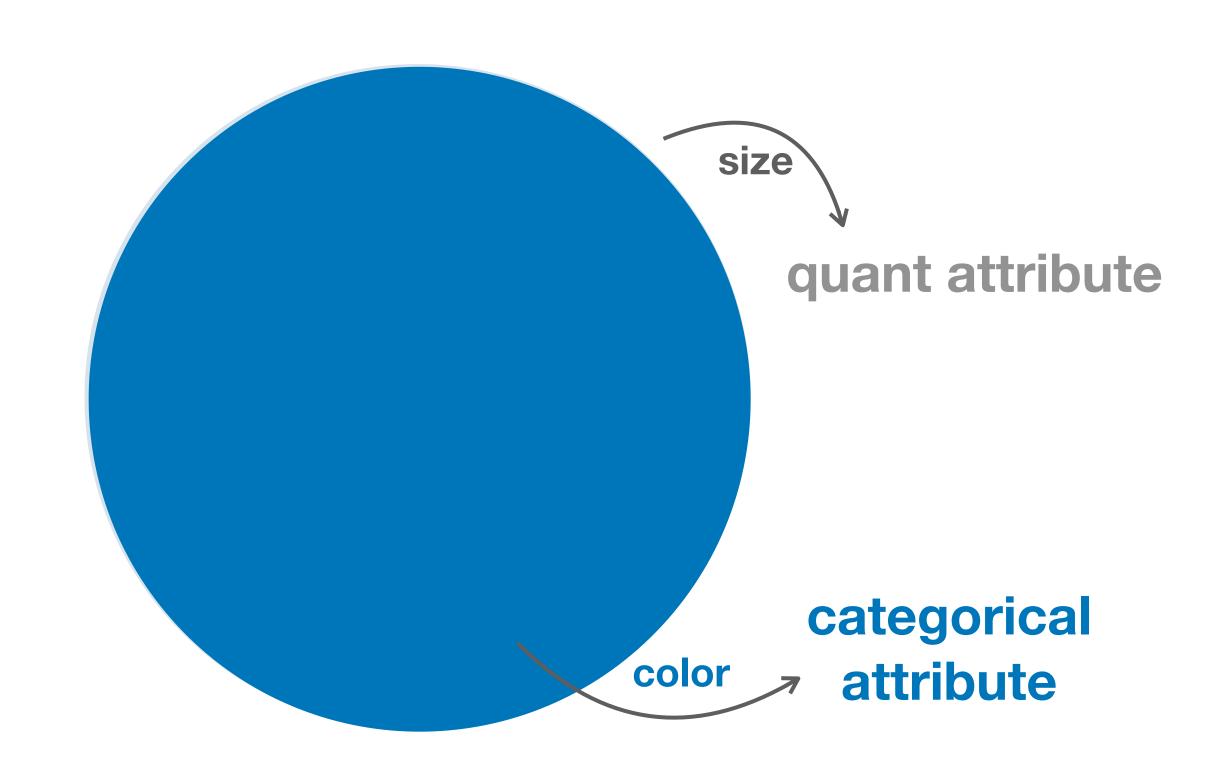


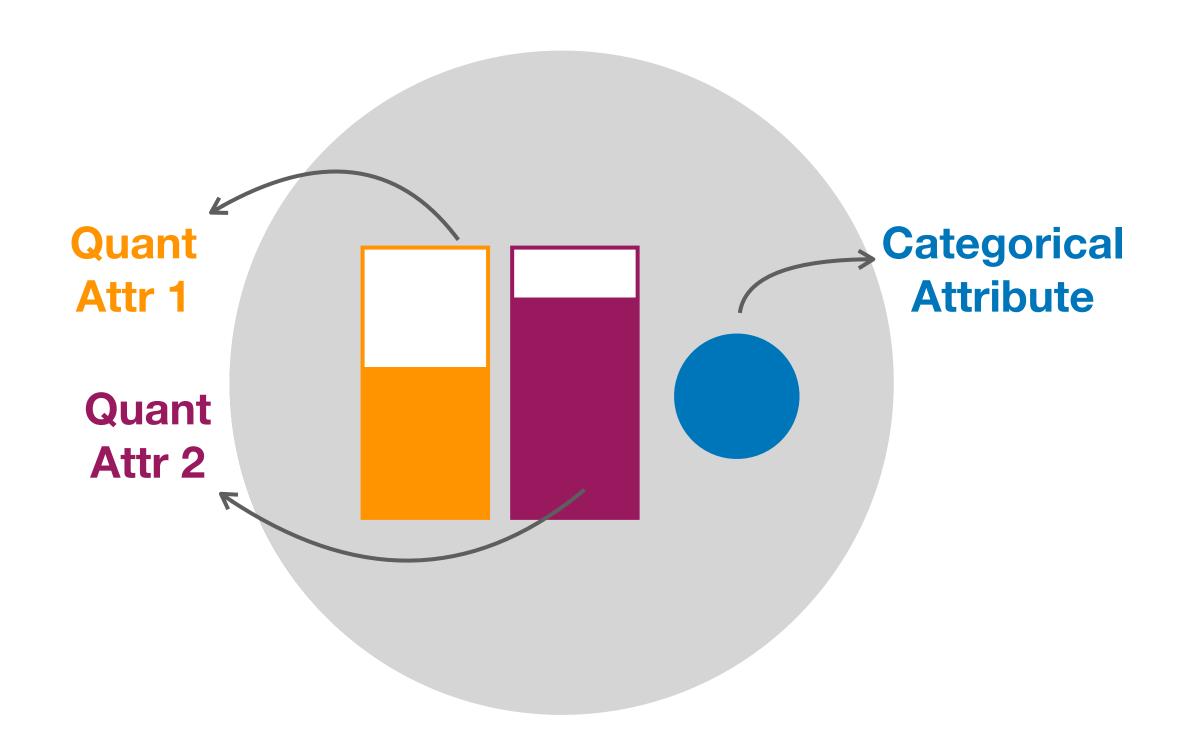


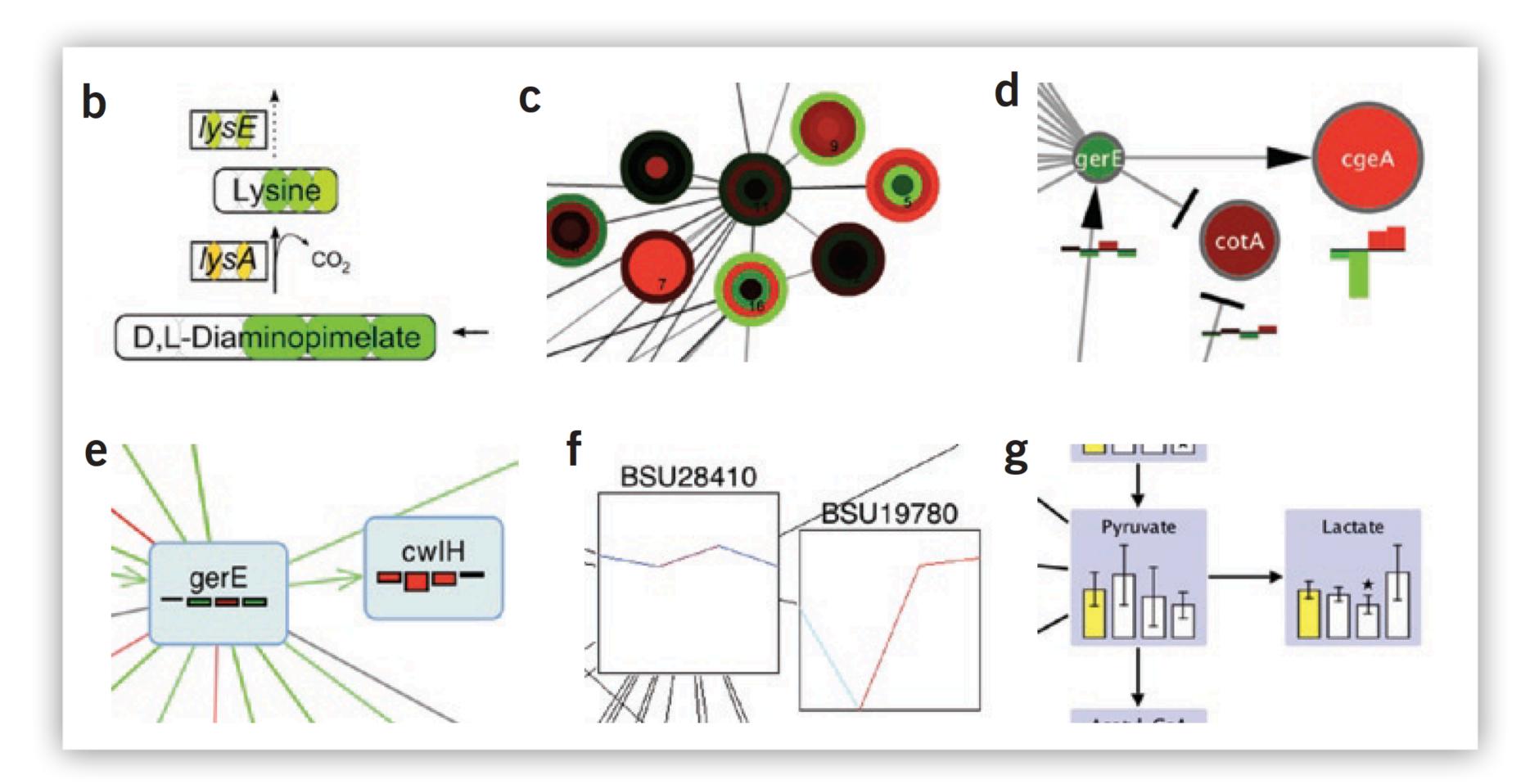




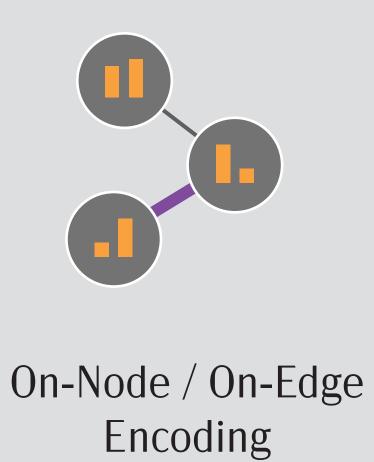


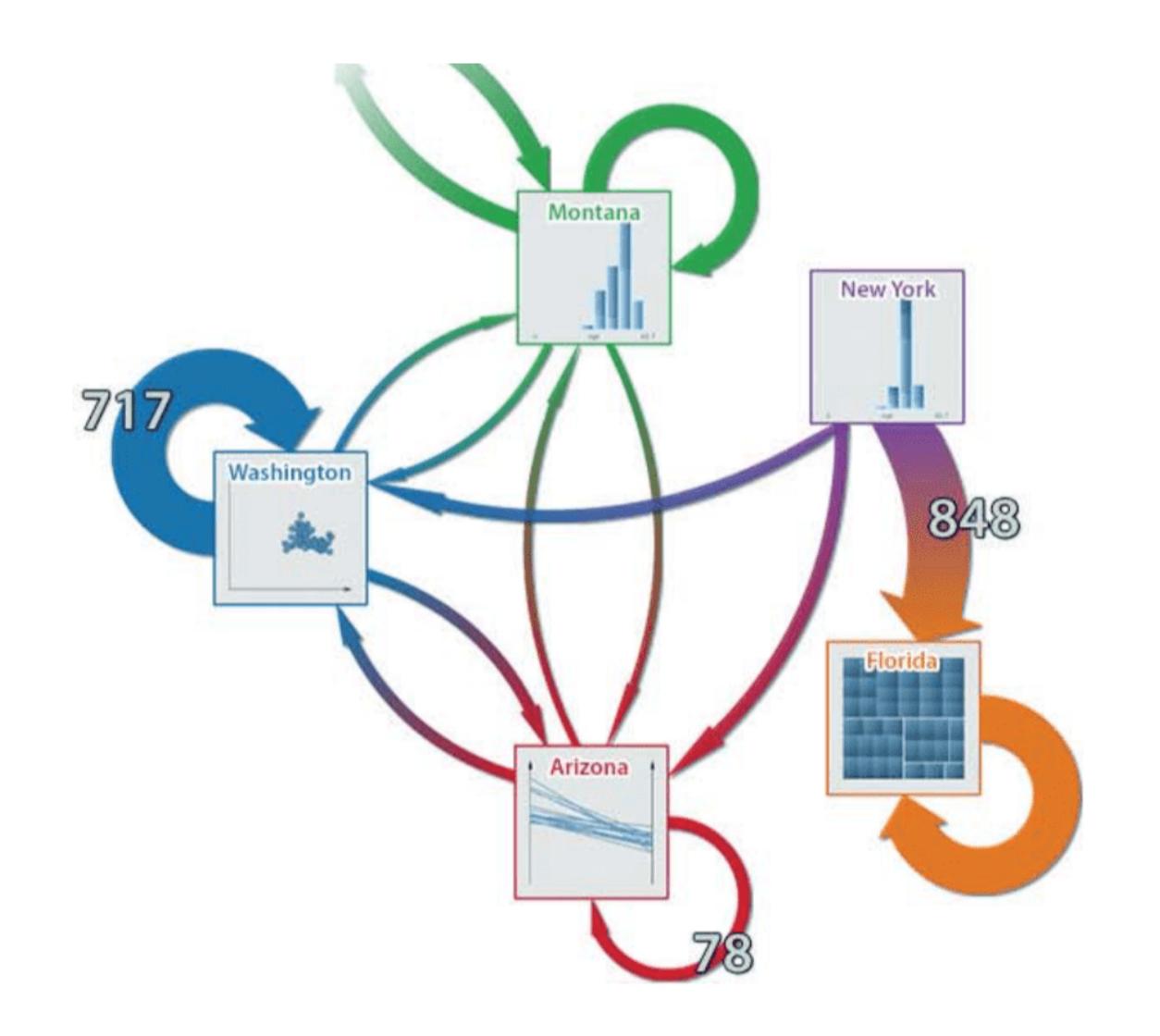


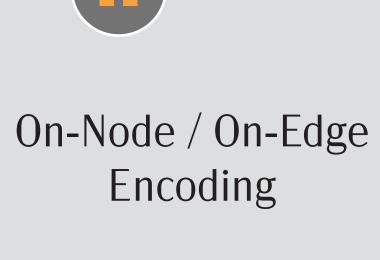




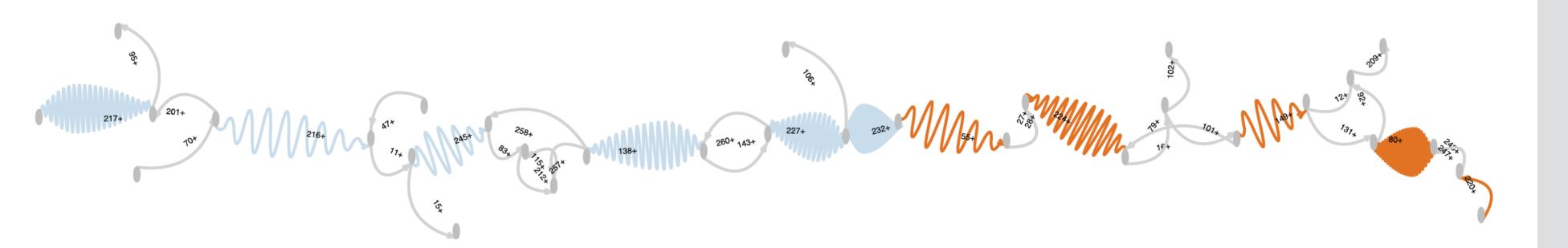
Gehlenborg et al. 2010

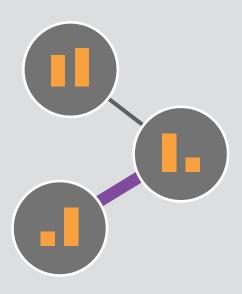




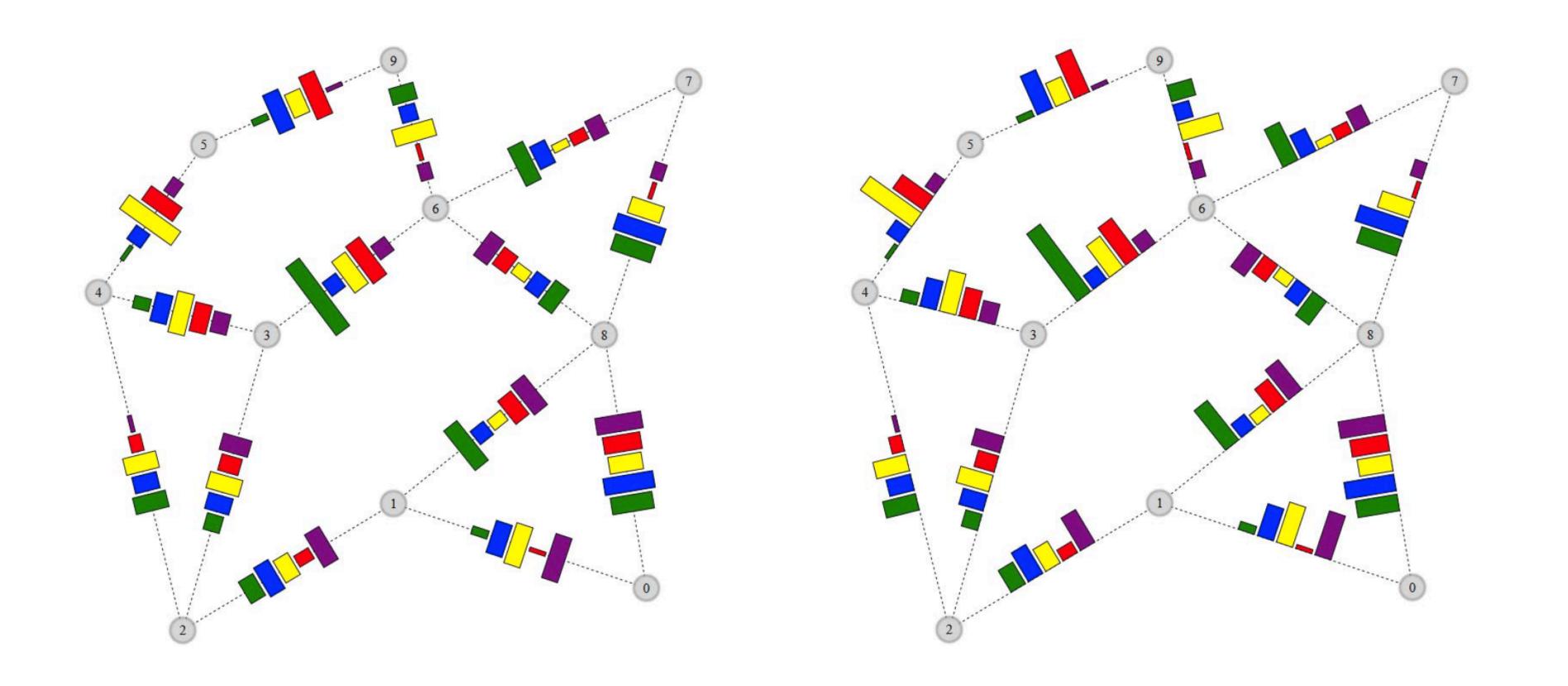


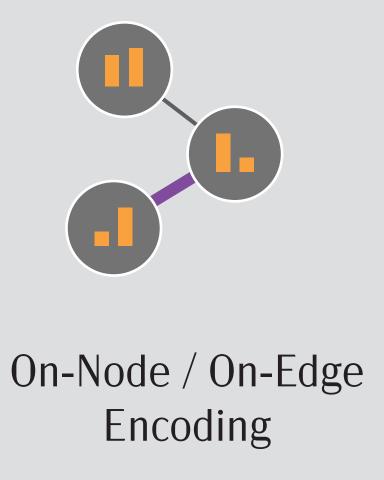
Elzen and Wijk, 2014





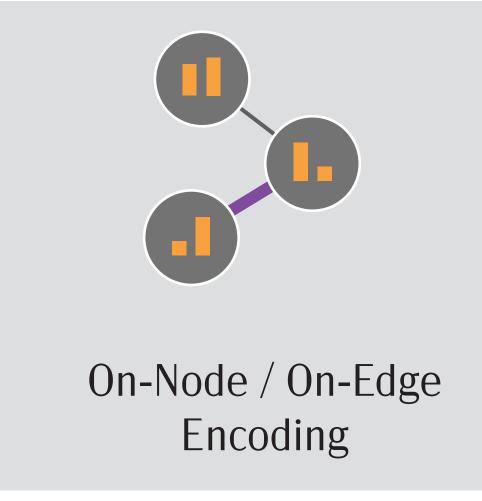
On-Node / On-Edge Encoding





Schöffel et al, 2016

Is easily understood by most users
Works well for all types of networks

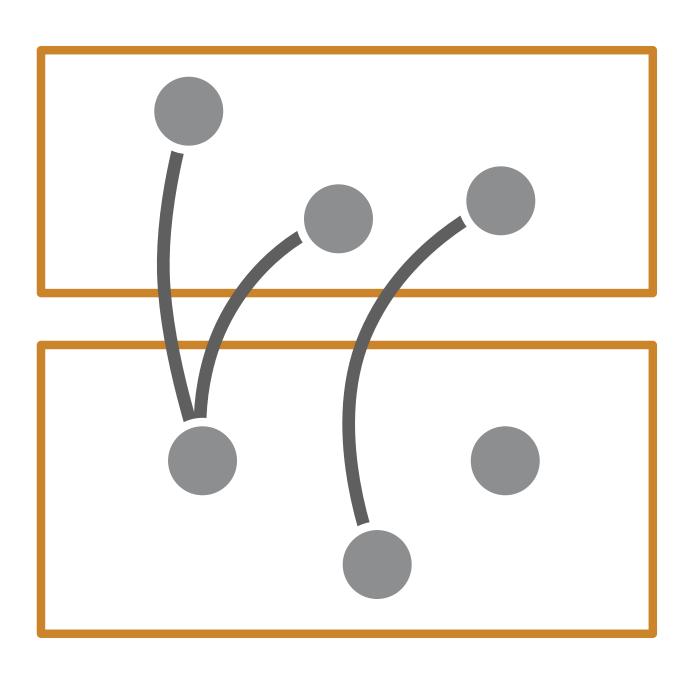


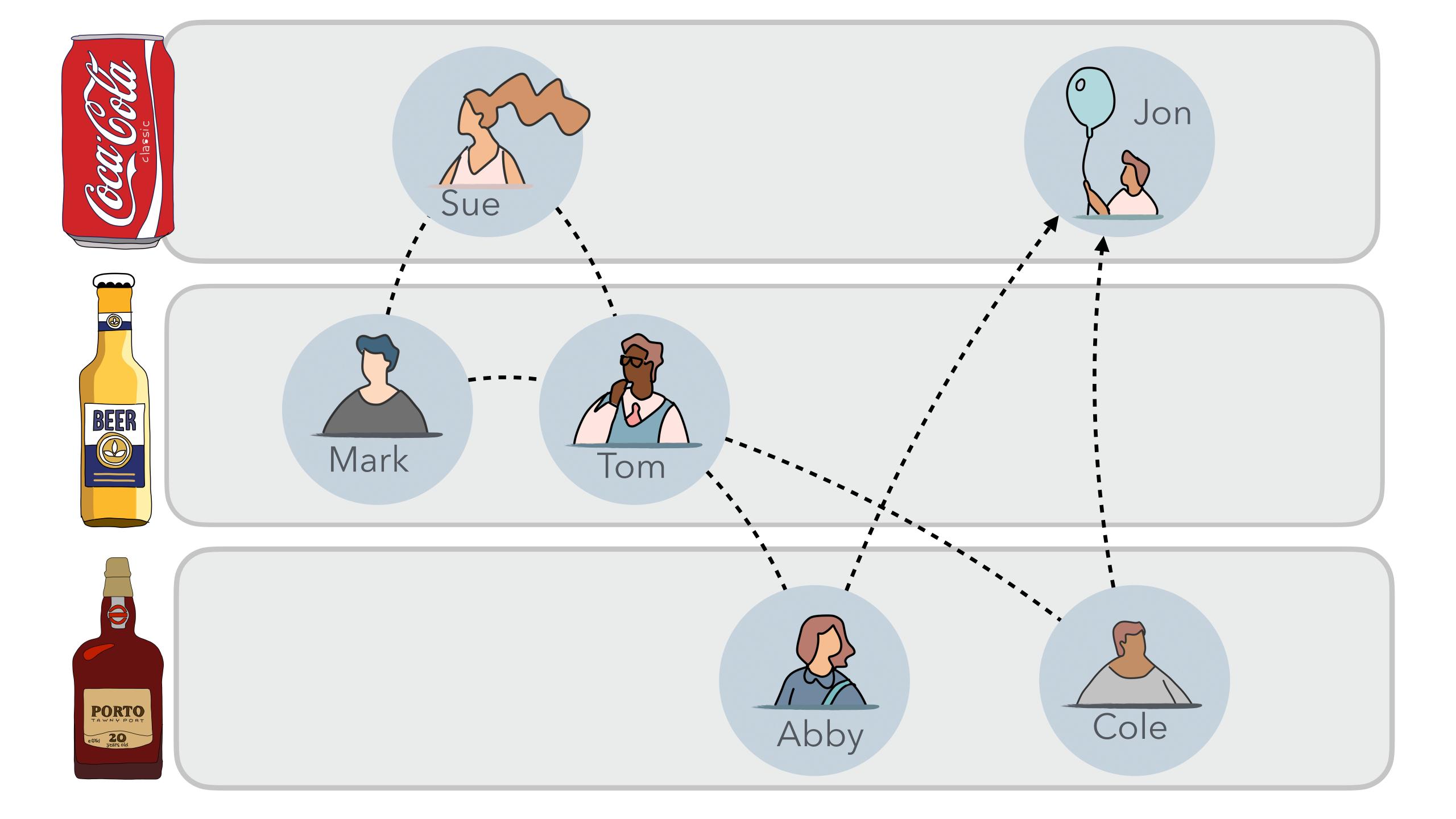
Scalability.

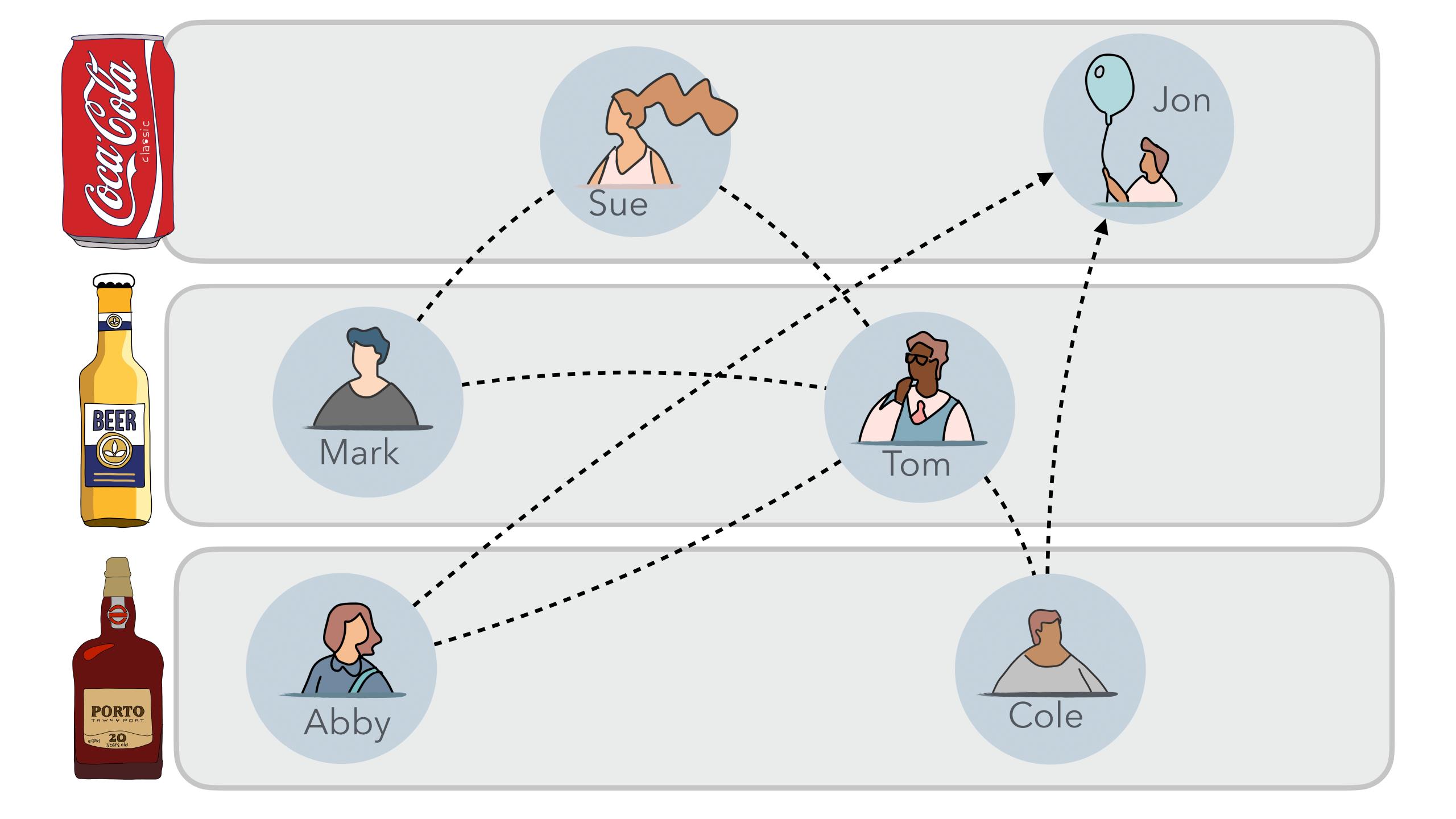
Node size leaves little space to encode attributes.

Recommended for small networks when only a few (usually under five) attributes on the nodes are shown, or in combination with a zooming/filtering strategy

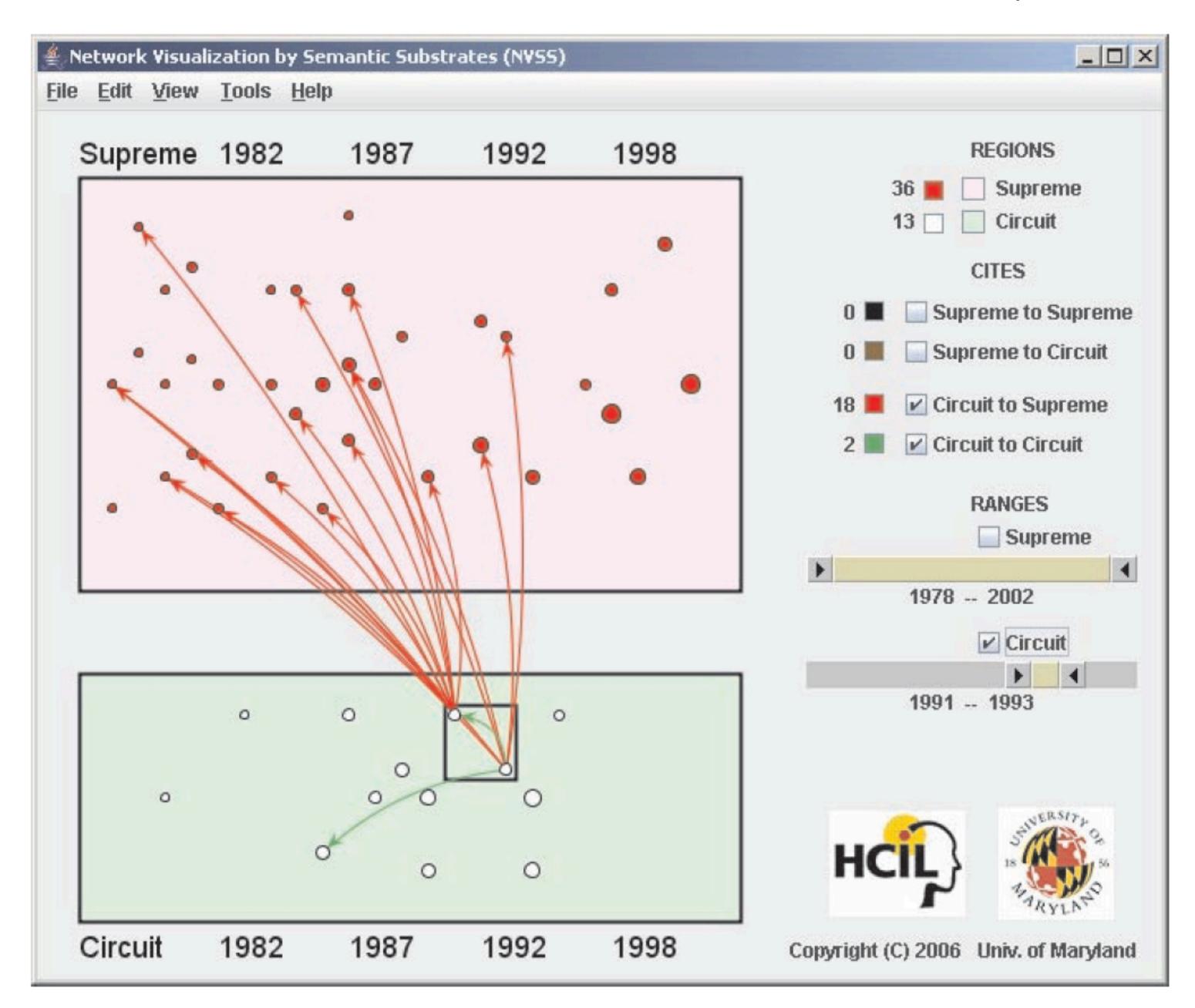
Attribute-Driven Faceting

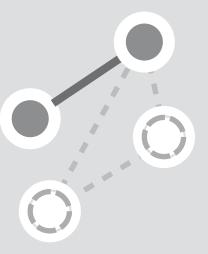




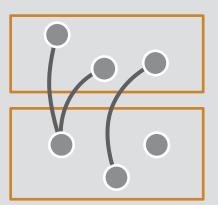


Semantic Substrates Shneiderman and Aris, 2006

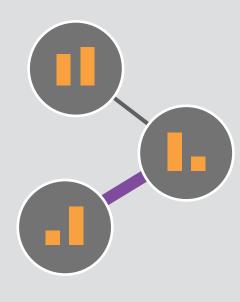




Querying and Filtering

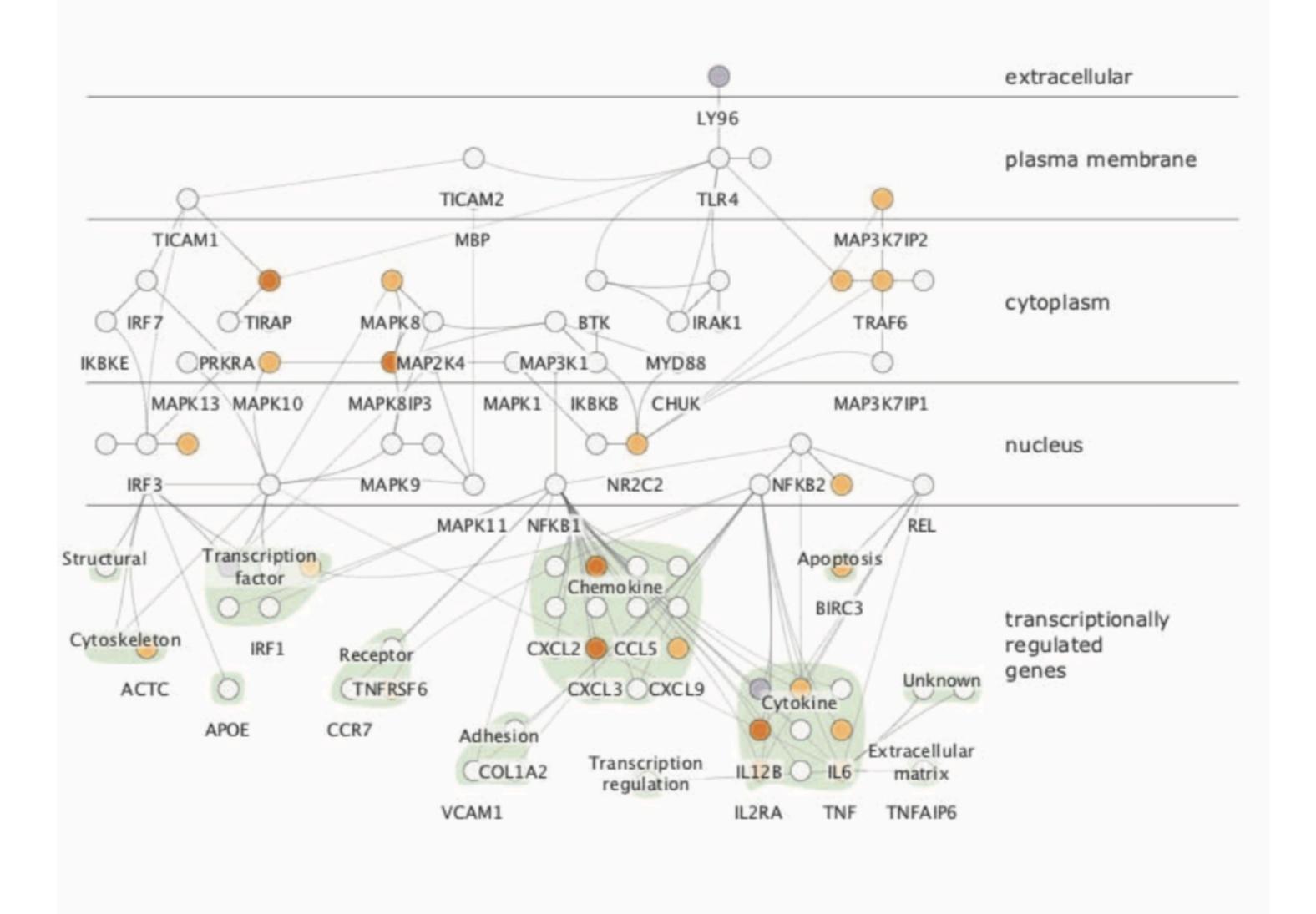


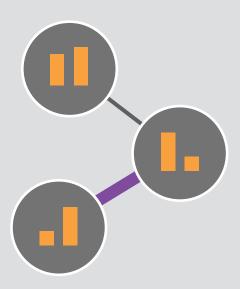
Attribute-Driven Faceting



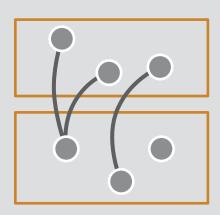
On-Node / On-Edge Encoding

Cerebral Barskey et al. 2008

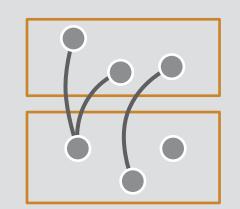




On-Node / On-Edge Encoding



Attribute-Driven Faceting



Well suited for networks with different node types or with an important categorical or set-like attribute.

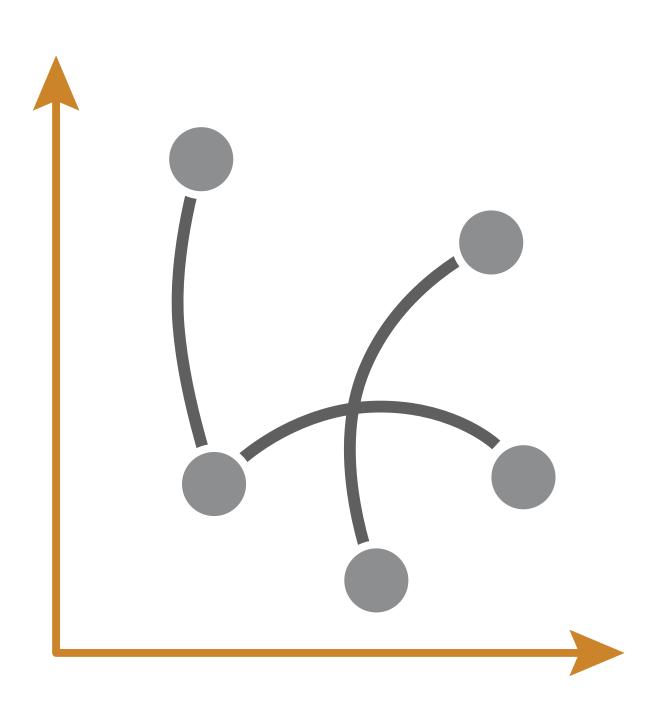
Attribute-Driven Faceting

Less scalable with respect to the number of nodes and network density than node-link layouts.

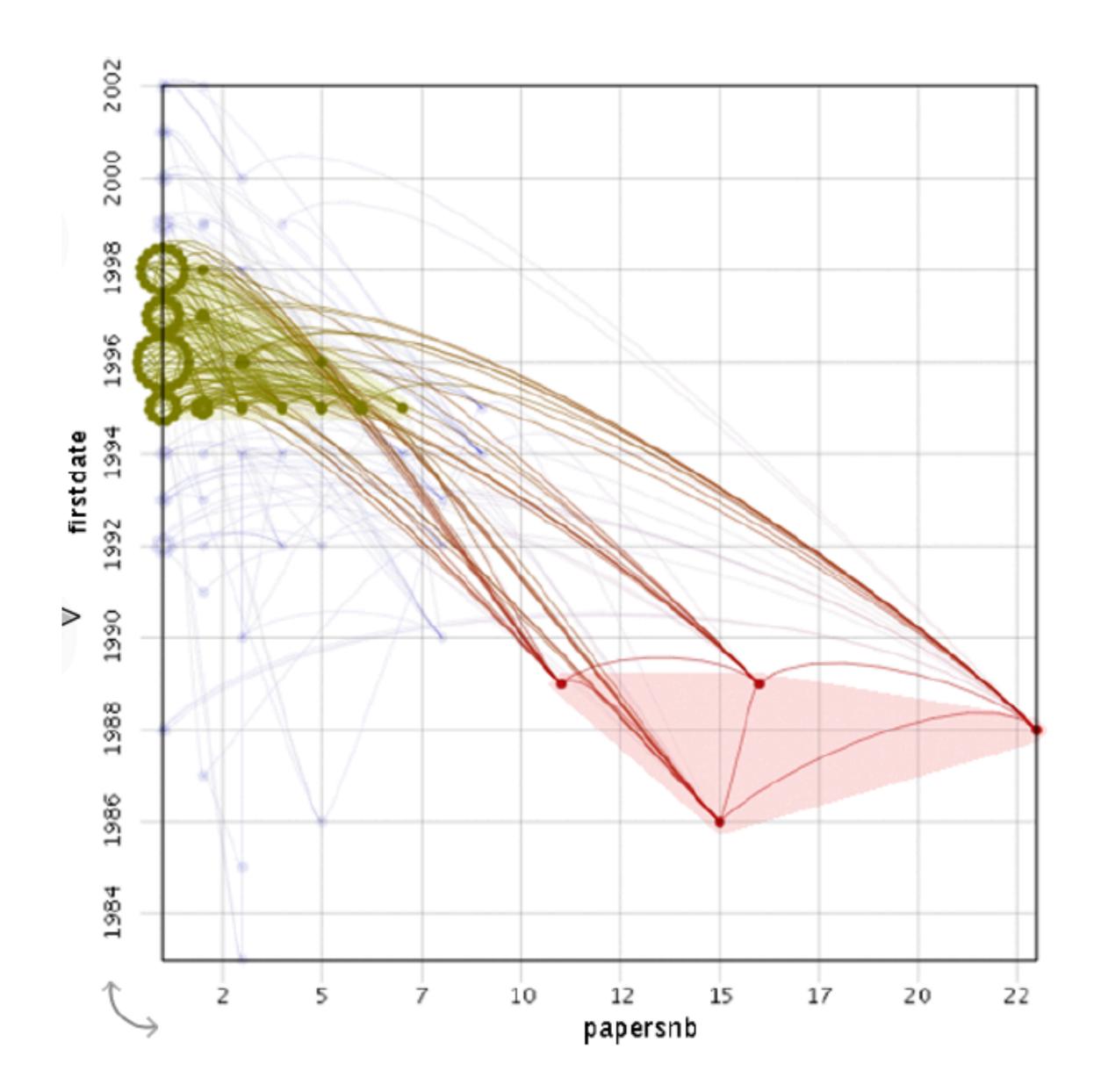
Neighborhoods, paths, and clusters are not easily visible if they span different facets.

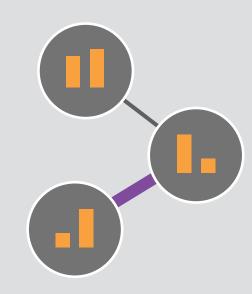
Recommended for networks where nodes can be separated into groups easily and where these groups are central to the analysis

Attribute-Driven Positioning

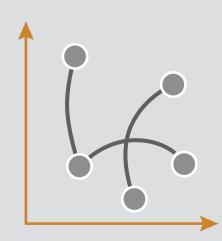


Graph Dice Bezerianos et al. 2010



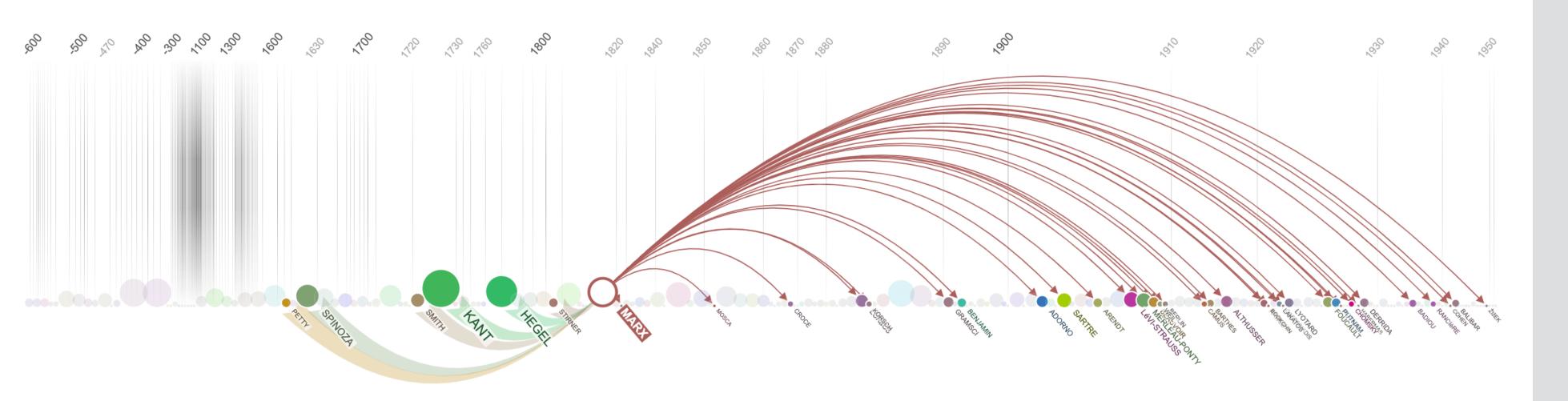


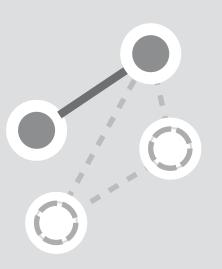
On-Node / On-Edge Encoding



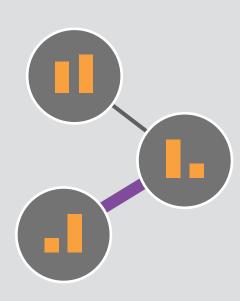
Attribute-Driven Positioning

Edge Map Dork et al. 2011

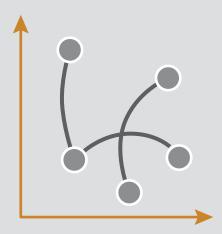




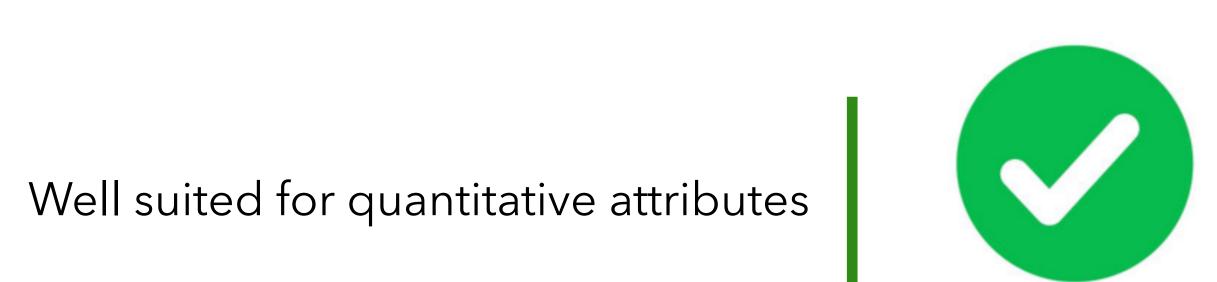
Querying and Filtering



On-Node / On-Edge Encoding



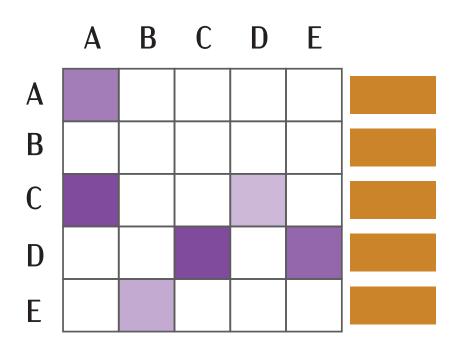
Attribute-Driven Positioning



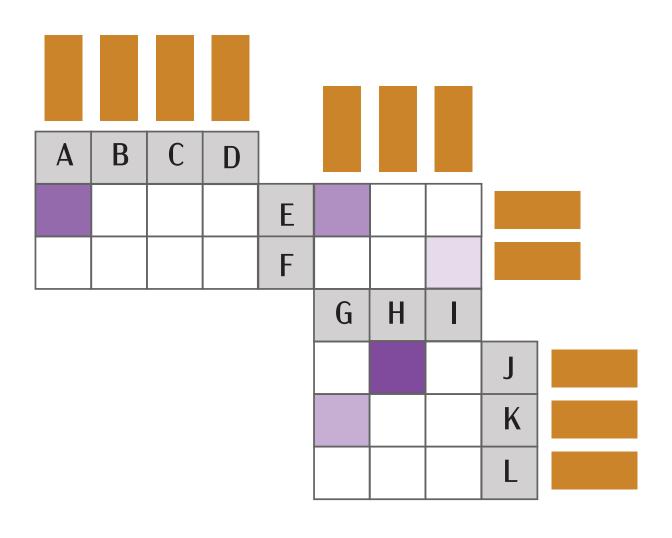
Does not lend itself well to visualizing the topology of the network.

Recommended for smaller, sparse networks where relationships between node attributes are paramount to the analysis task, and topological features only provide context

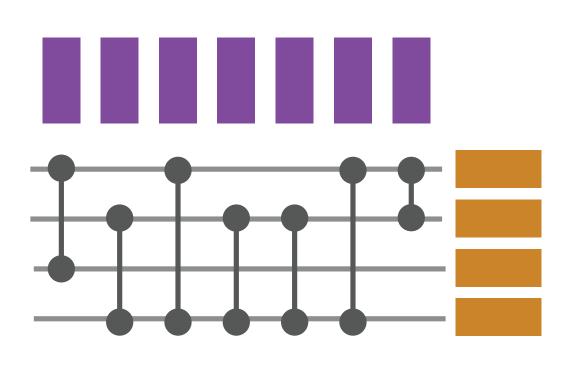
Tabular Layouts



Adjacency Matrix

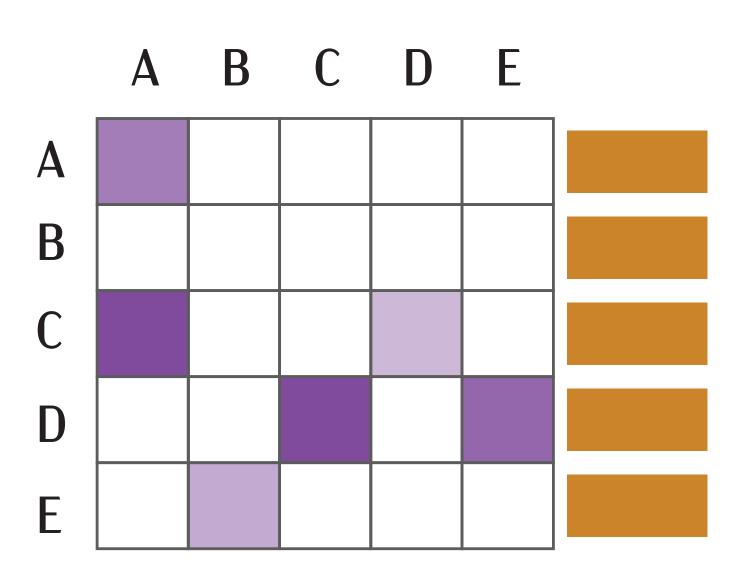


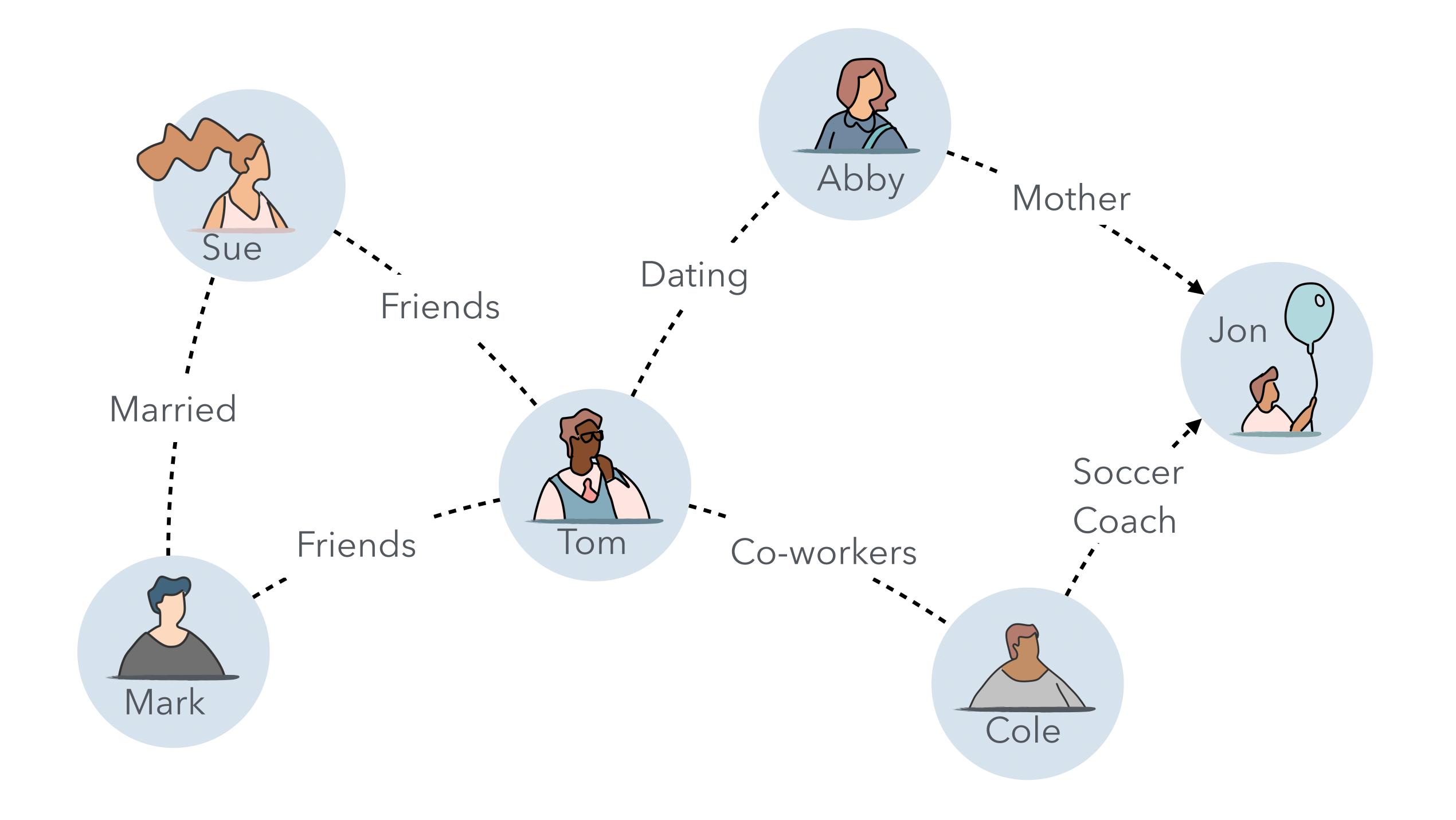
Quilts

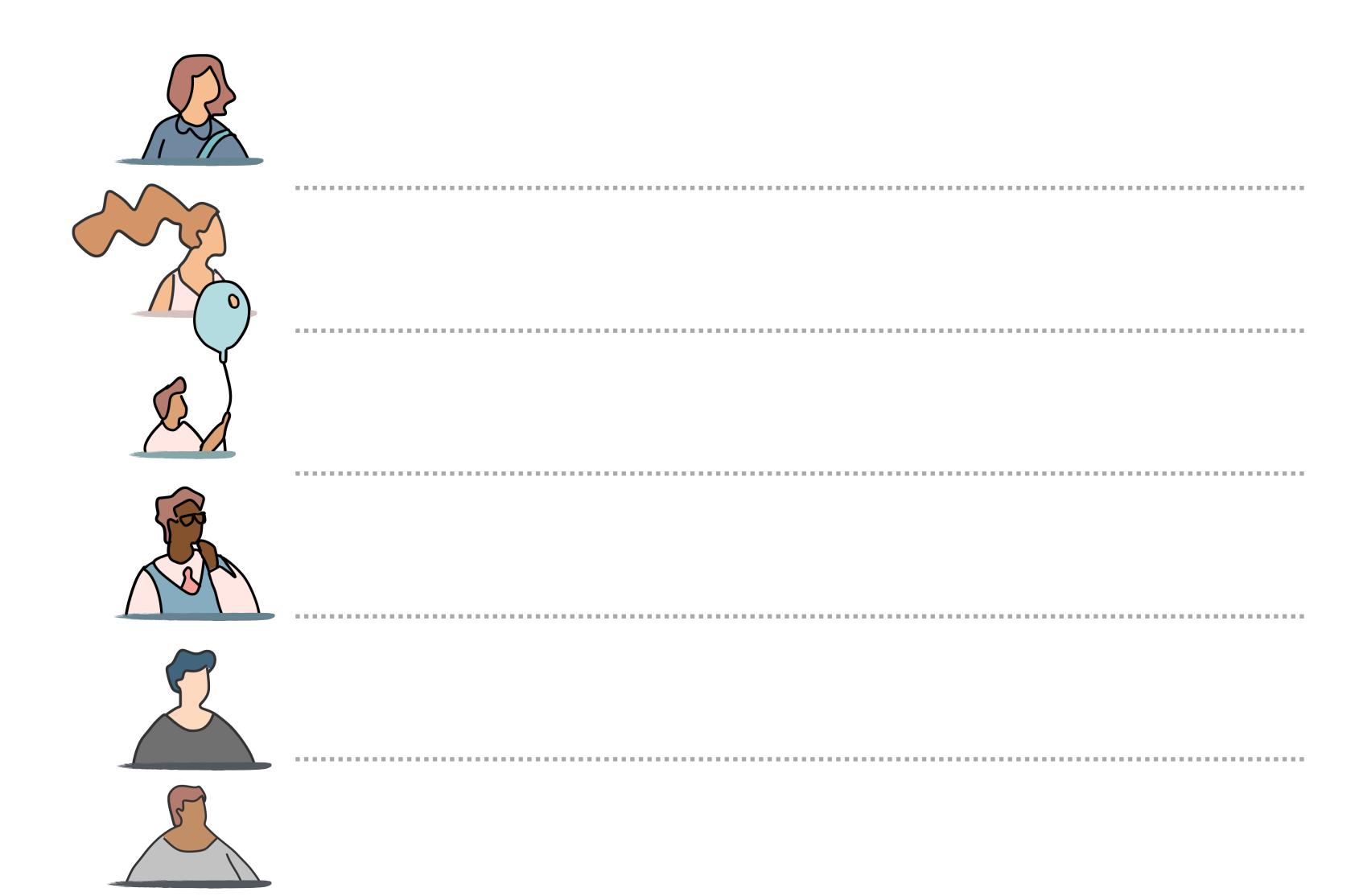


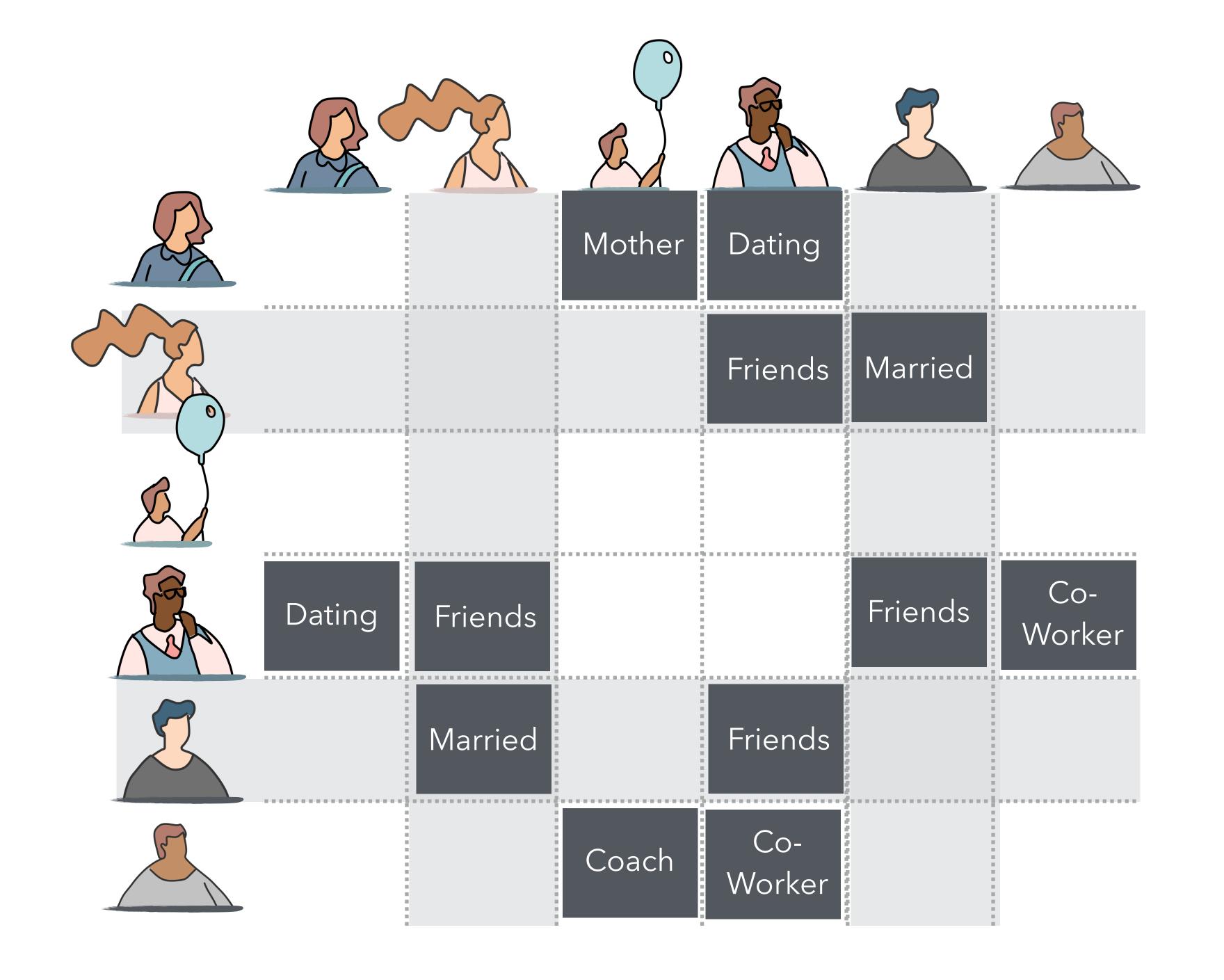
BioFabric

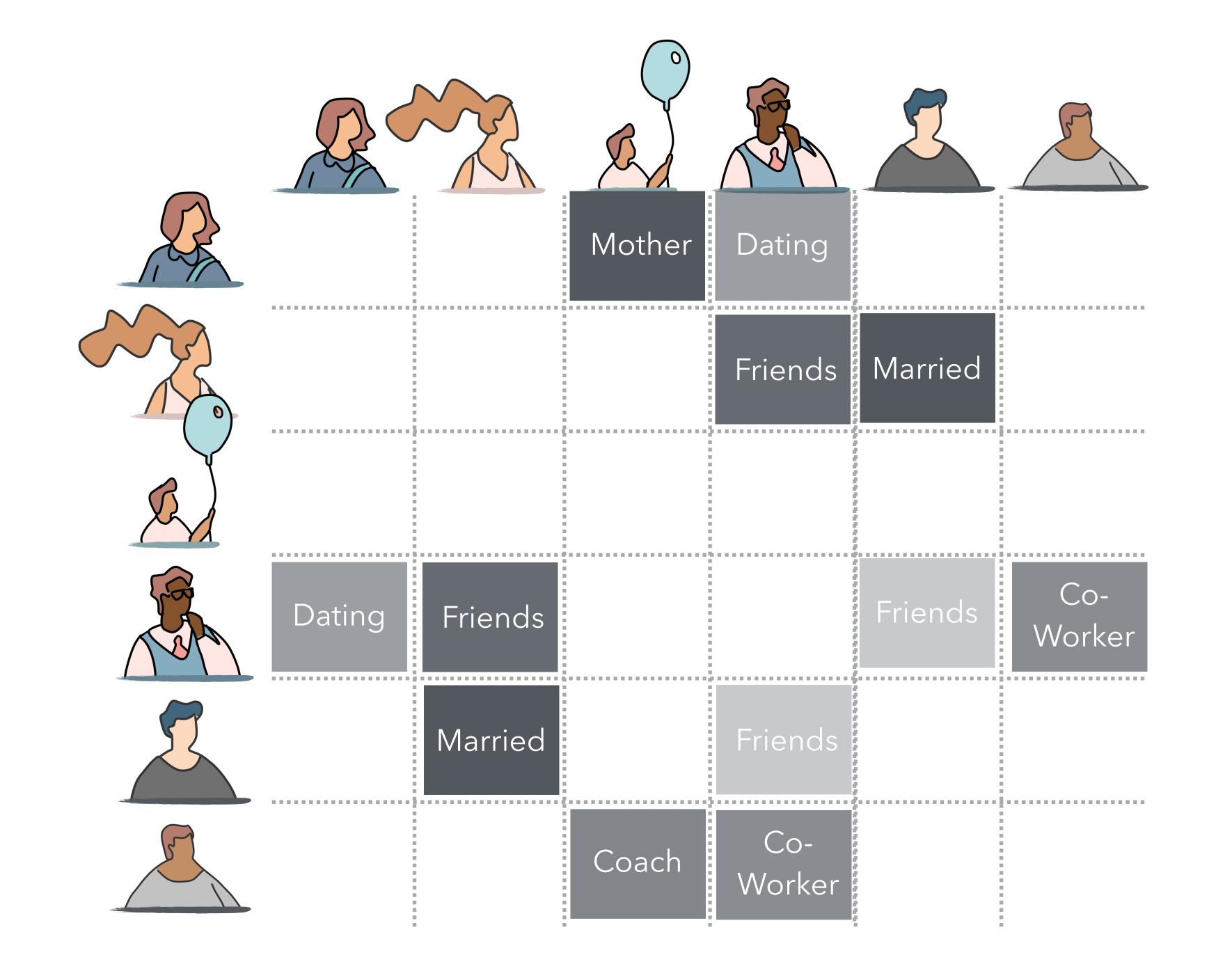
Adjacency Matrix





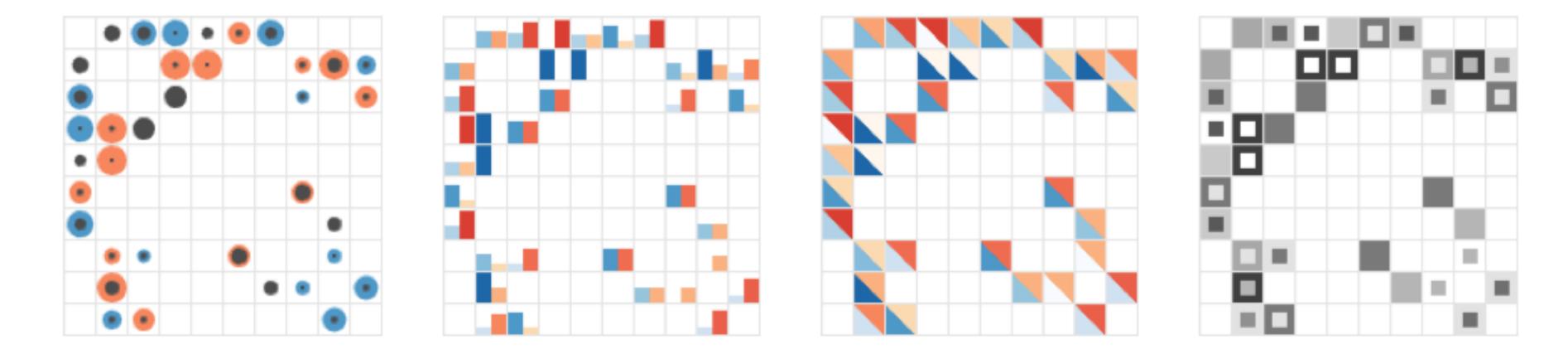




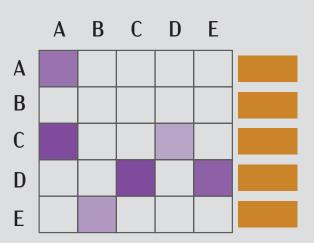


						Name	Beverage	Day 1
		Mother	Dating			Abby	Port	1
			Friends	Married		Sue	Coke	0
						Jon	Coke	4
Dating	Friends			Friends	Worker	Tom	Beer	5
	Married		Friends			Mark	Beer	2
		Coach	Co- Worker			Cole	Port	3

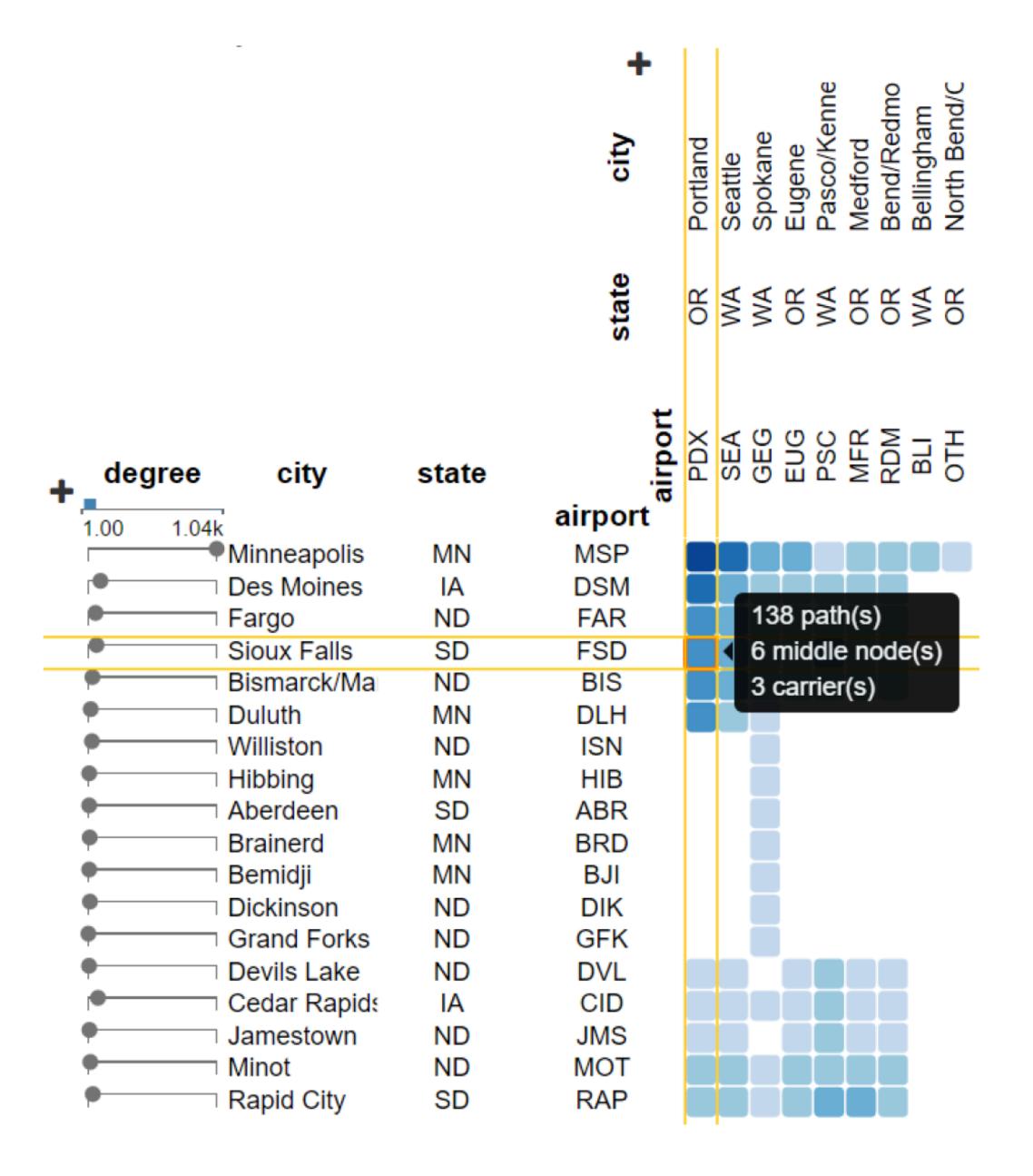
						Name	Beverage	Day 1
		Co- Worker	Friends	Dating	Friends	Tom	Beer	5
						Jon	Coke	4
Co- Worker	Coach					Cole	Port	3
Friends					Married	Mark	Beer	2
Dating	Mother					Abby	Port	1
Friends			Married			Sue	Coke	0

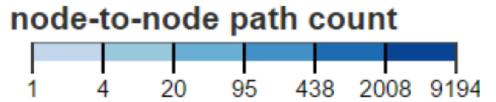


Alper et al, 2013

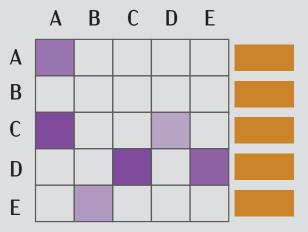


Adjacency Matrix



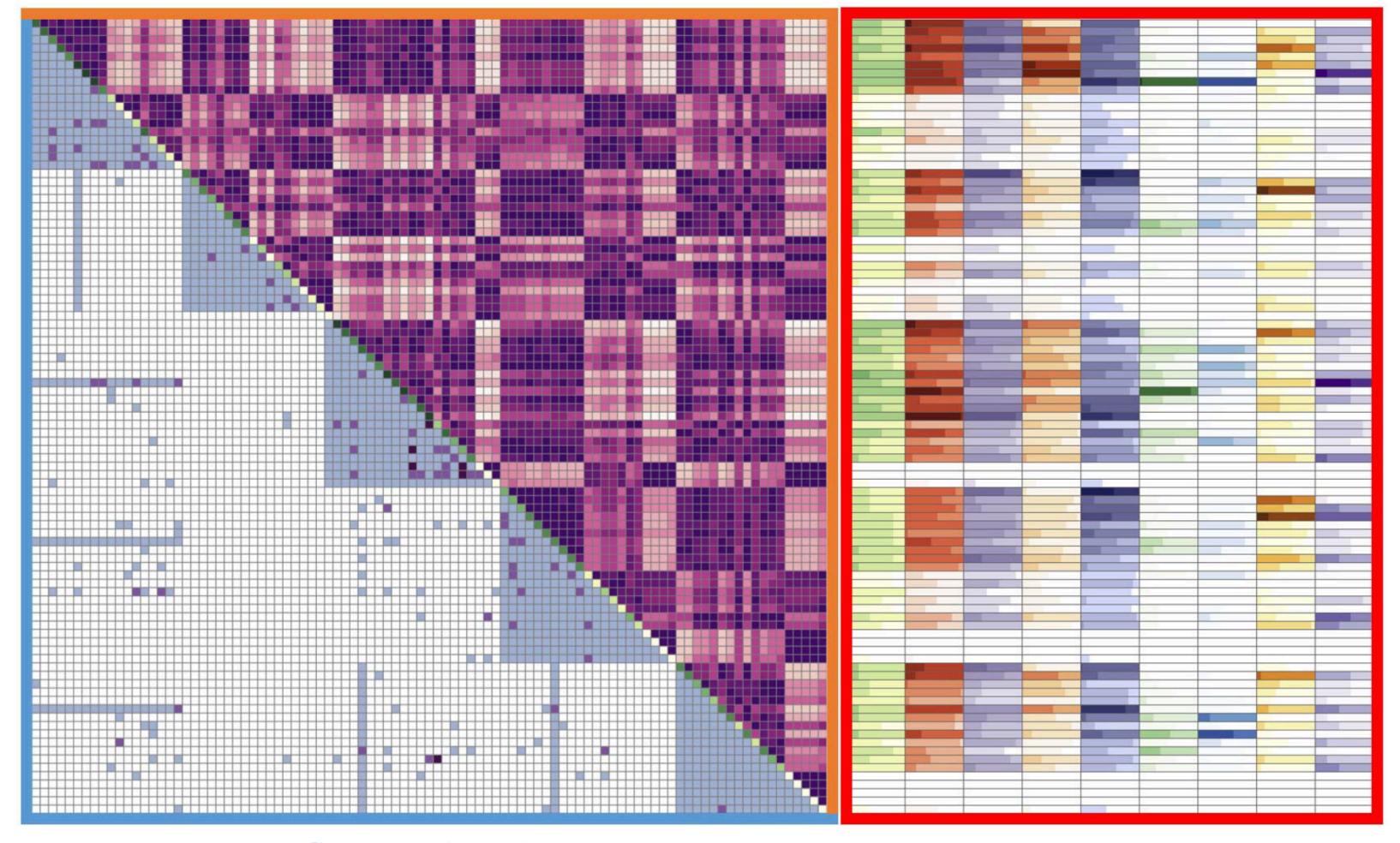


Kerzner et al, 2017

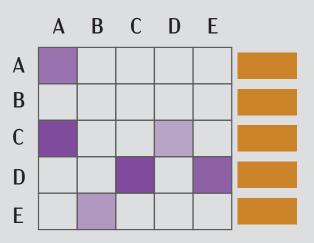


Adjacency Matrix

Attribute values (nodes)

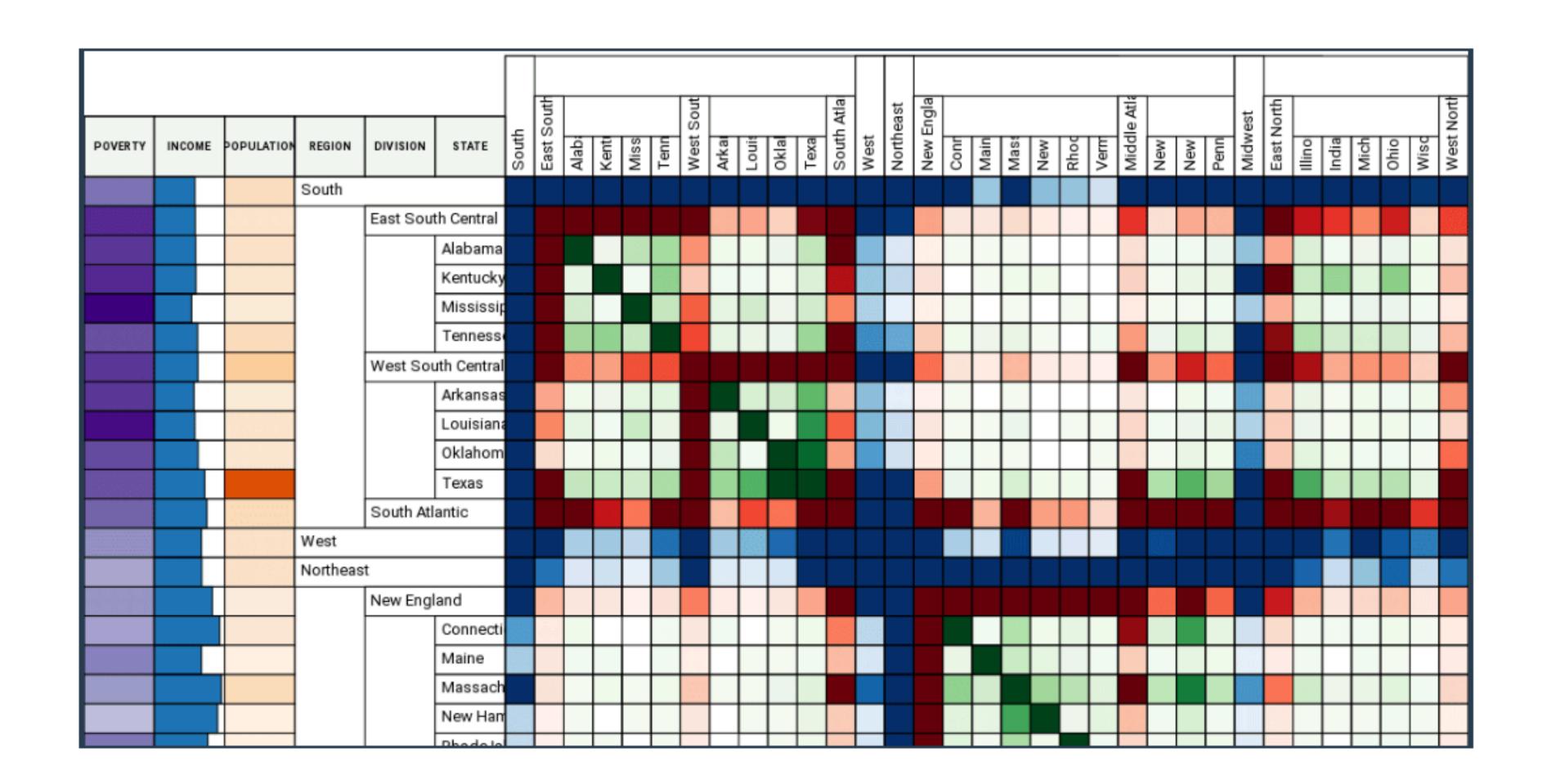


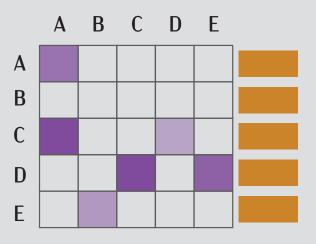
Structure (edges)



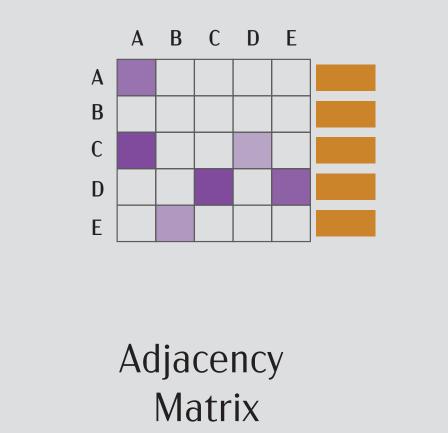
Adjacency Matrix

Berger et al, 2019





Adjacency Matrix



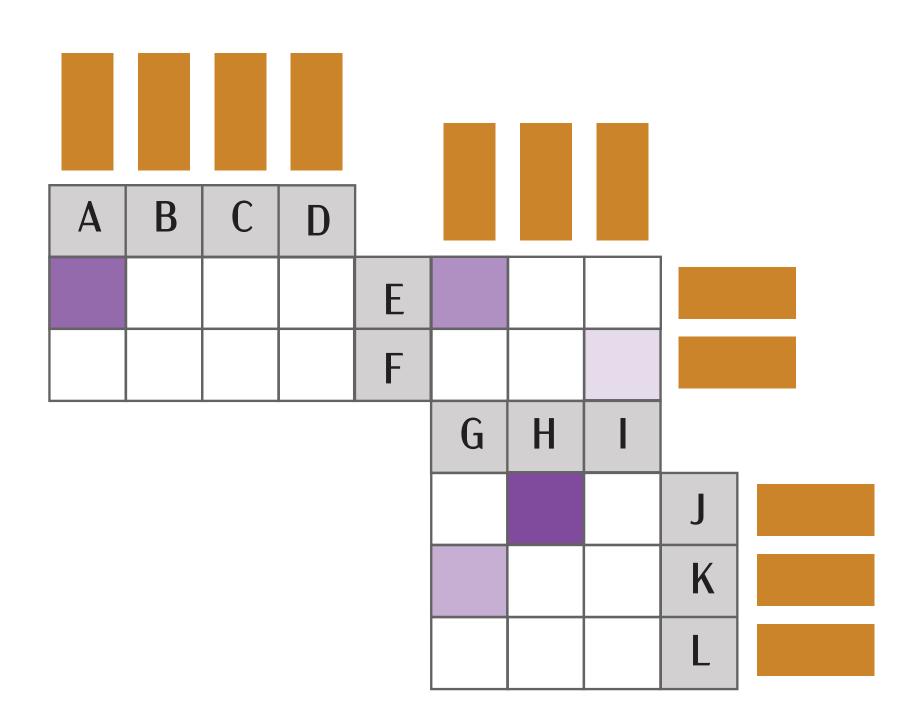
Requires quadratic space with respect to the

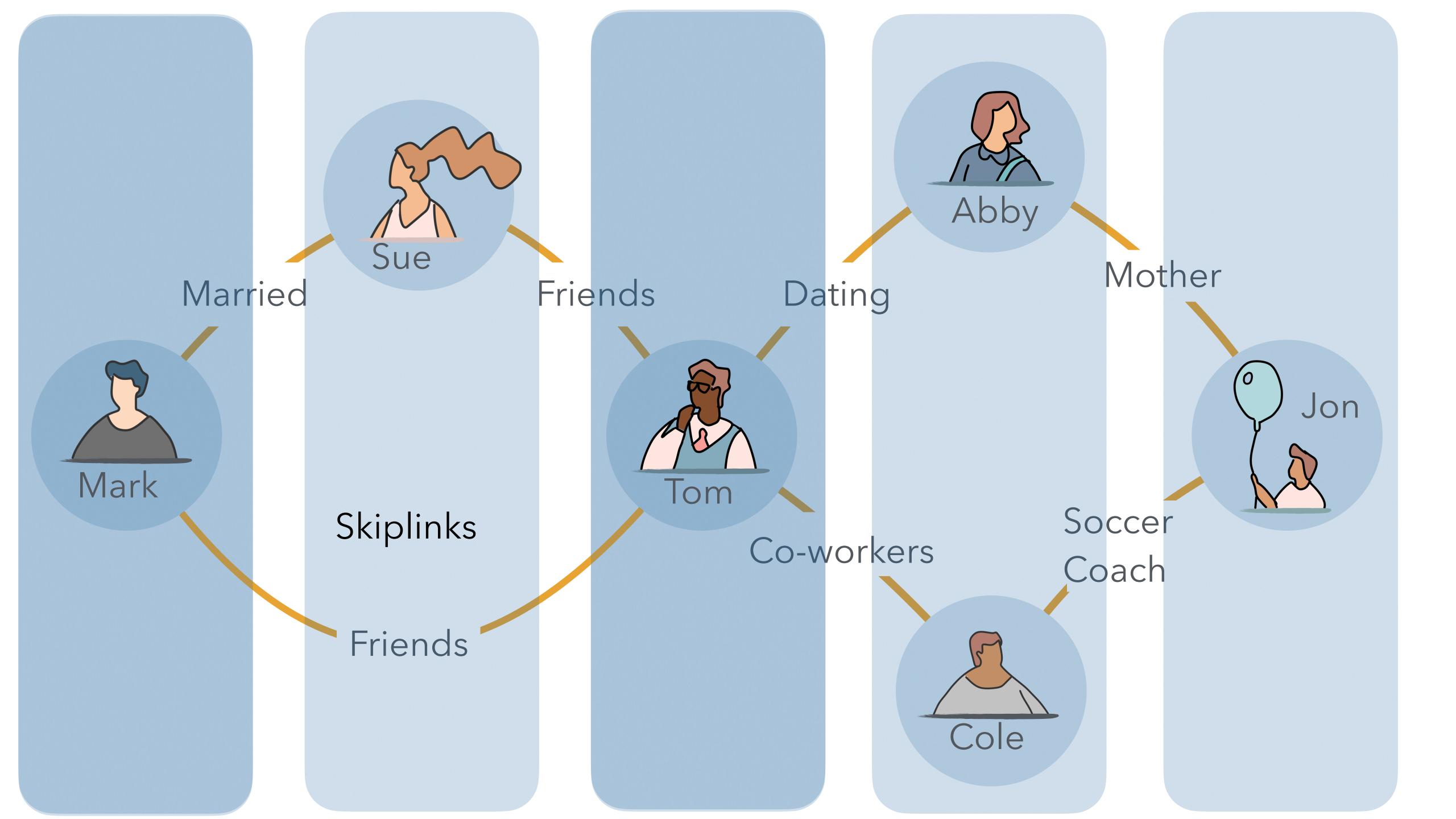
number of nodes.

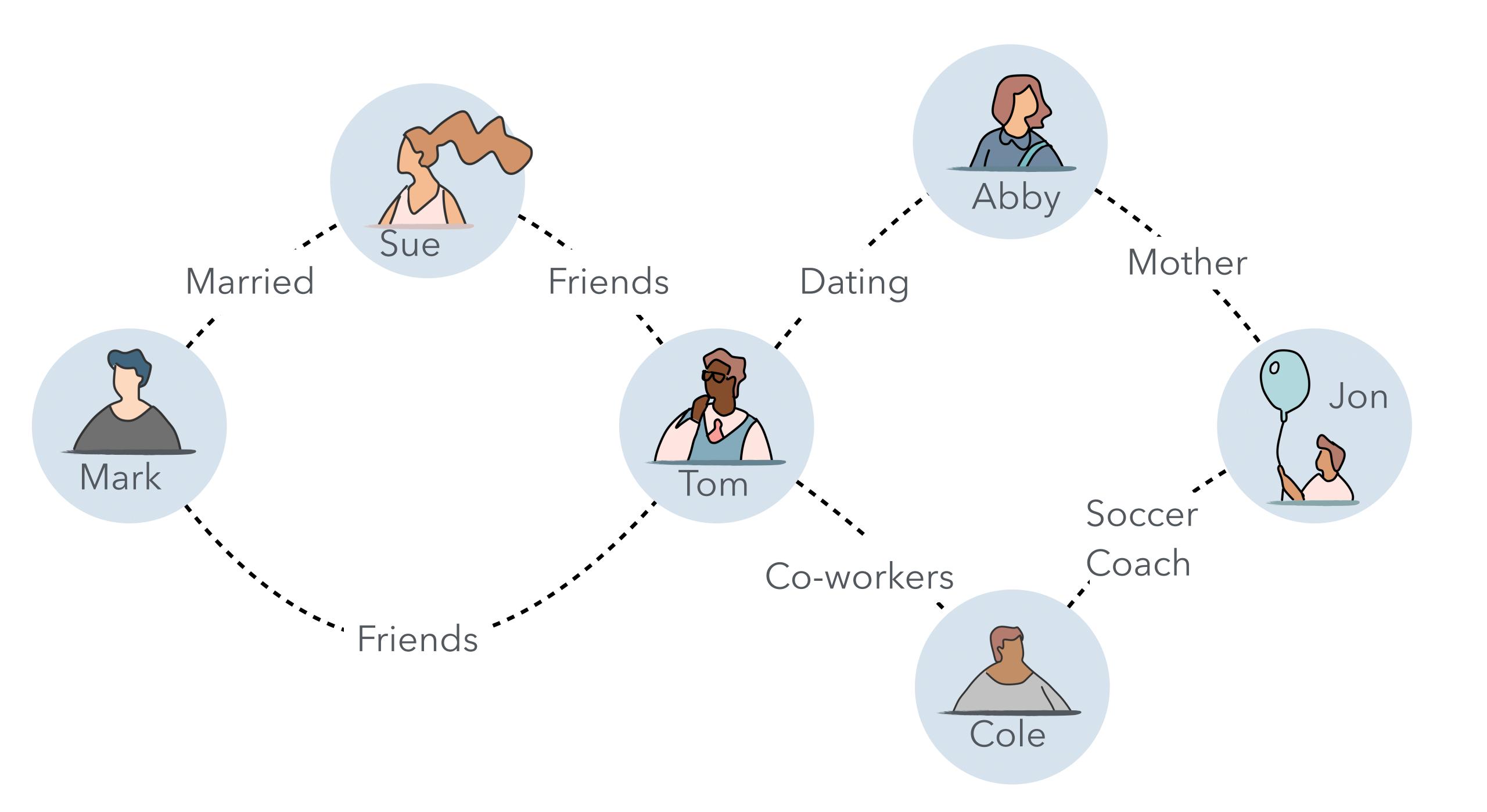
Complexity of choosing the right reordering algorithm

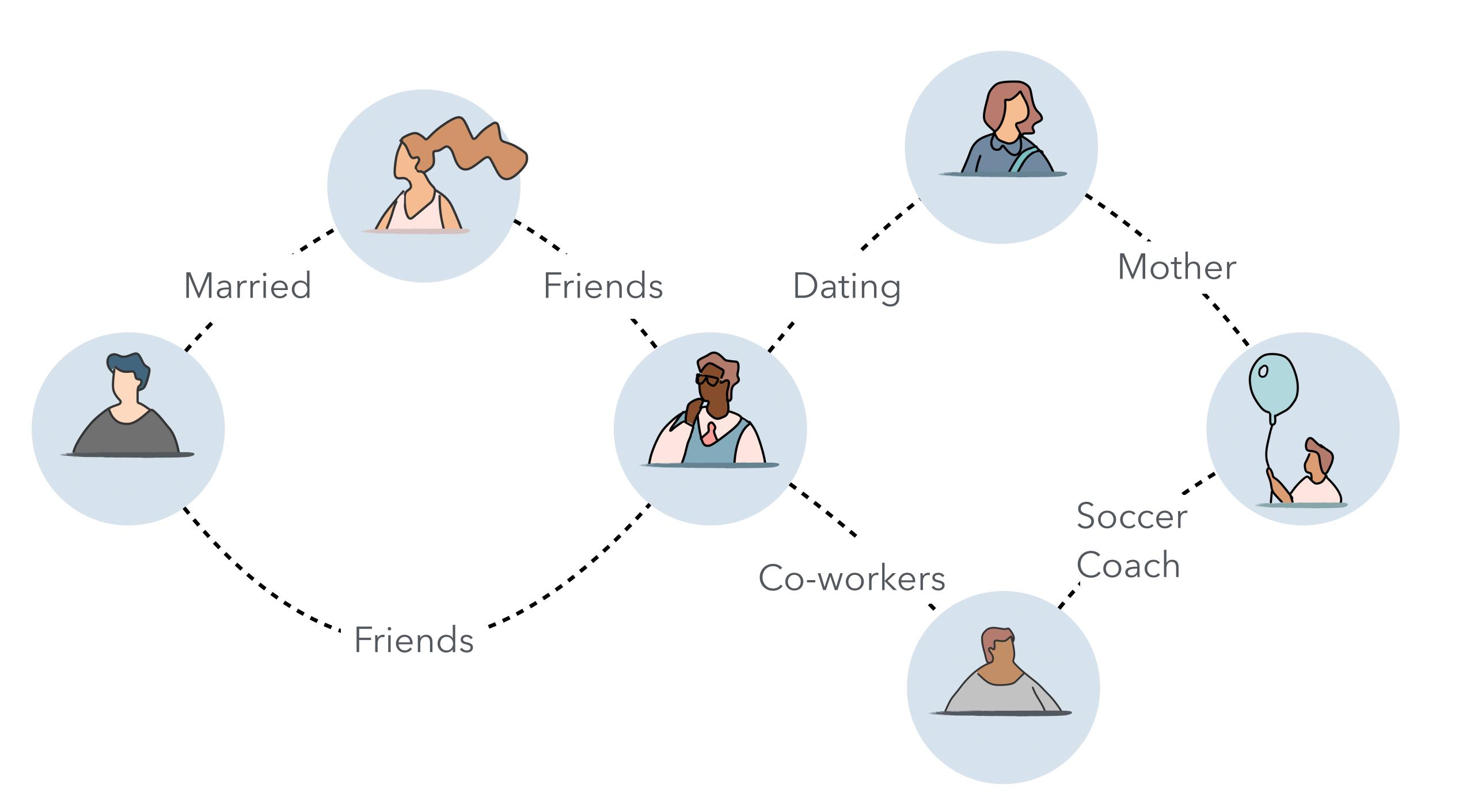
Recommended for smaller, complex and dense networks with rich node and/or edge attributes, for all tasks except for those involving paths

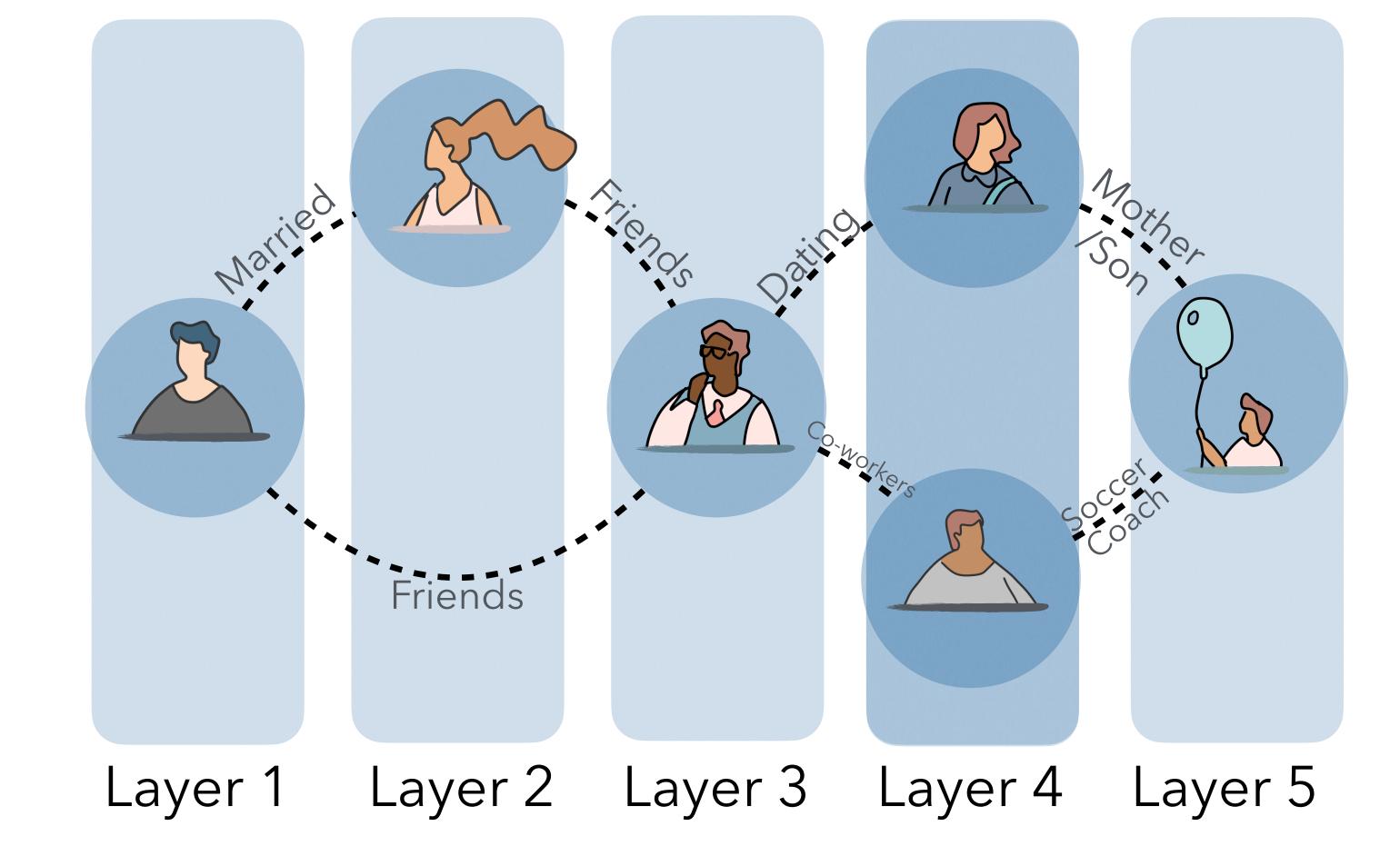
Quilts

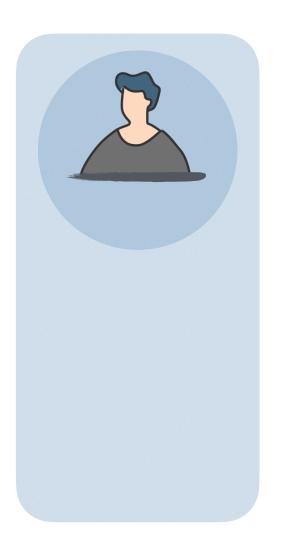


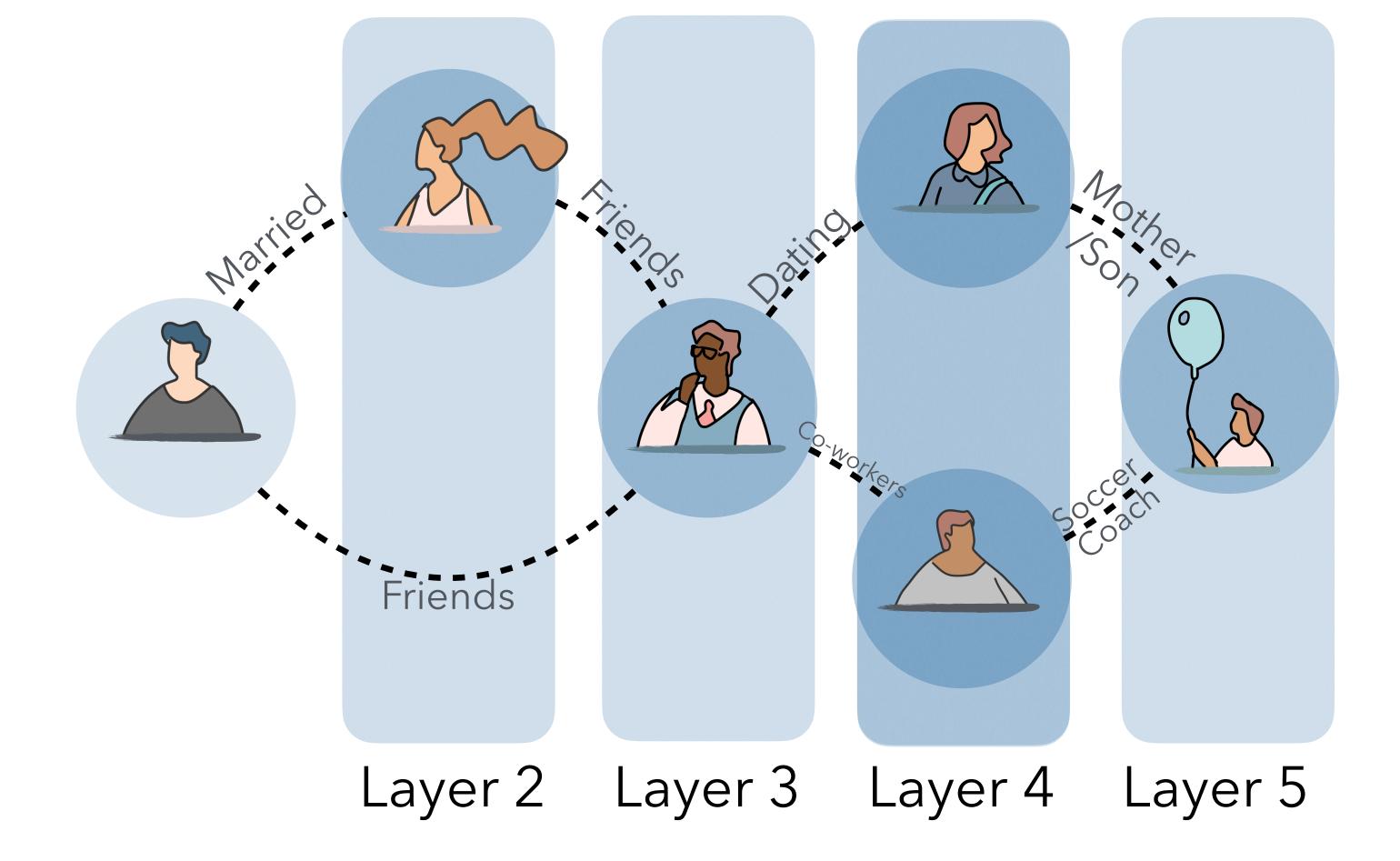


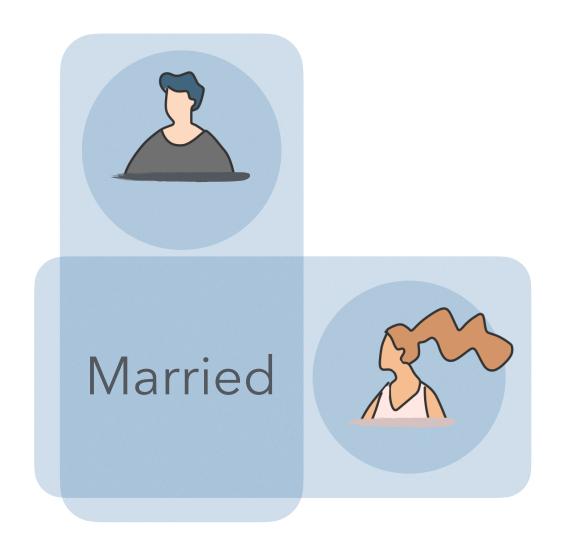


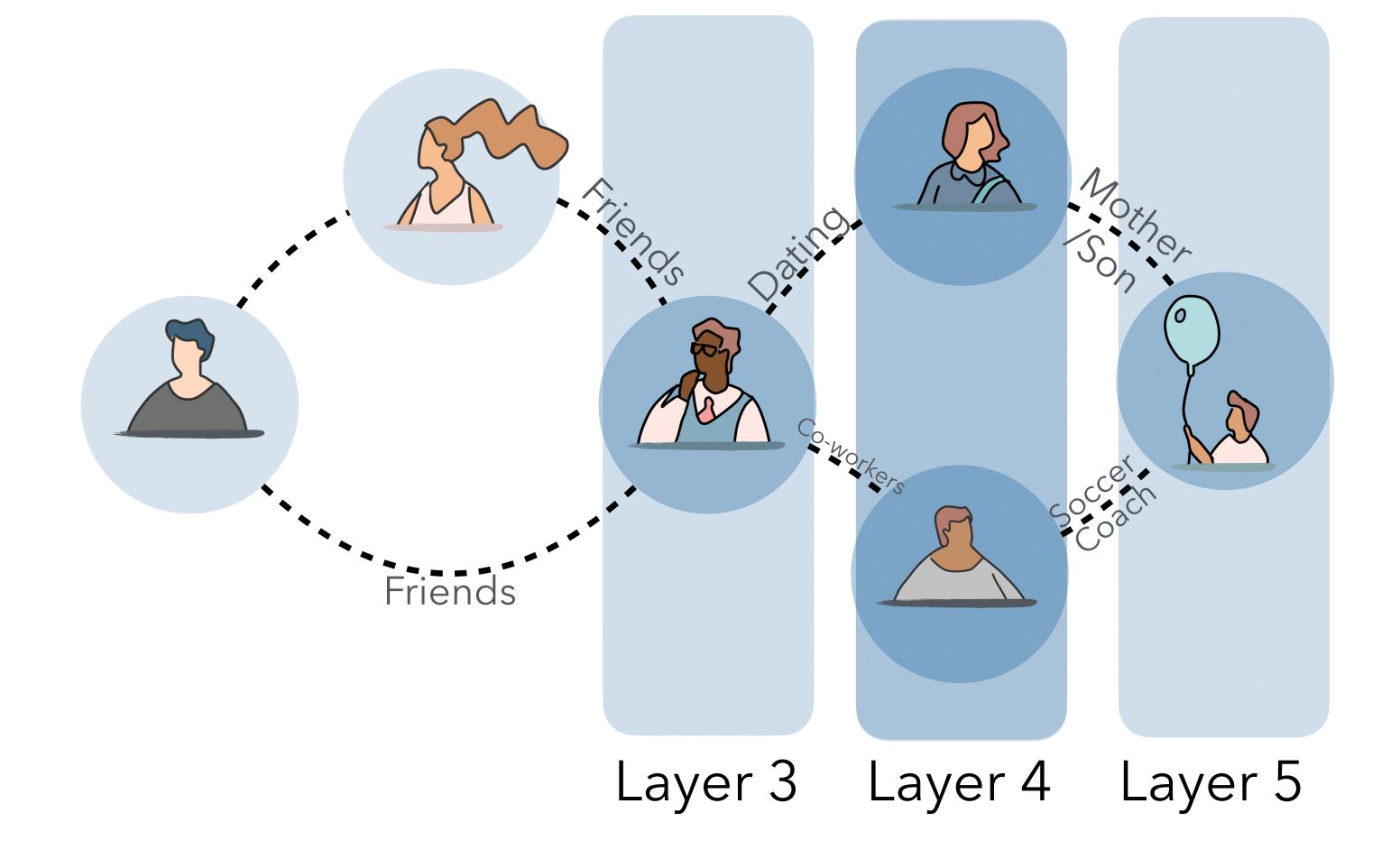


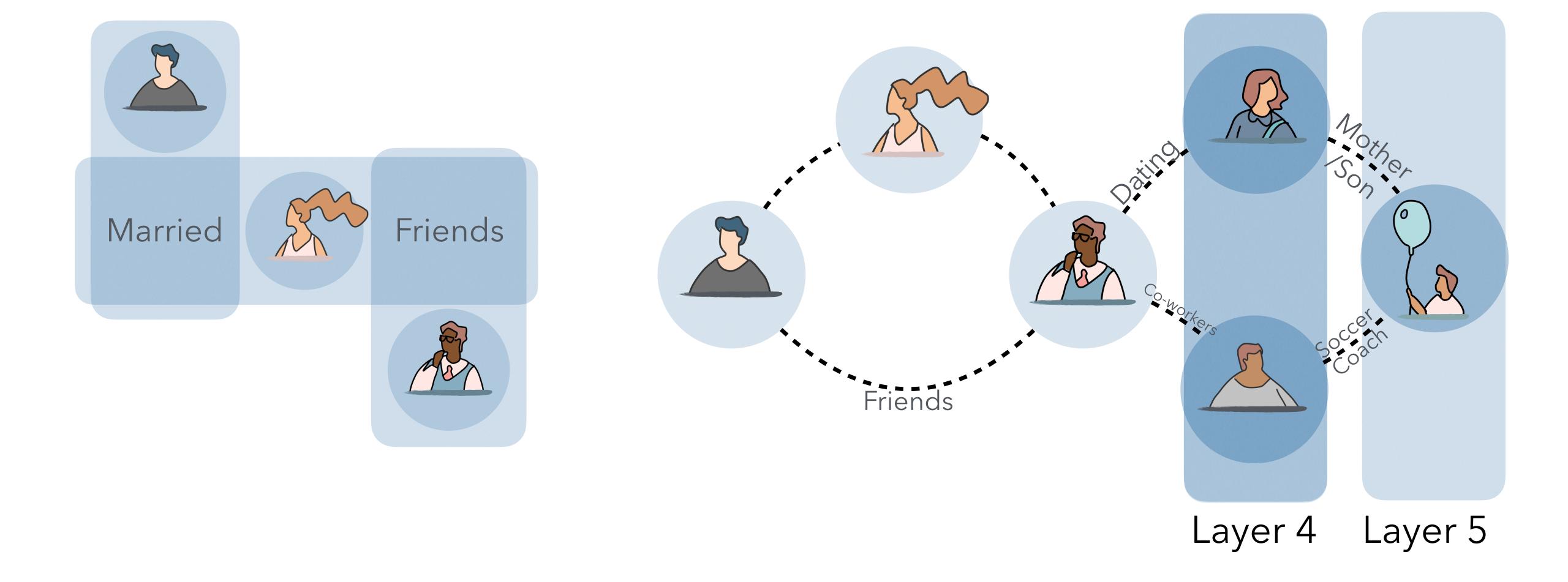


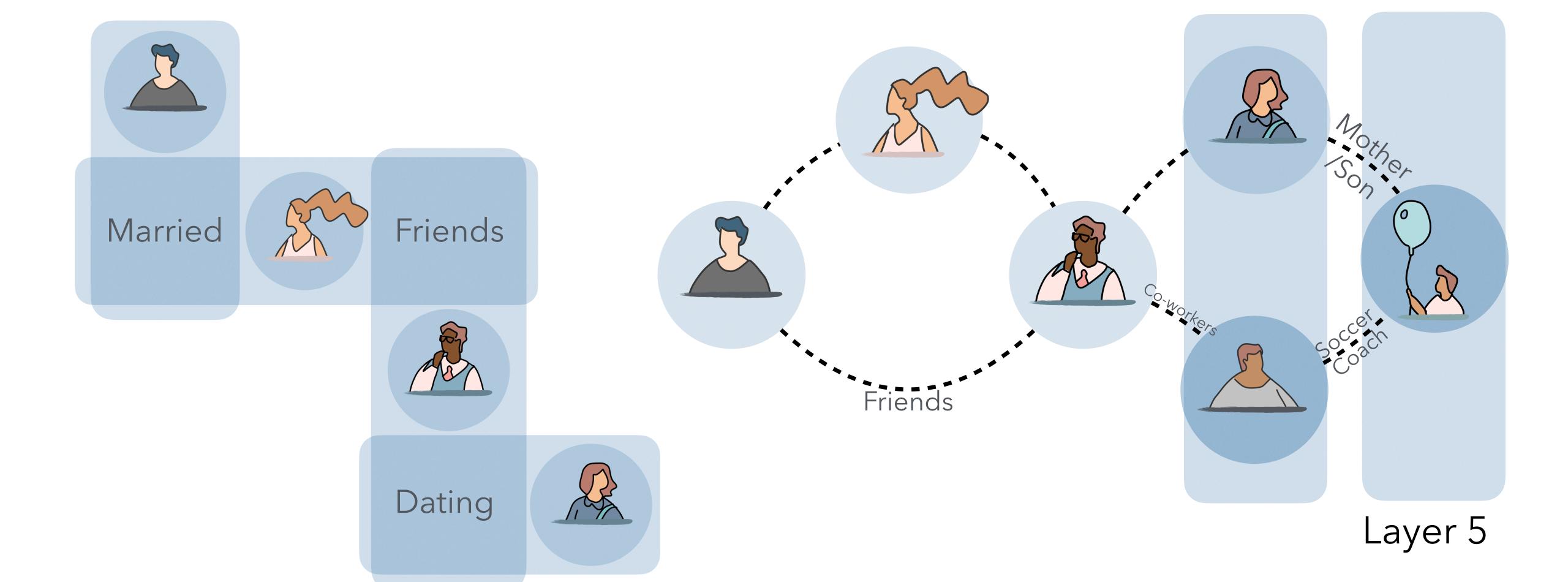


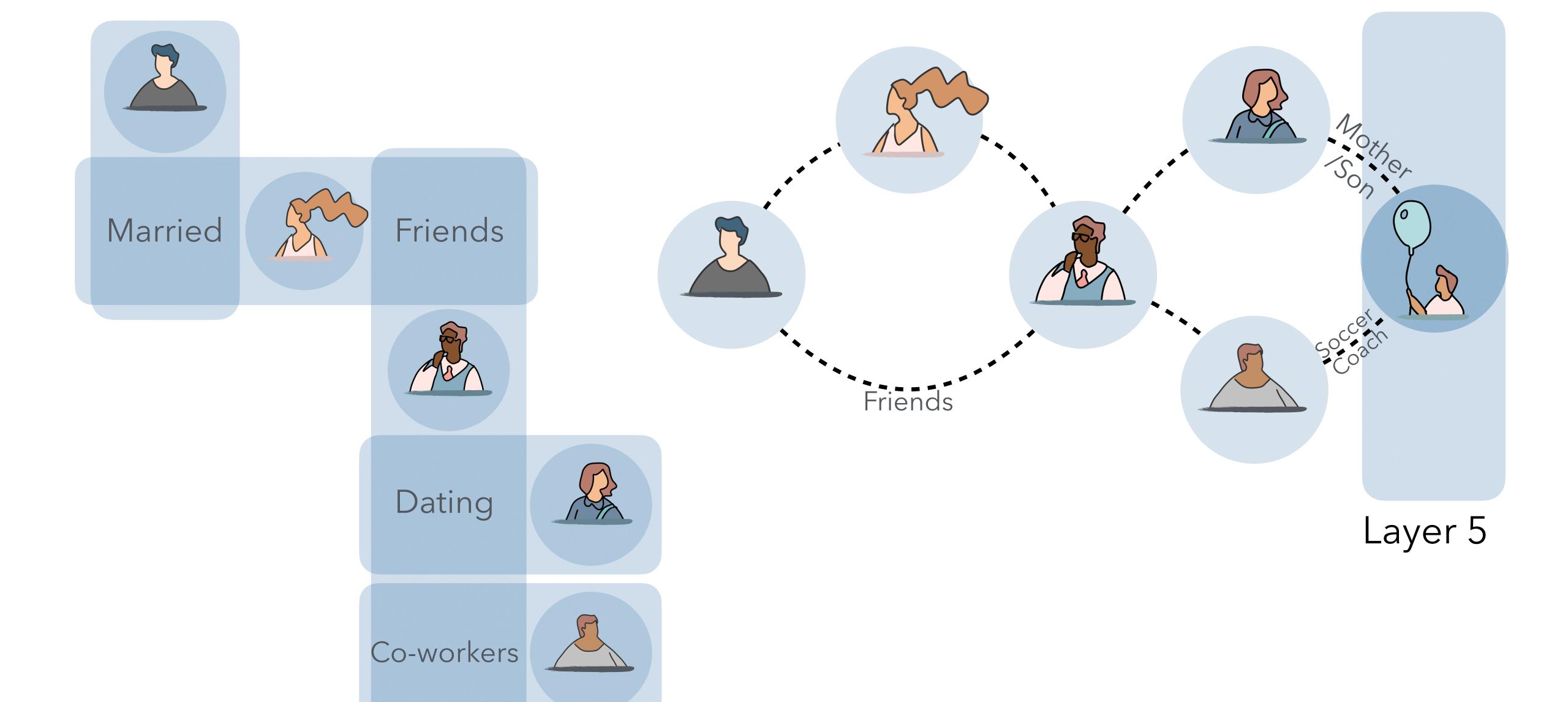


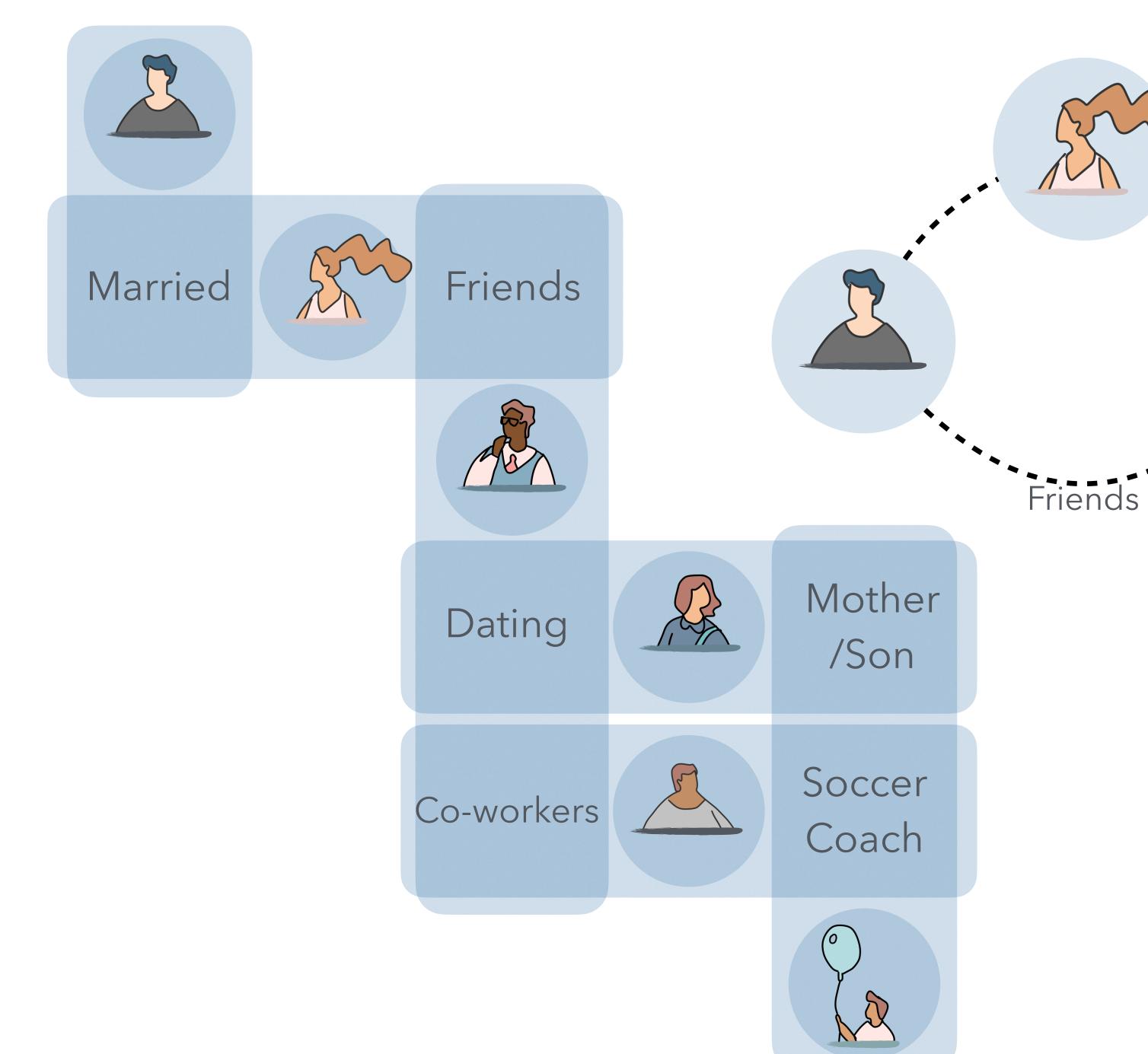












Married

Friends

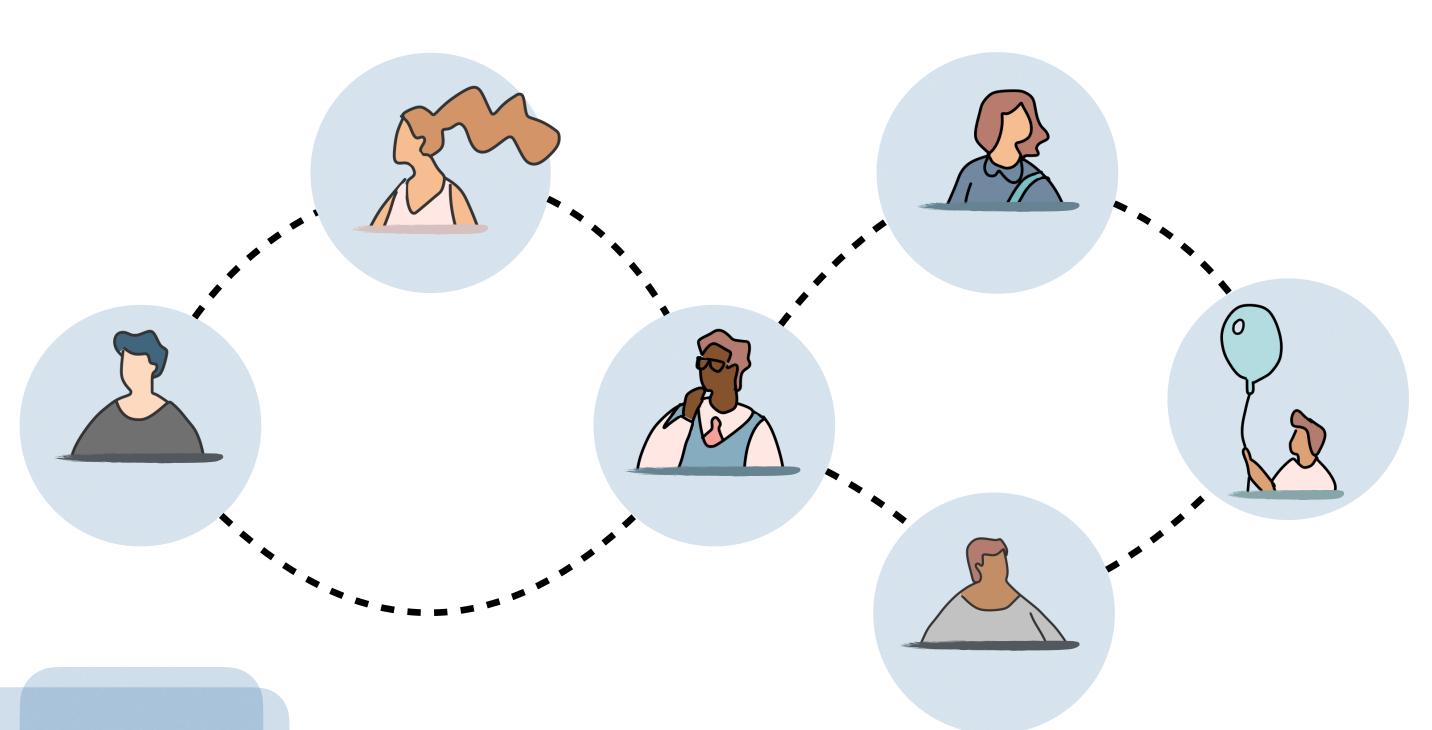
Friends

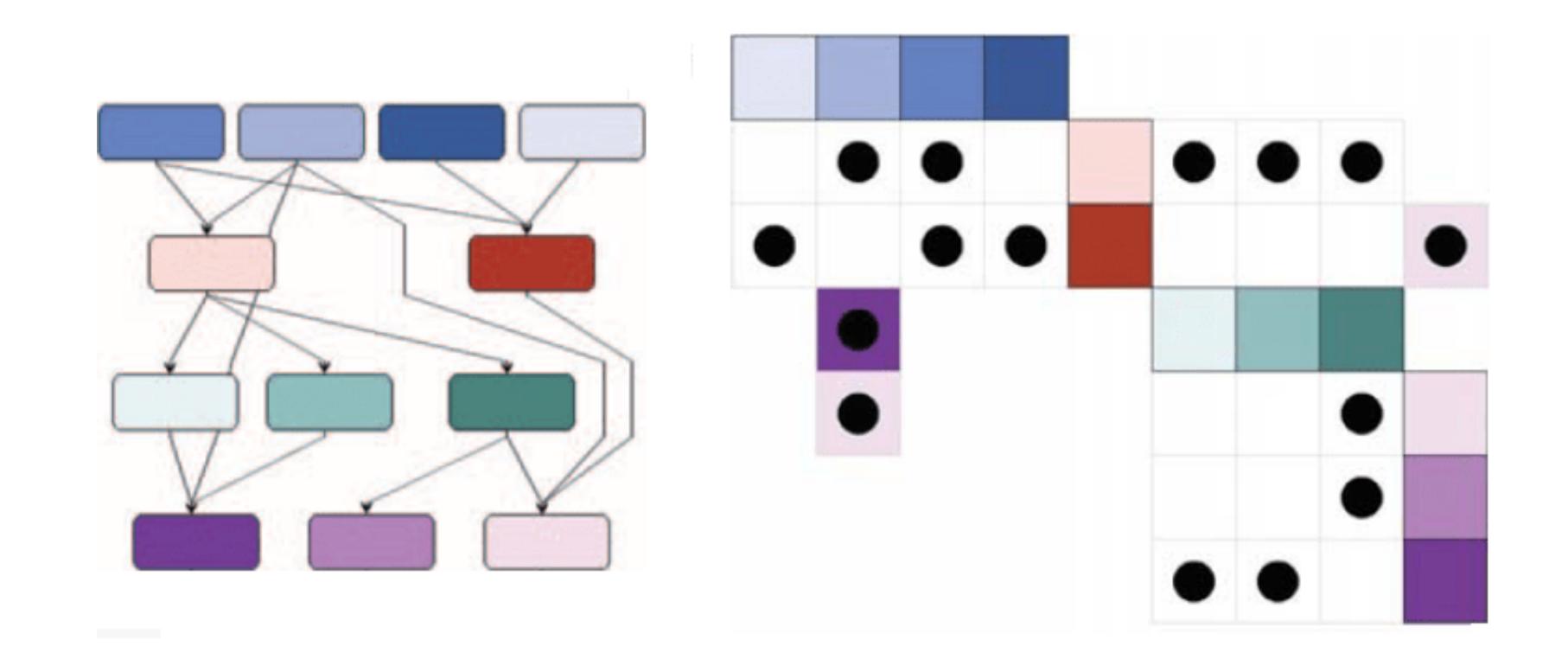
Dating

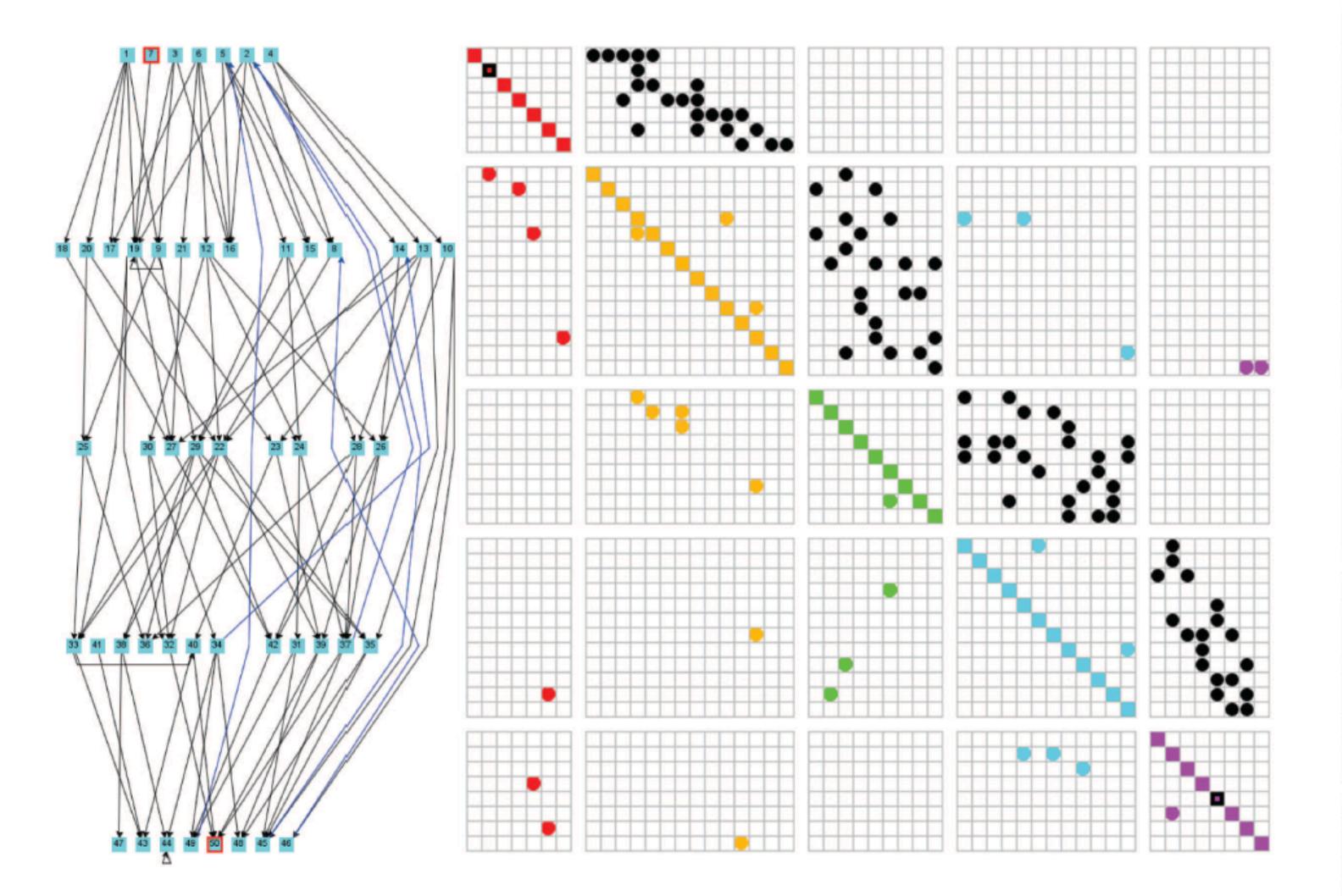
Mother /Son

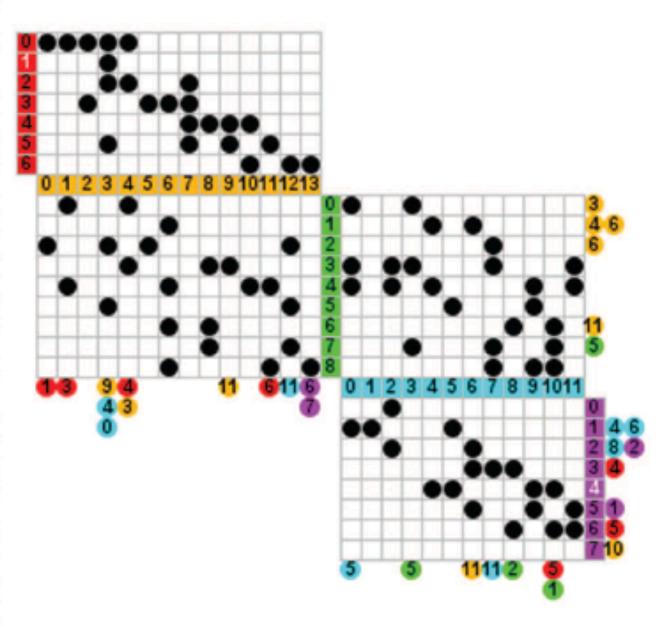
Co-workers

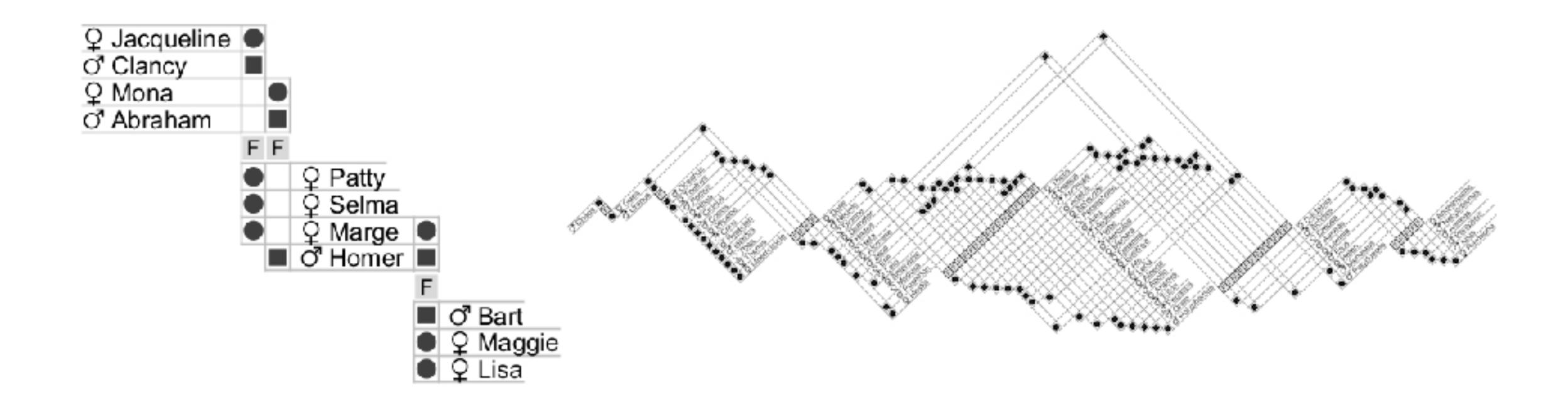
Soccer Coach

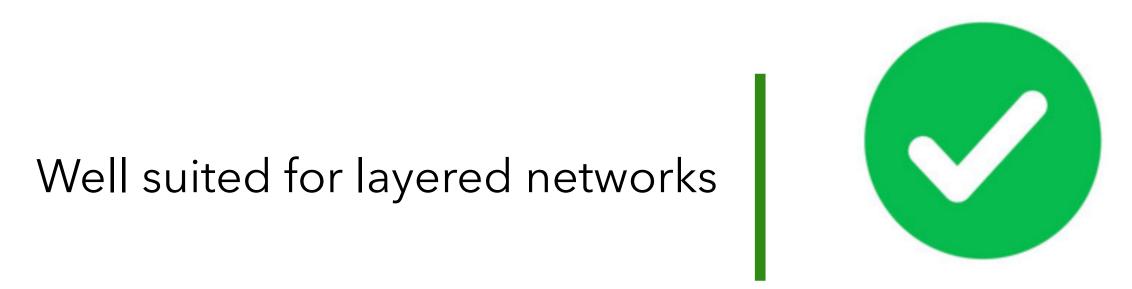








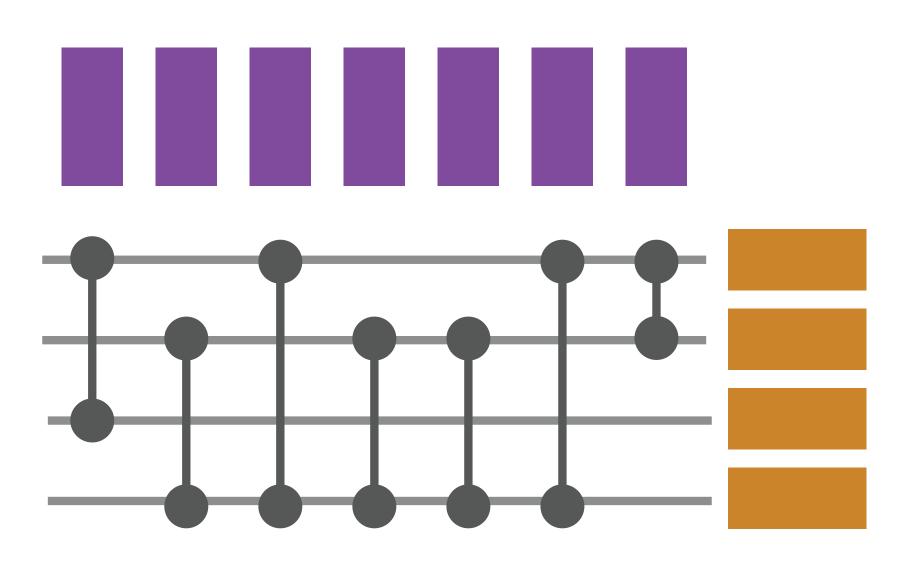


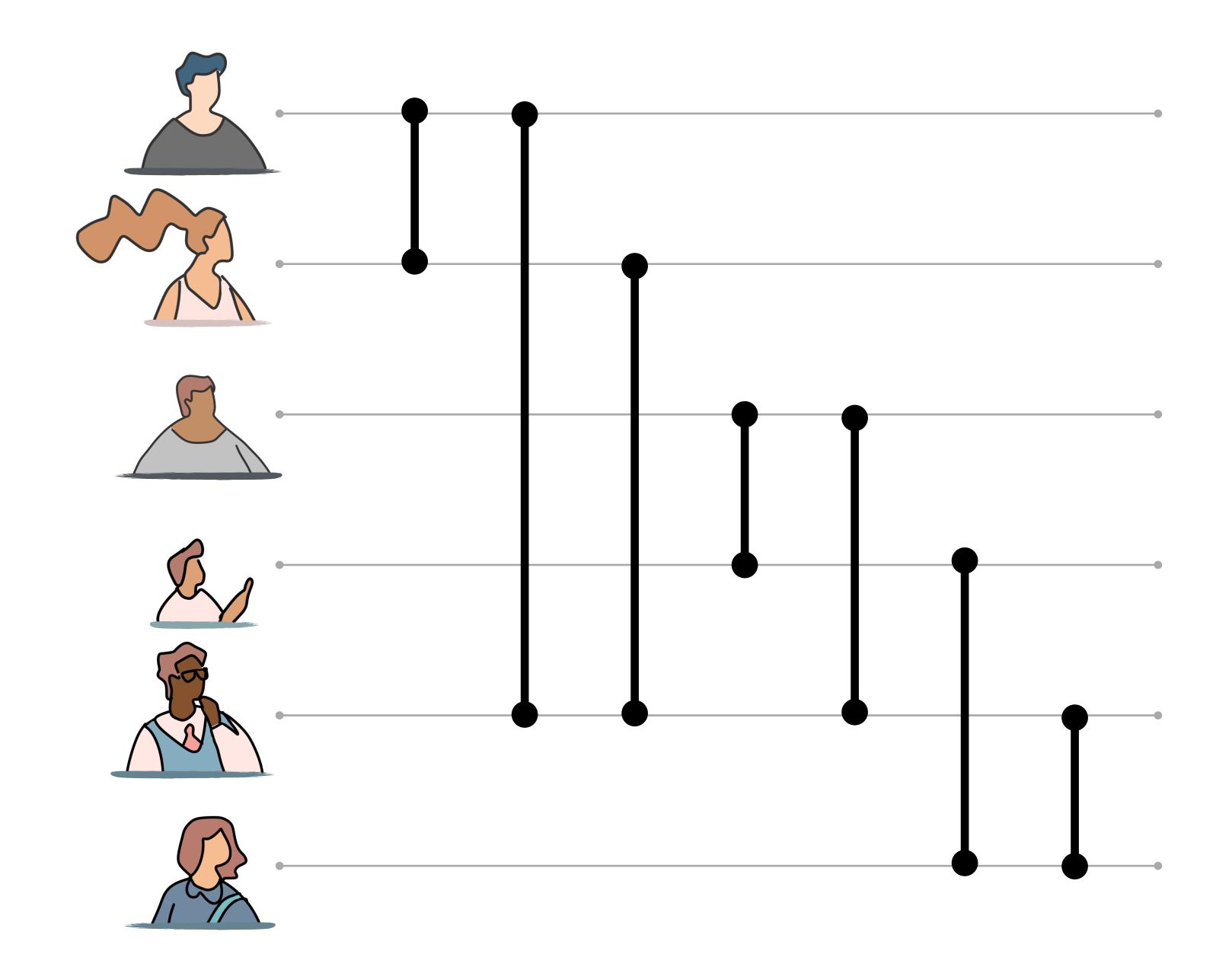


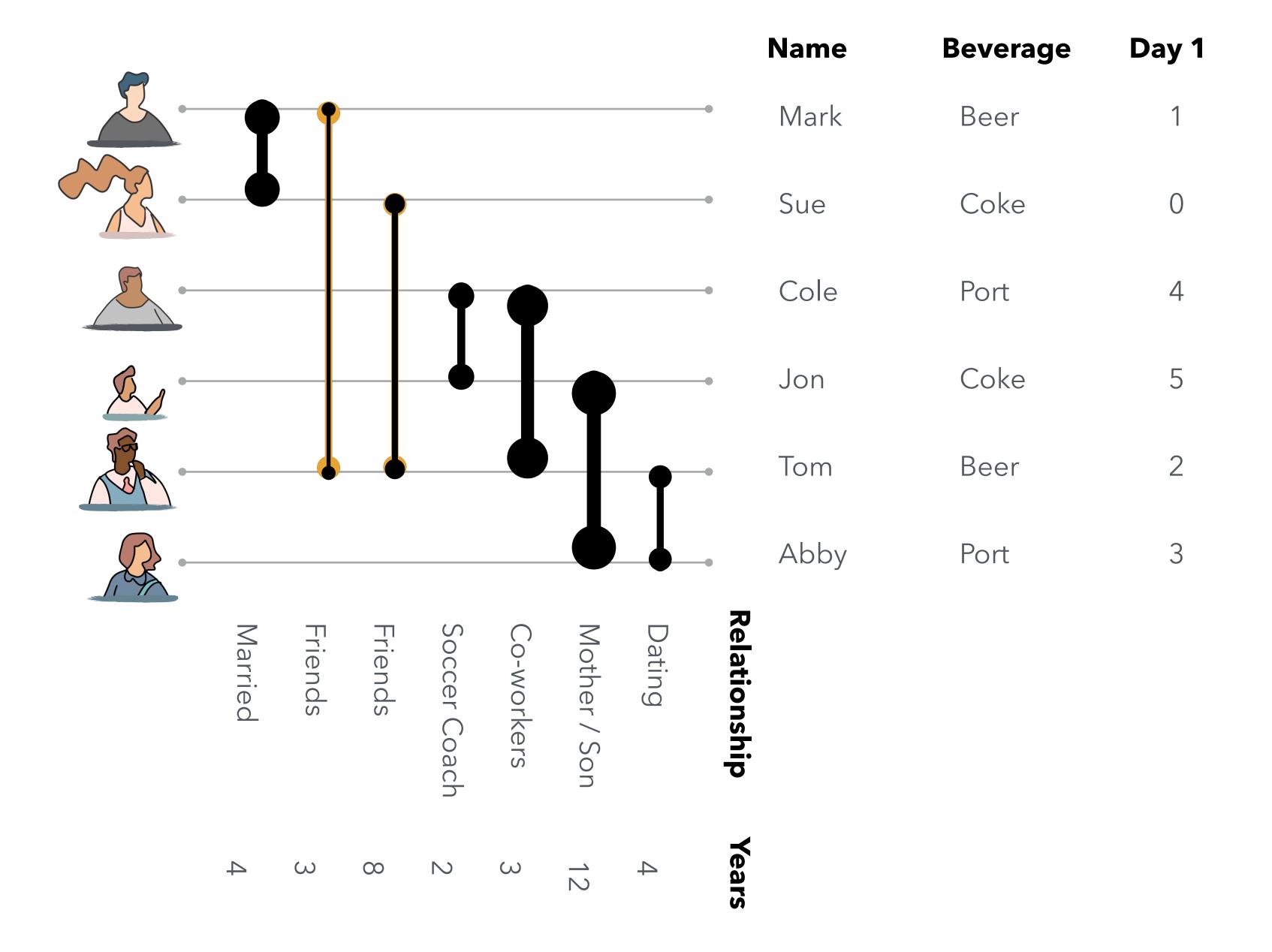
Links between nonconsecutive layers can be problematic to integrate and non-intuitive

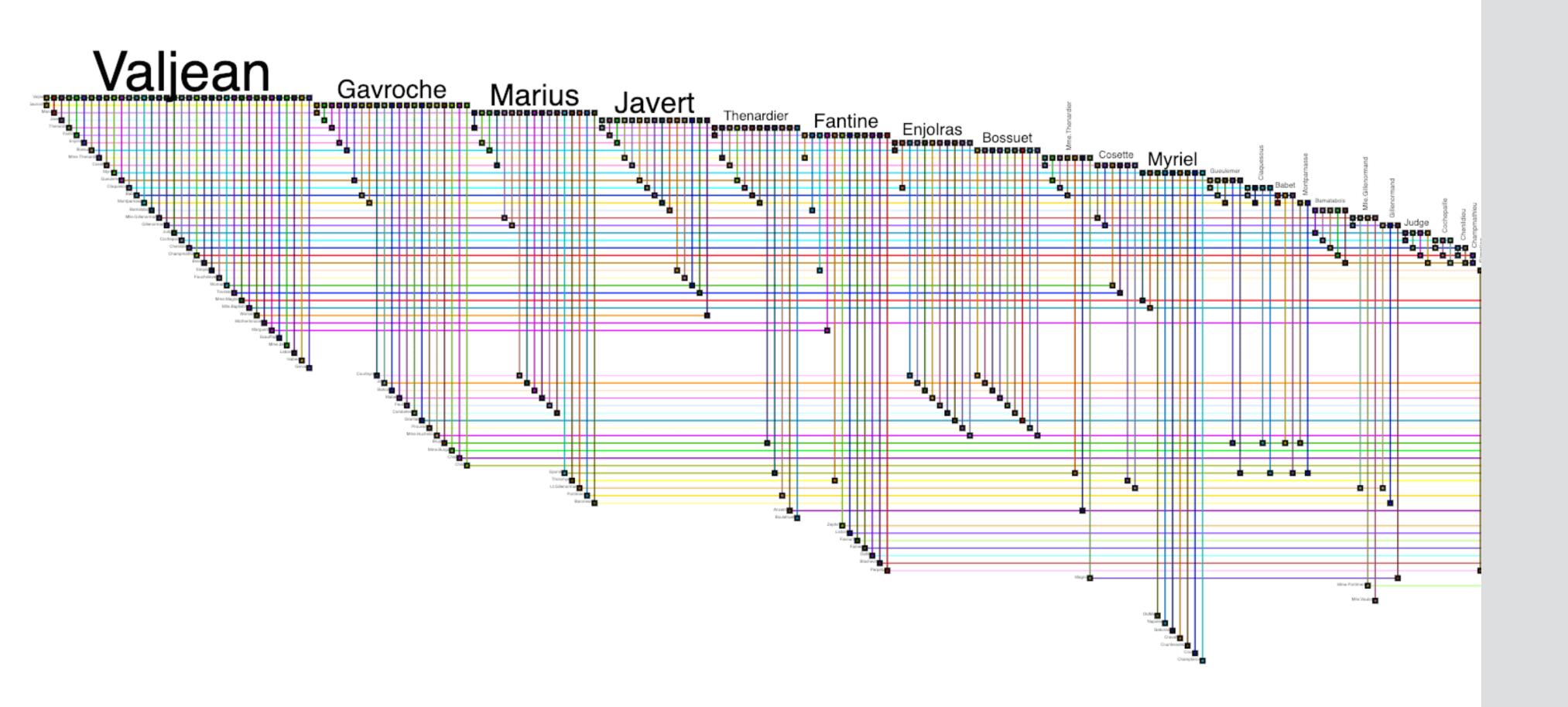
Recommended for layered or k-partite networks with limited skiplinks.

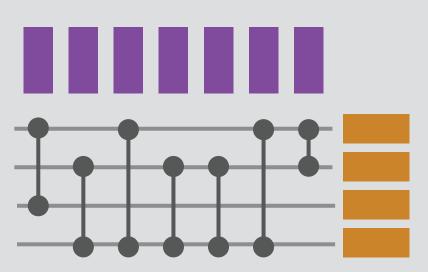
BioFabric





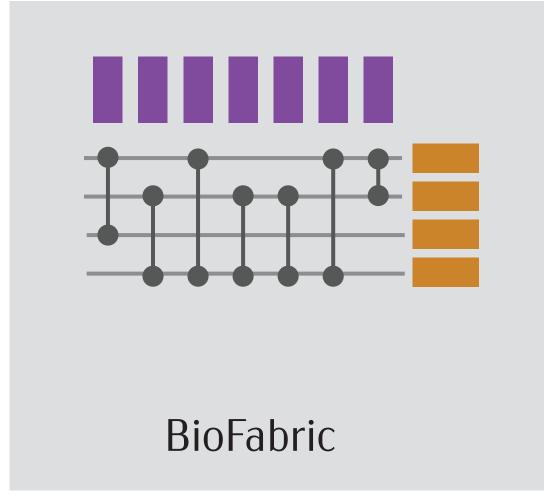






BioFabric

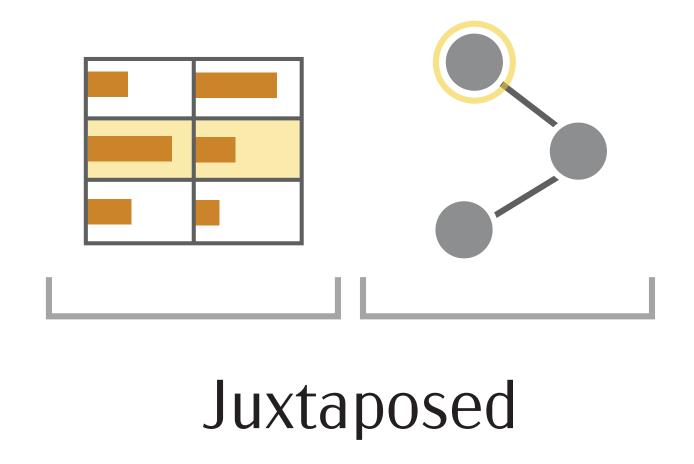
Can be used to visualize rich edge attributes and node attributes at the same time

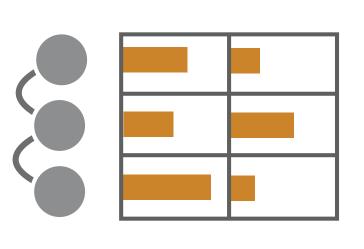


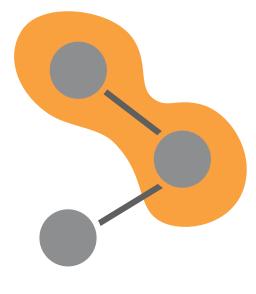
More difficult to discover neighbors and clusters in Biofabric compared to matrices.

Recommended for small, sparse networks with many nodes and rich edge attributes

View Operations

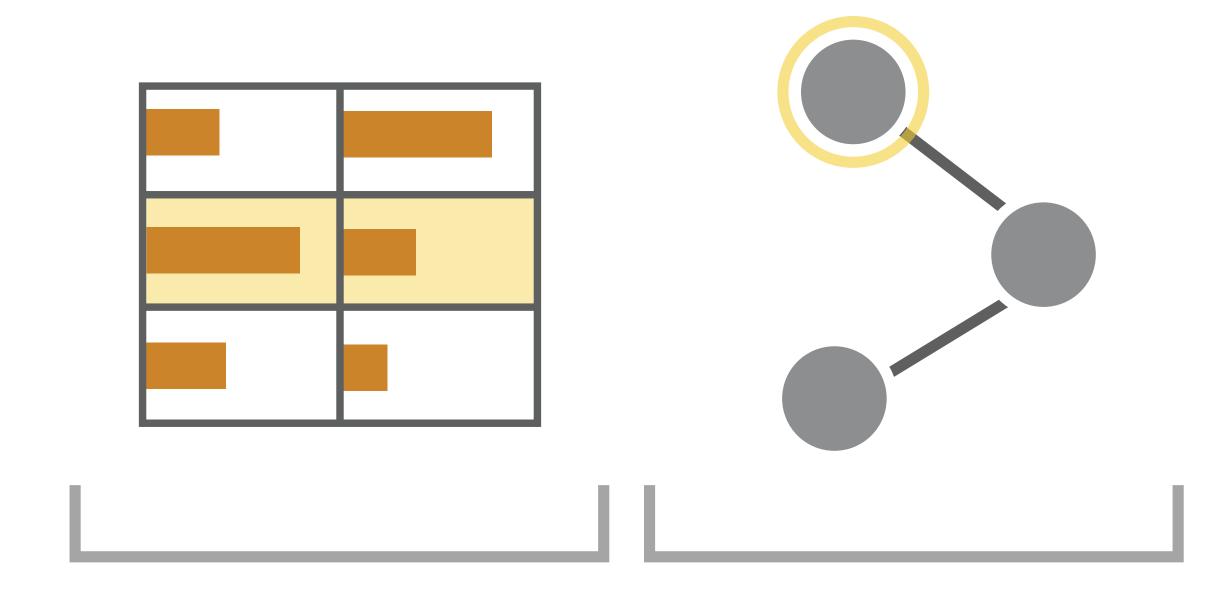


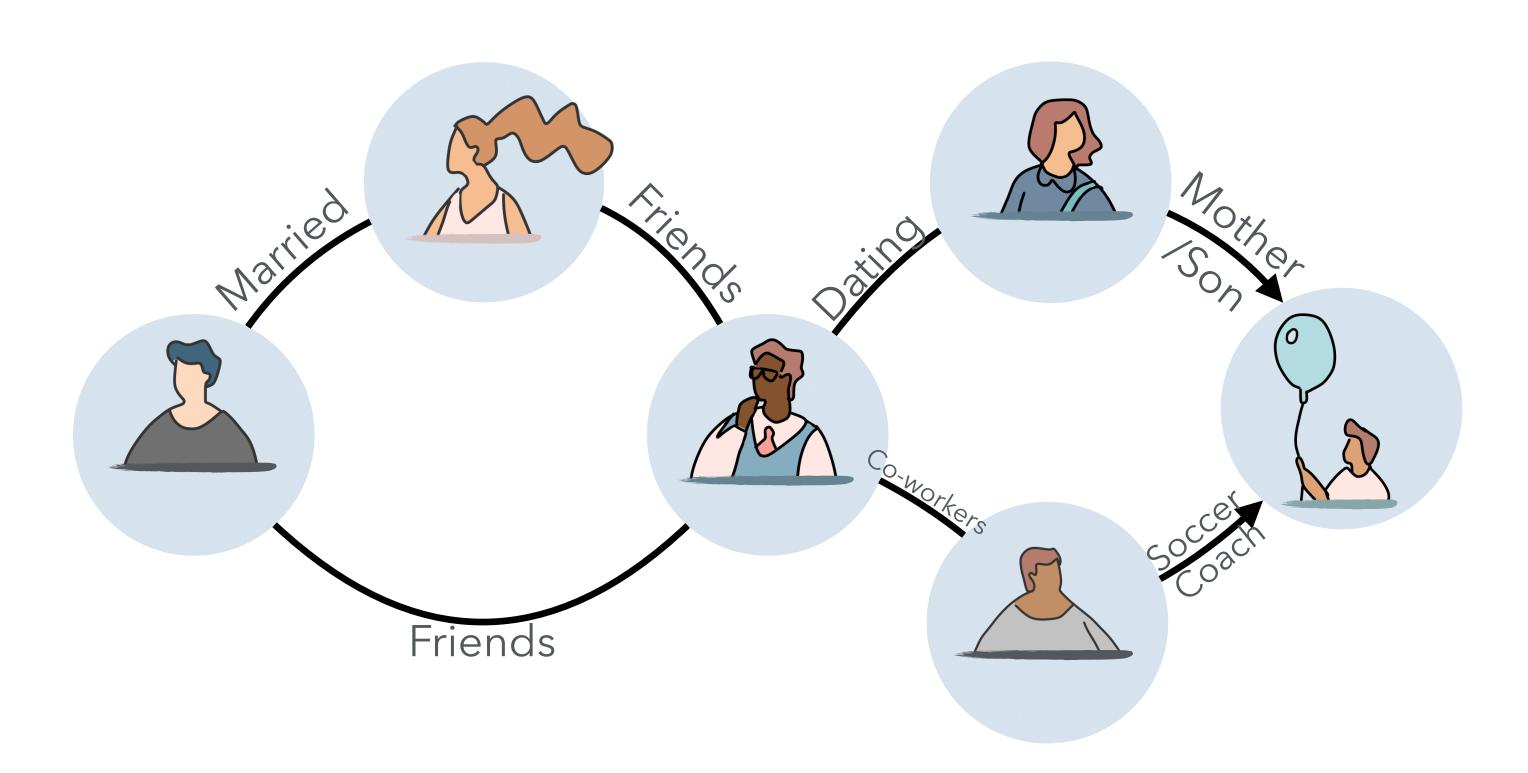


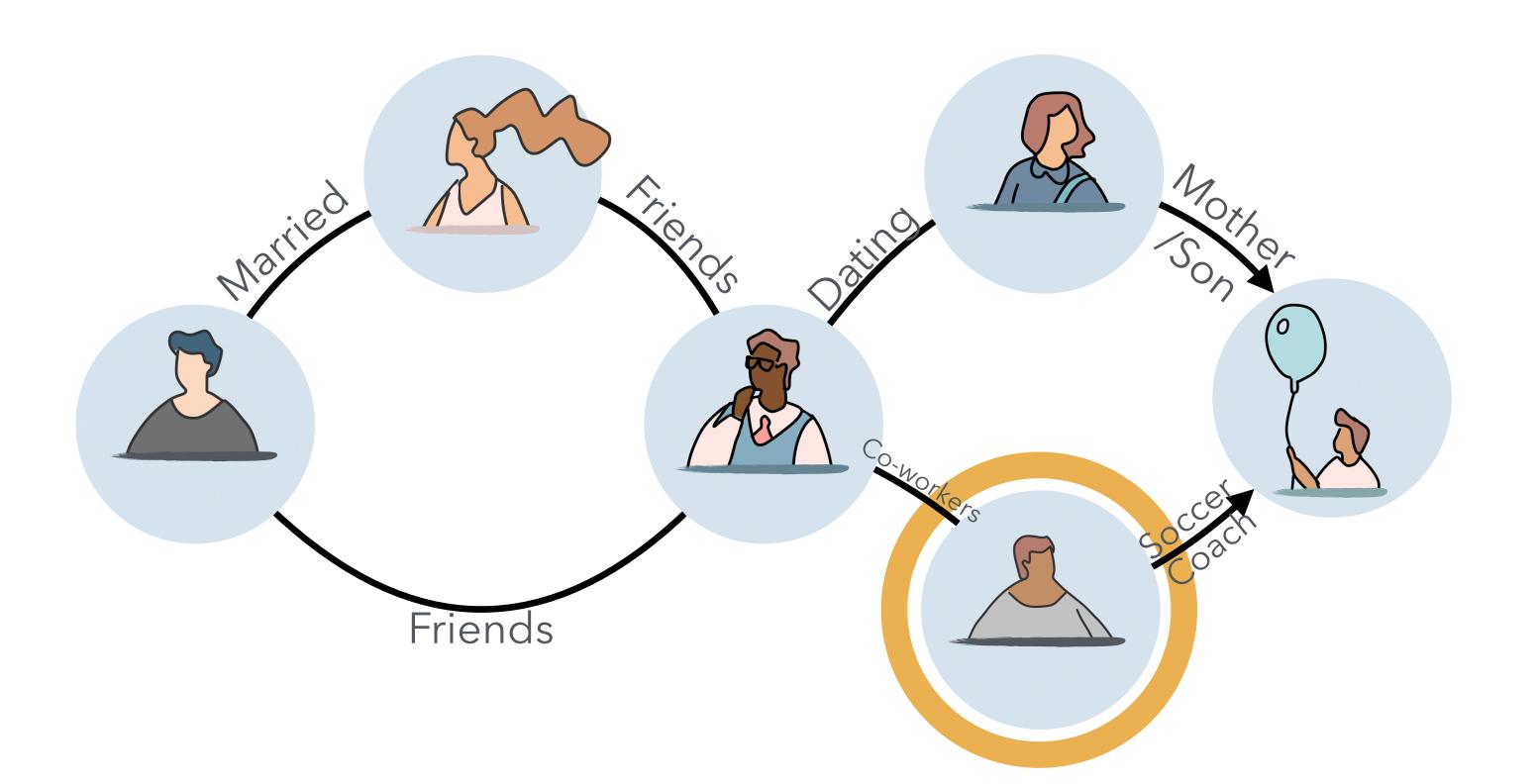


Overloaded

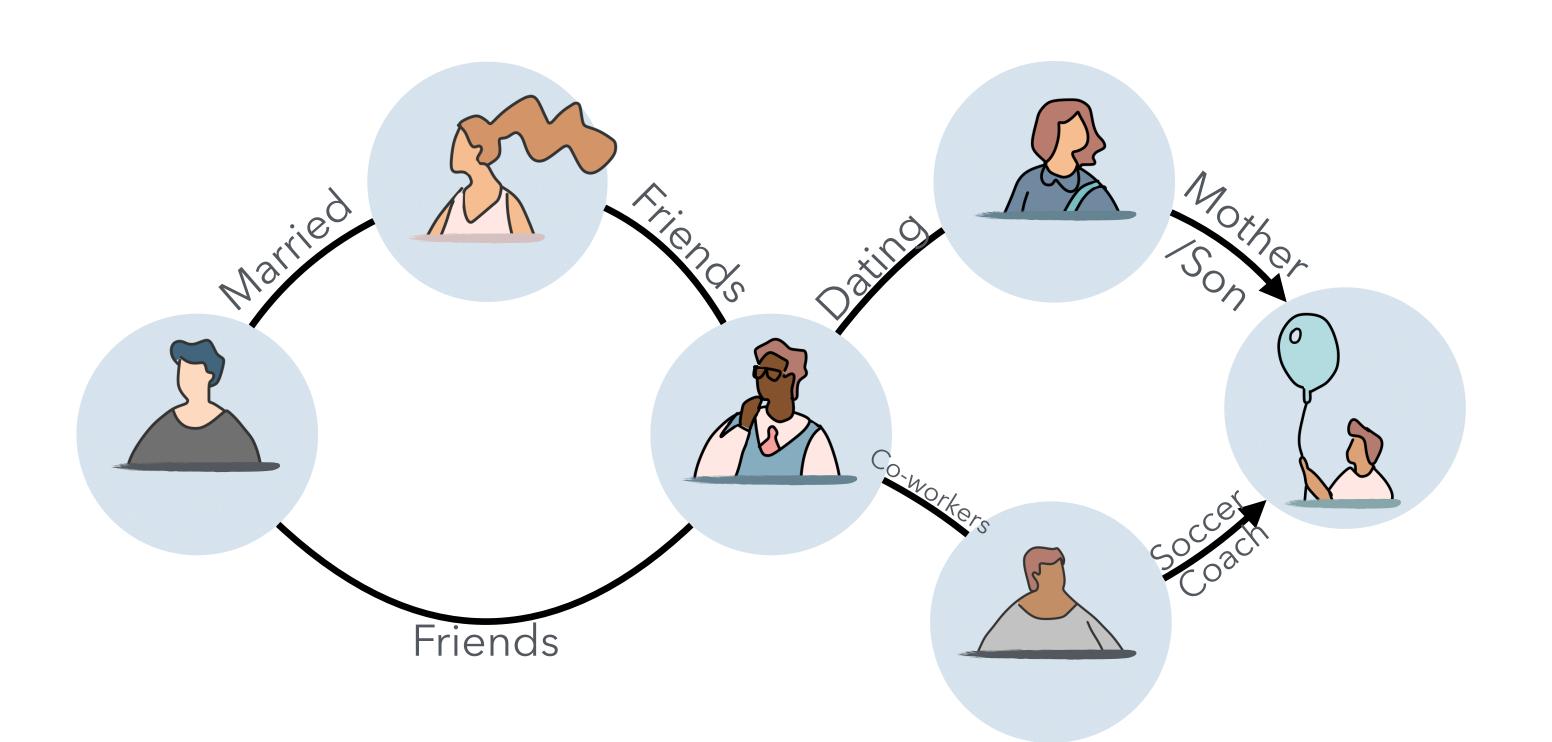
Juxtaposed





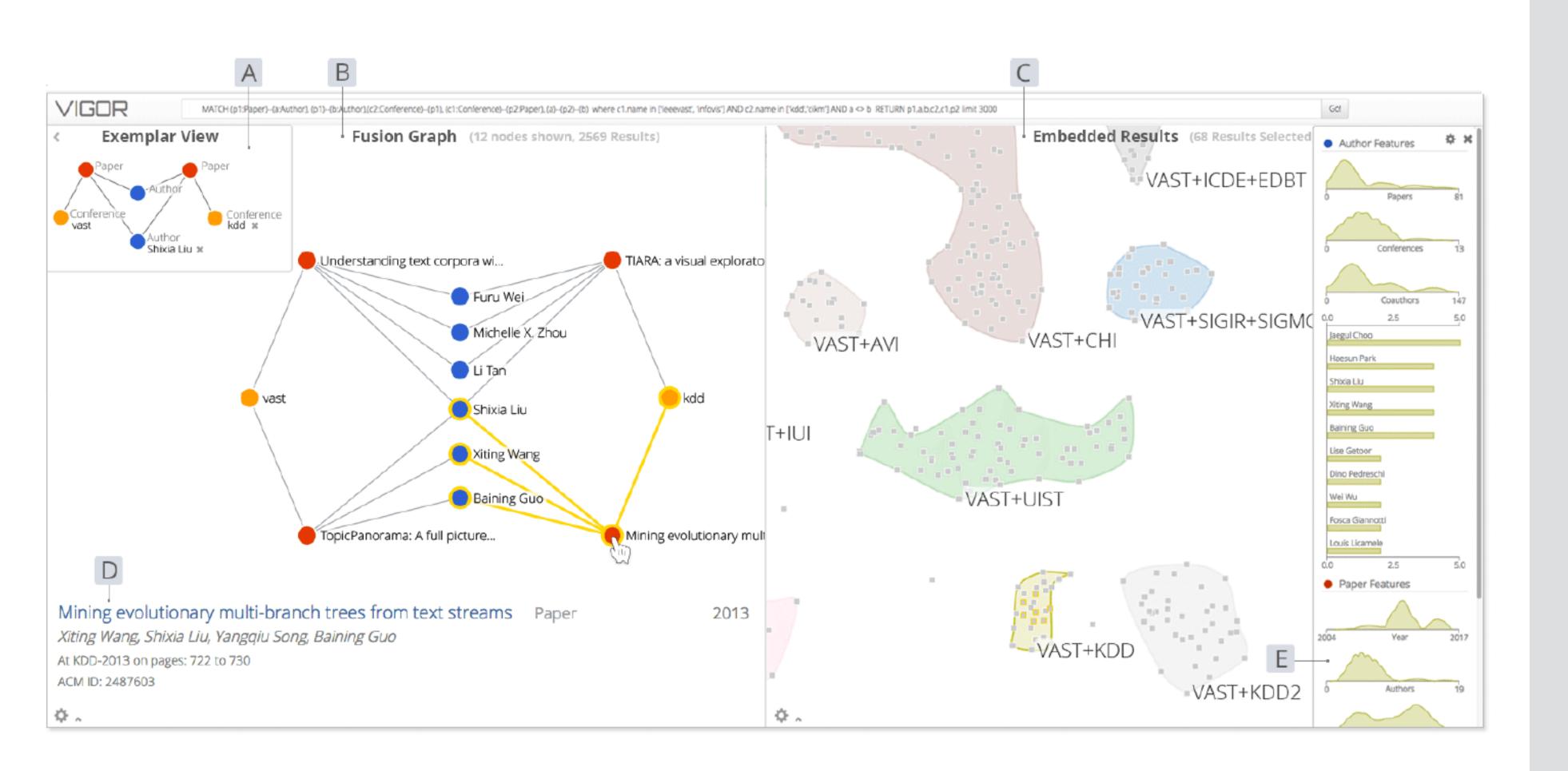


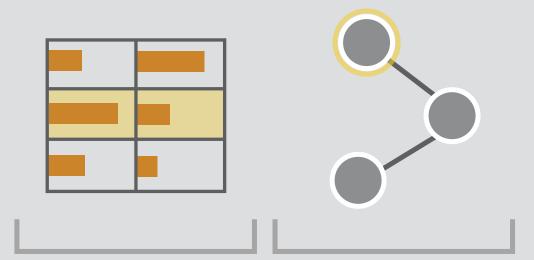
Name	Beverage	Day 1	
Mark	Beer	1	
Sue	Coke	0	
Cole	Port	4	
Jon	Coke	5	
Tom	Beer	2	
Abby	Port	3	



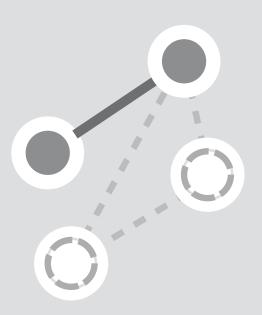
Name	Beverage	Day 1
Mark	Beer	1
Sue	Coke	0
Cole	Port	4
Jon	Coke	5
Tom	Beer	2
Abby	Port	3

Relationship	Years	
Dating	4	
Mother / Son	12	
Co-workers	3	
Soccer Coach	2	
Friends	8	
Friends	3	
Married	4	

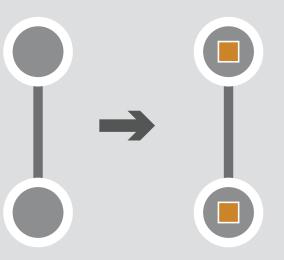




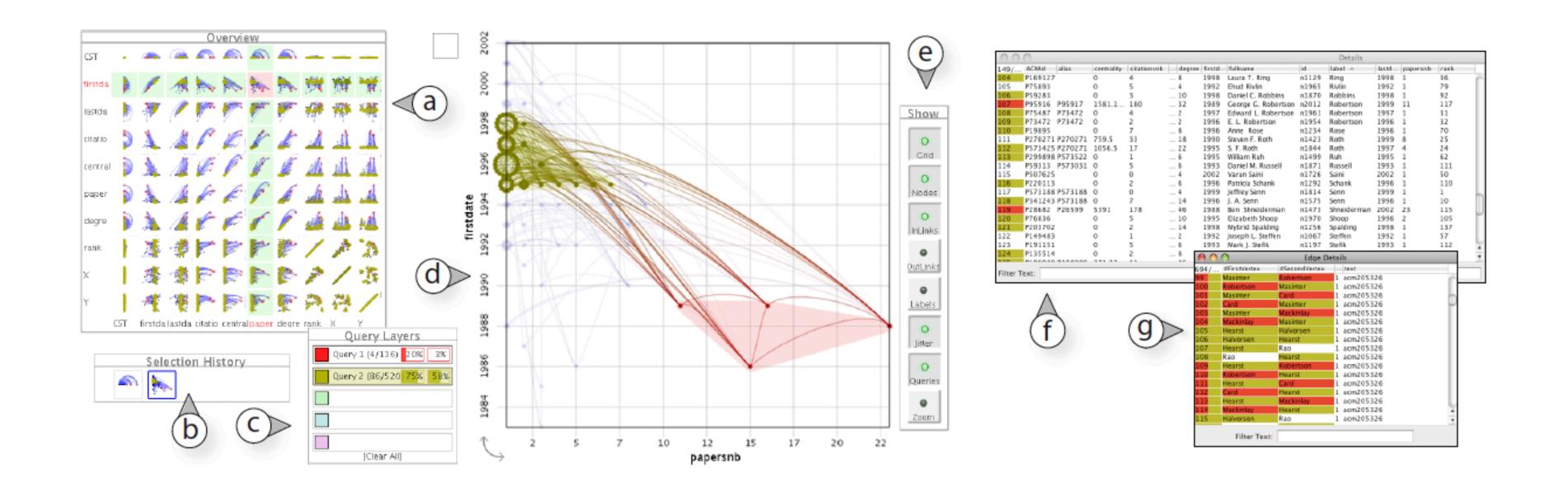
Juxtaposed

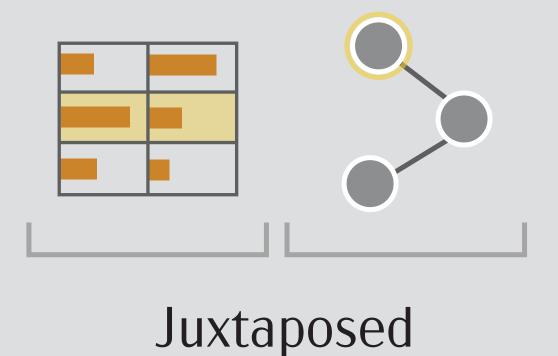


Querying and Filtering



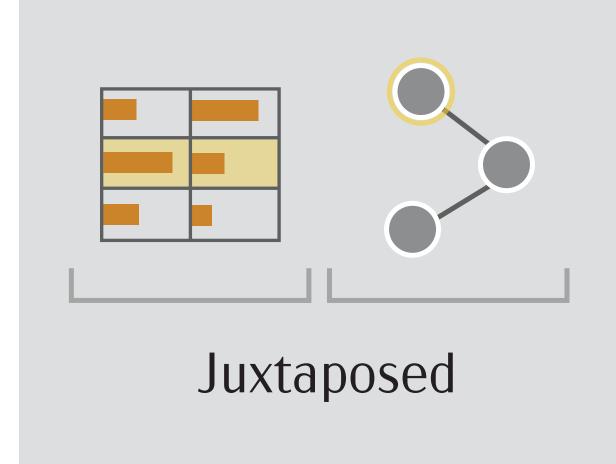
Deriving New Attributes





Graph Dice Bezerianos et al. 2010

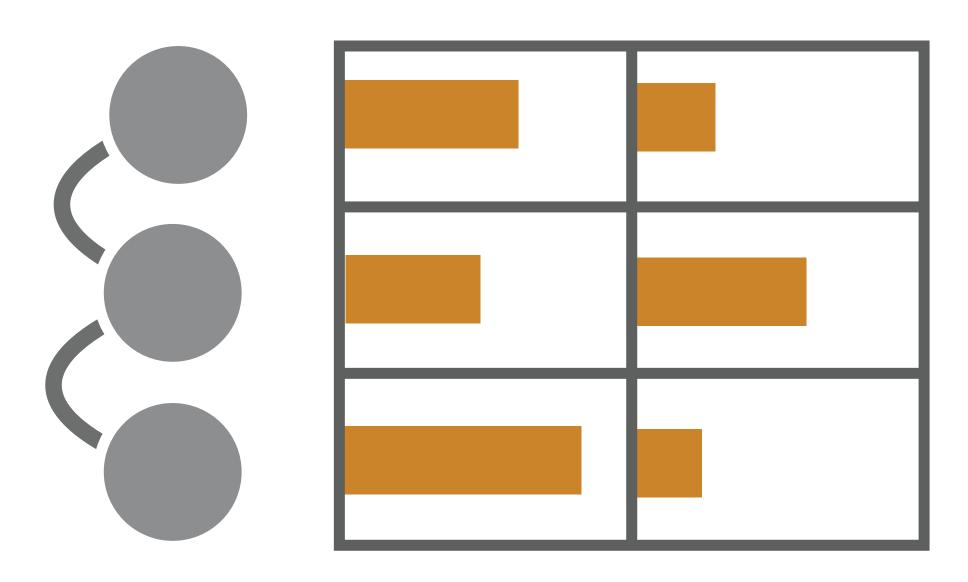
Independent views can optimize for topology and attribute independently.

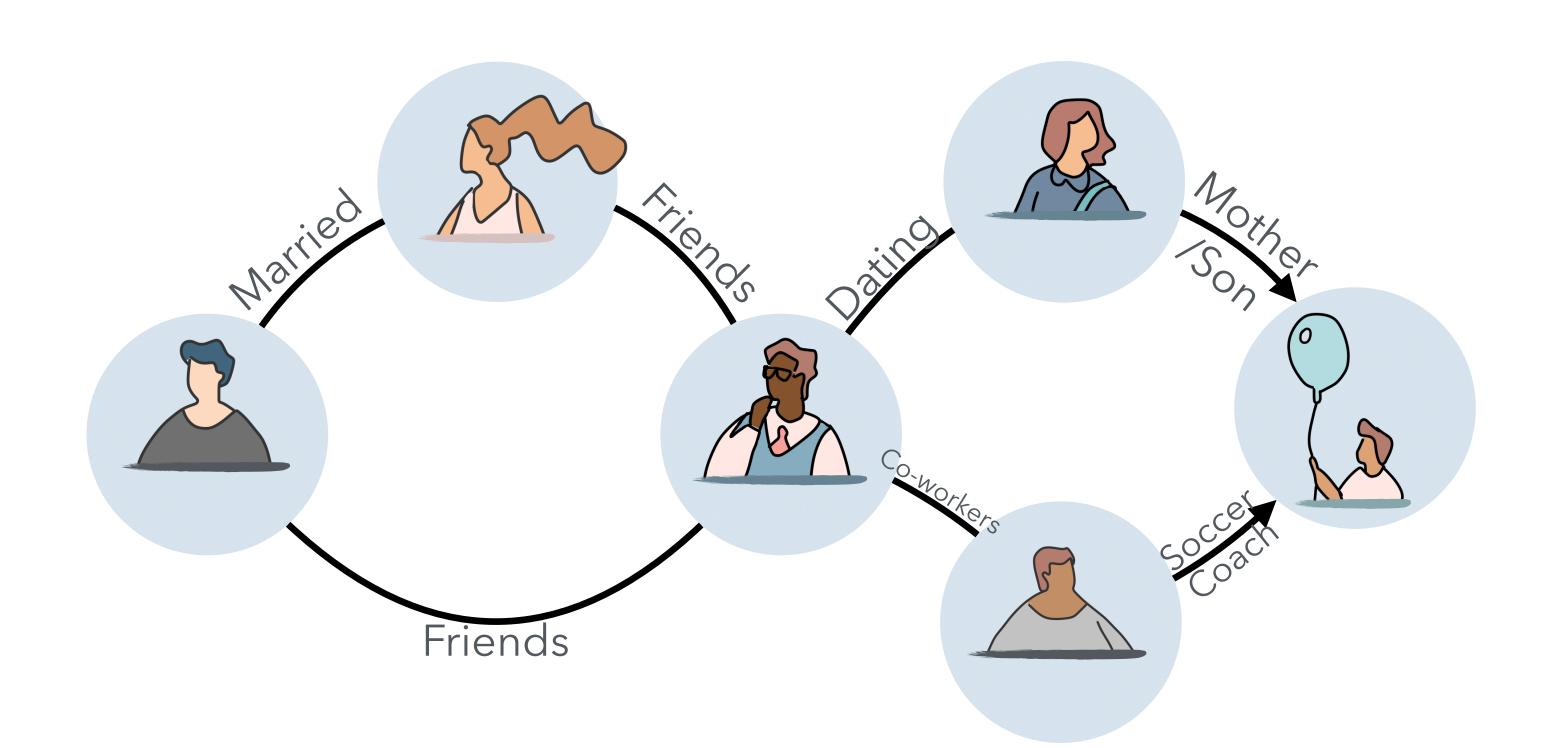


Not great for tasks on topological structures beyond a single node or edge.

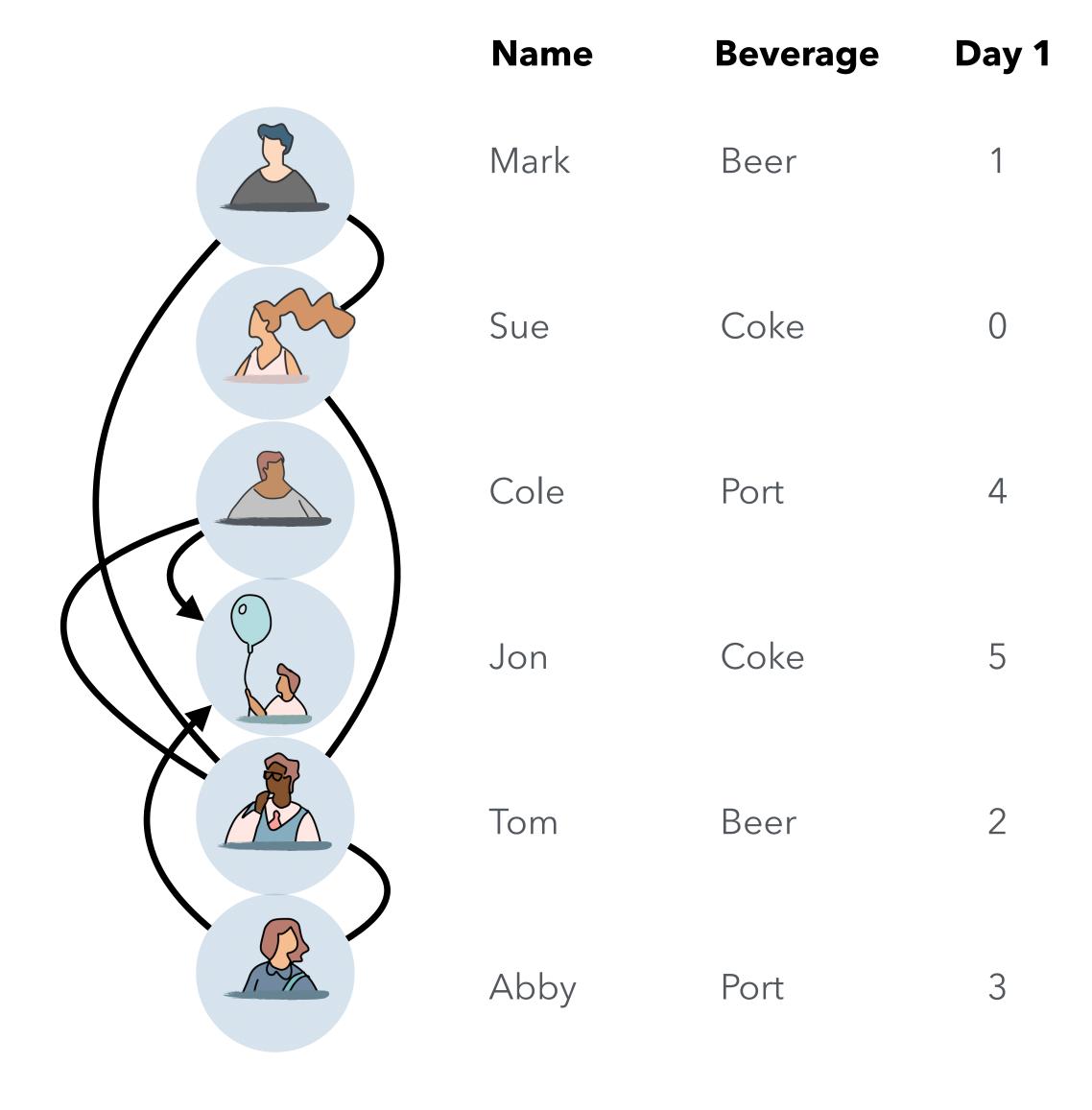
Recommended for large networks and/or very large numbers or heterogeneous types of node and link attributes

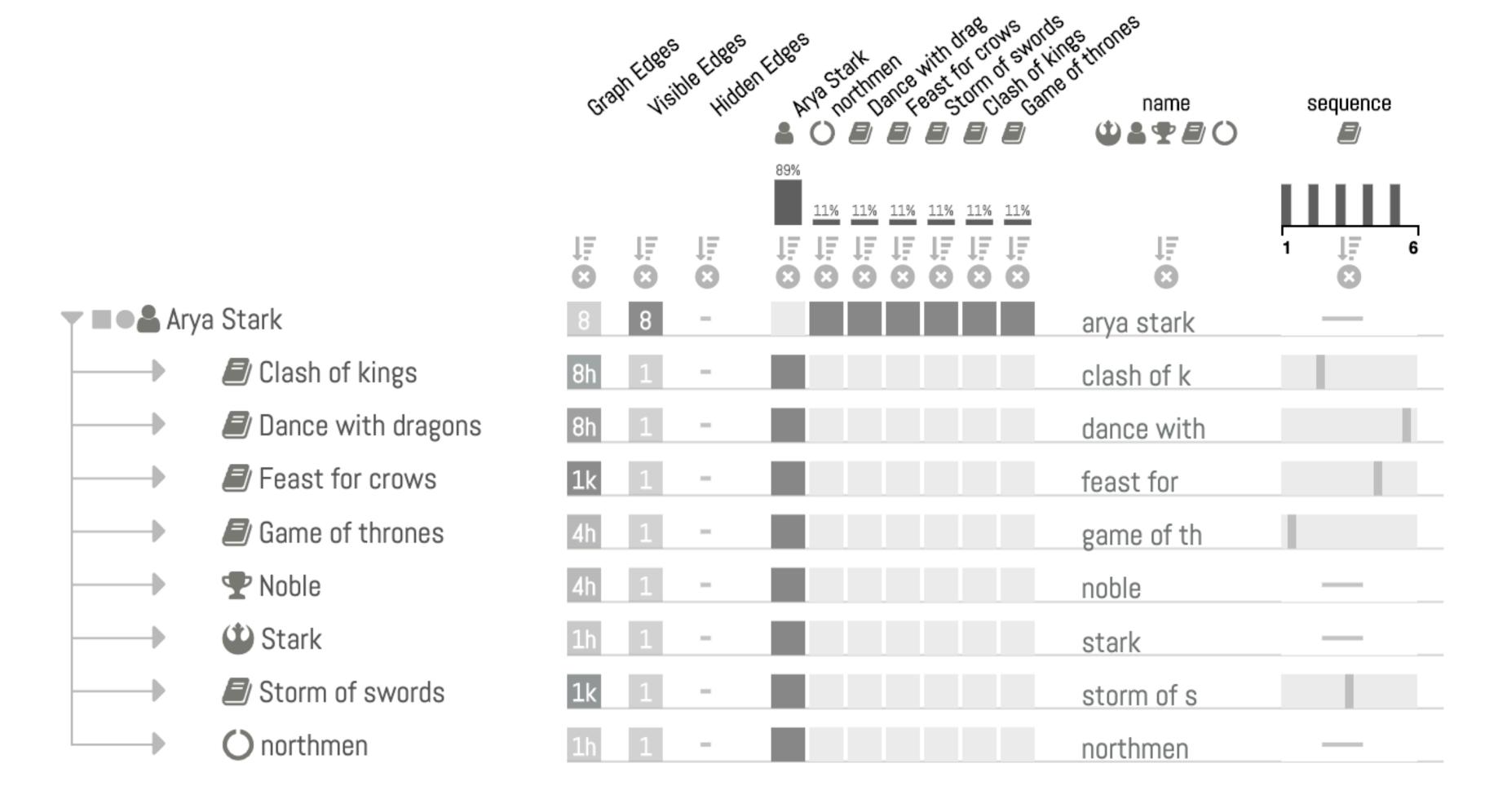
Integrated

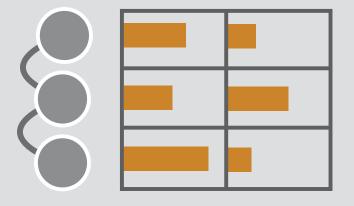




Name	Beverage	Day 1
Mark	Beer	1
Sue	Coke	0
Cole	Port	4
Jon	Coke	5
Tom	Beer	2
Abby	Port	3

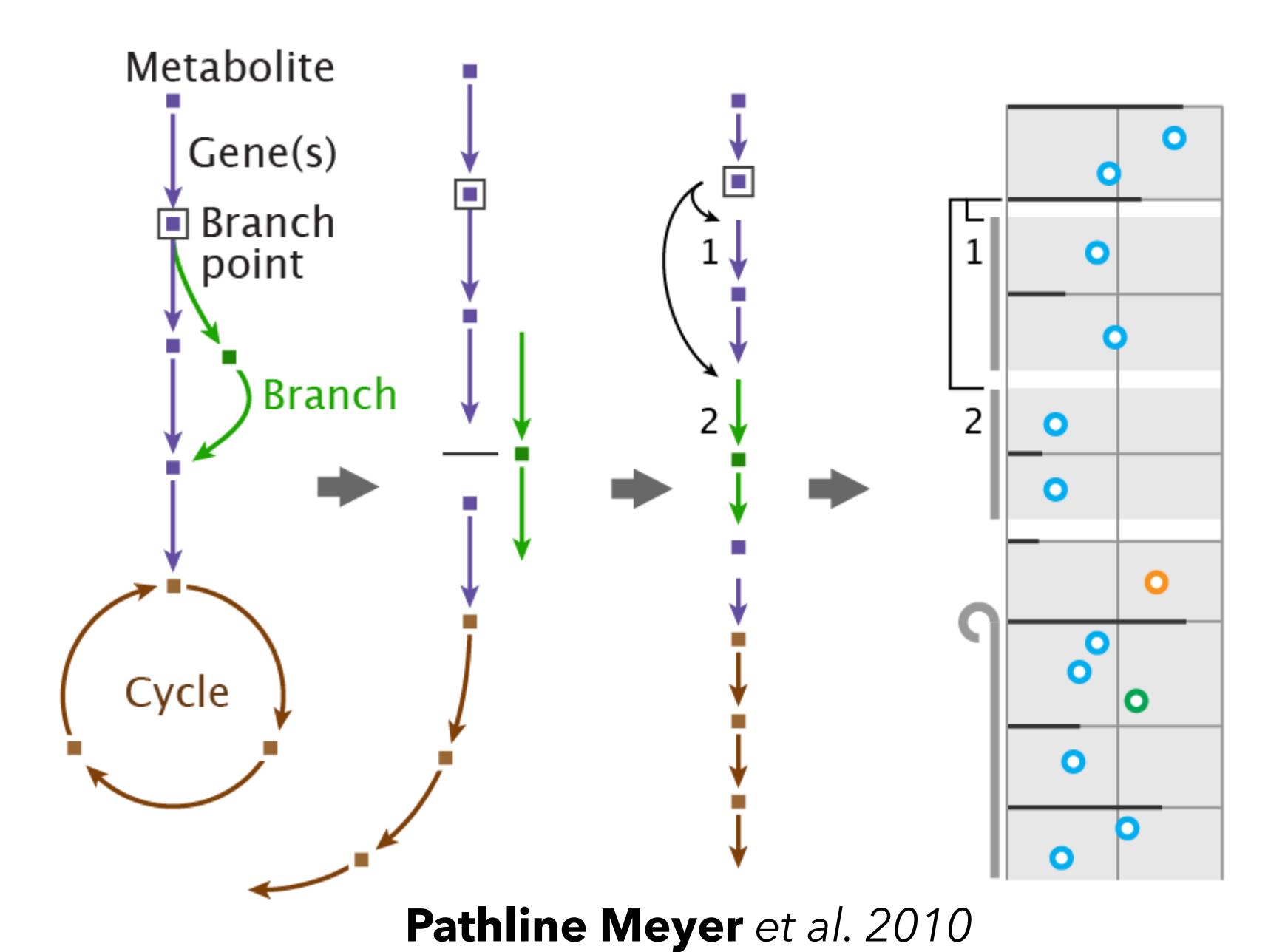


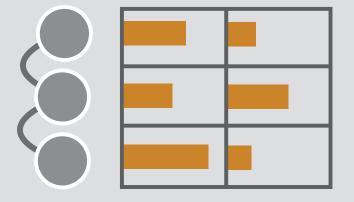




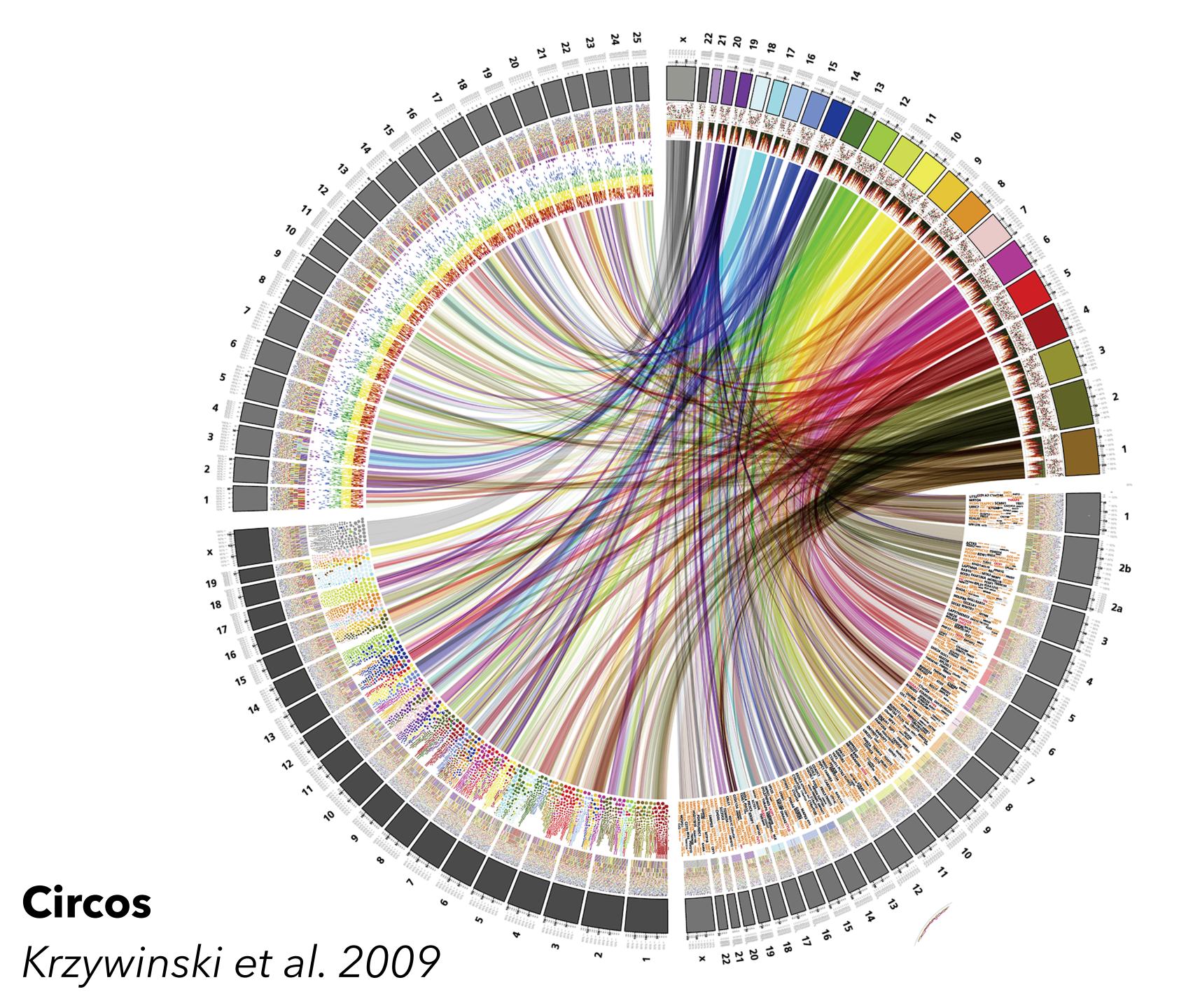
Integrated

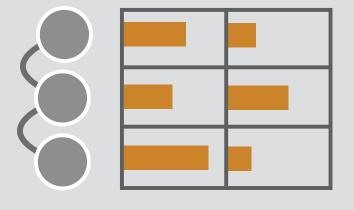
Juniper Nobre et al. 2018





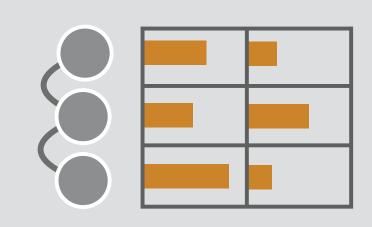
Integrated





Integrated

good at integrating attributes with topology, if the topology can be represented in a linear layout.

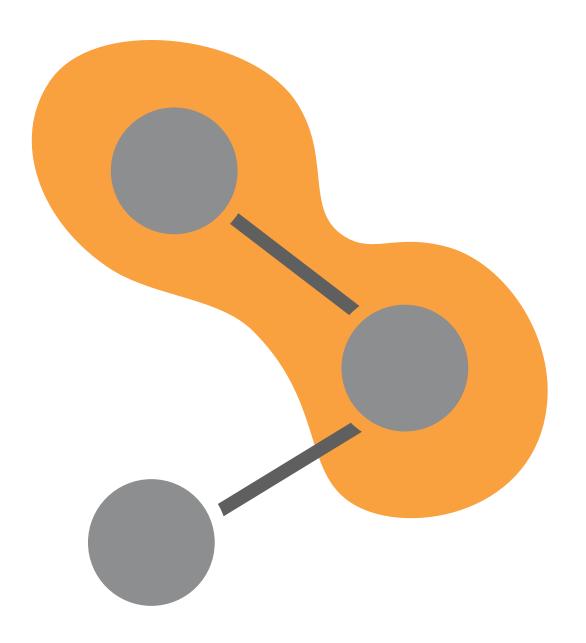


Integrated

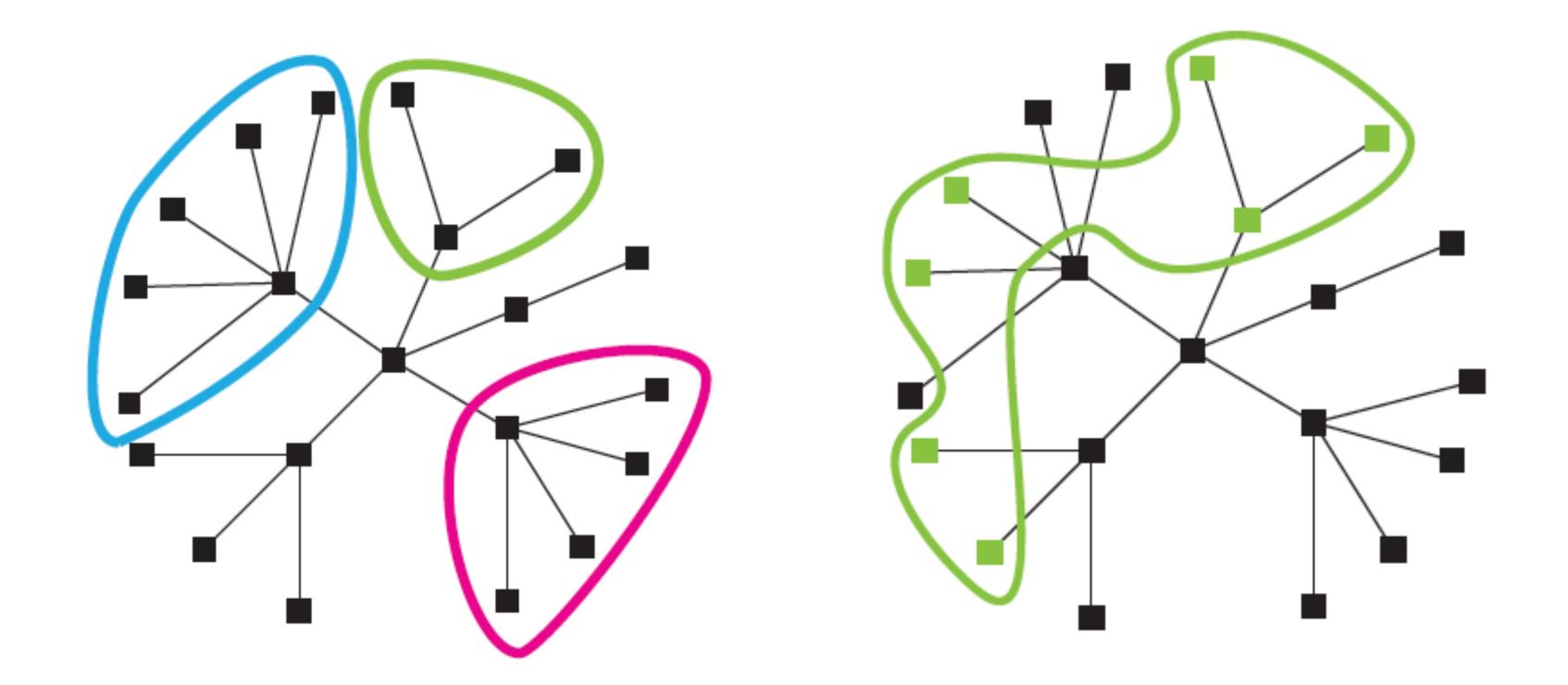
Not suitable for networks that can not be sensibly linearized.

Recommended for networks with several, heterogenous, node attributes and well suited for tasks on single nodes, neighbors, and paths

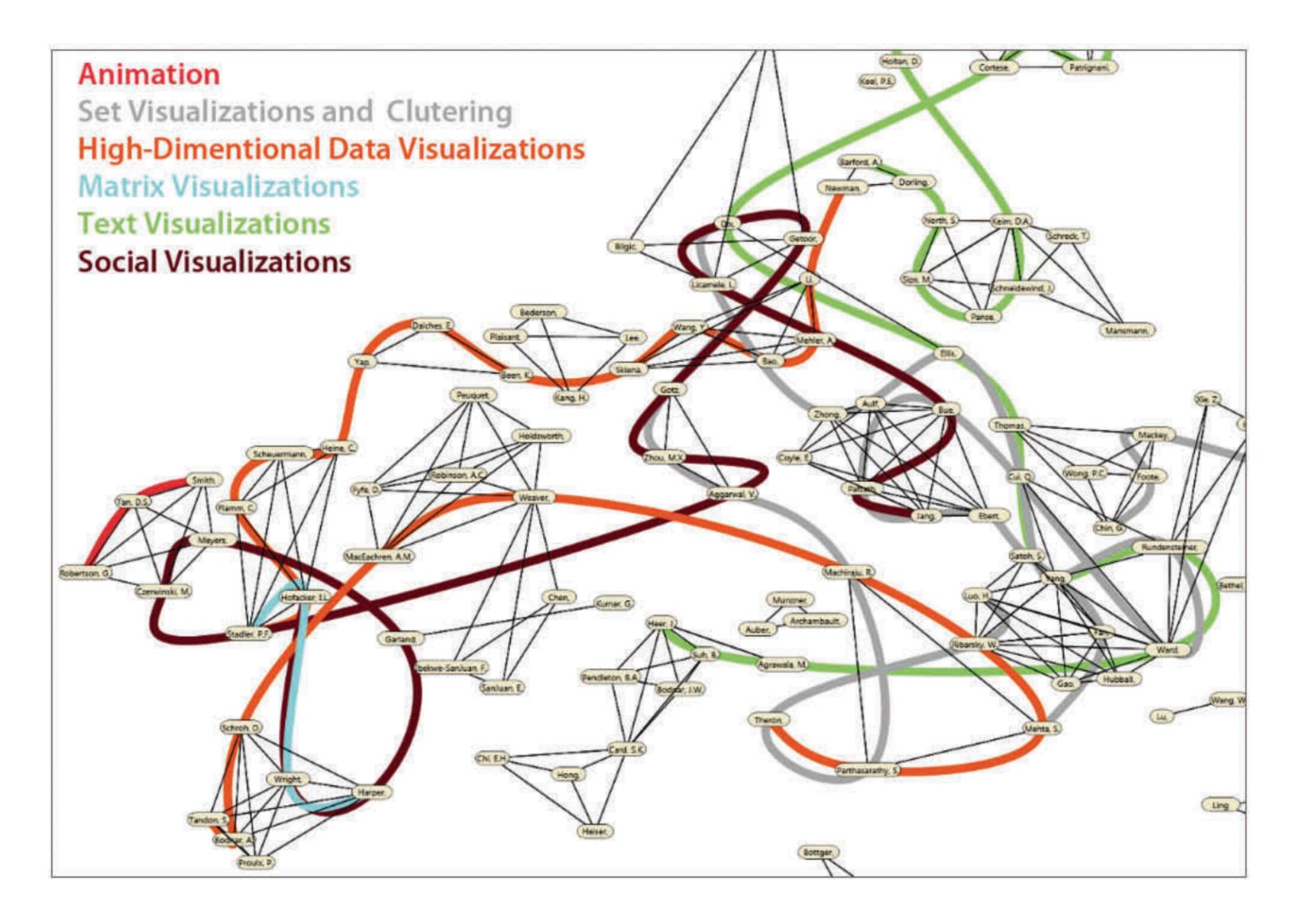
Overloaded



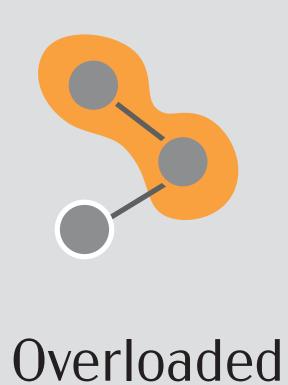
GMaps Gansner et al. 2010

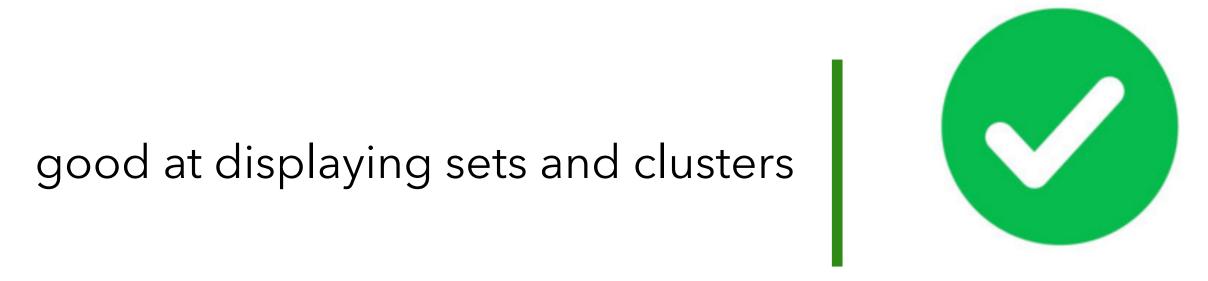


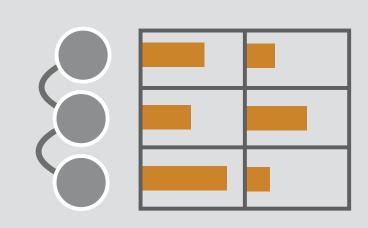
Bubble Sets Collins et al. 2009



LineSets Alper et al. 2011





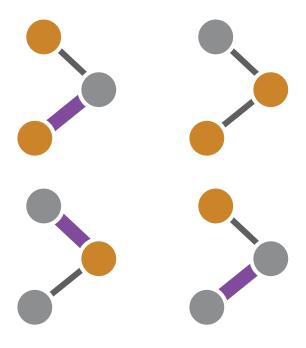


Integrated

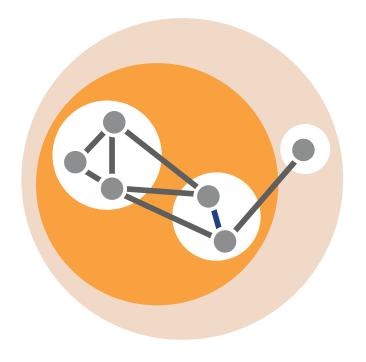
Not suitable for displaying more than one or two attributes at a time.

Recommended for recommend overloading for the particular use case of visualizing set-memberships or clusters on top of node-link diagrams

Layout Operations

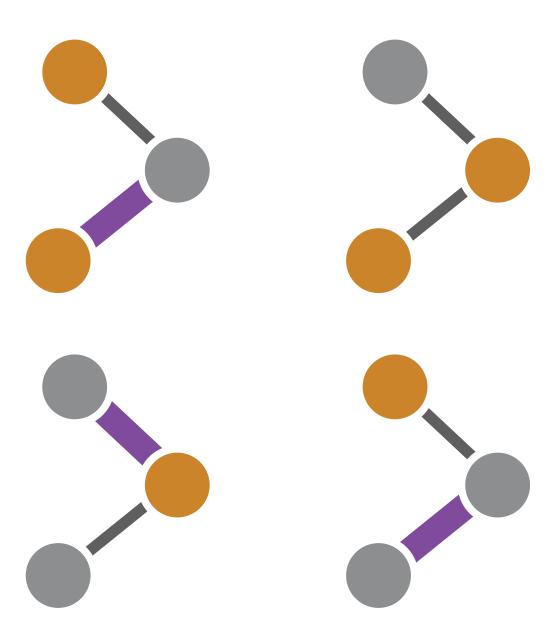


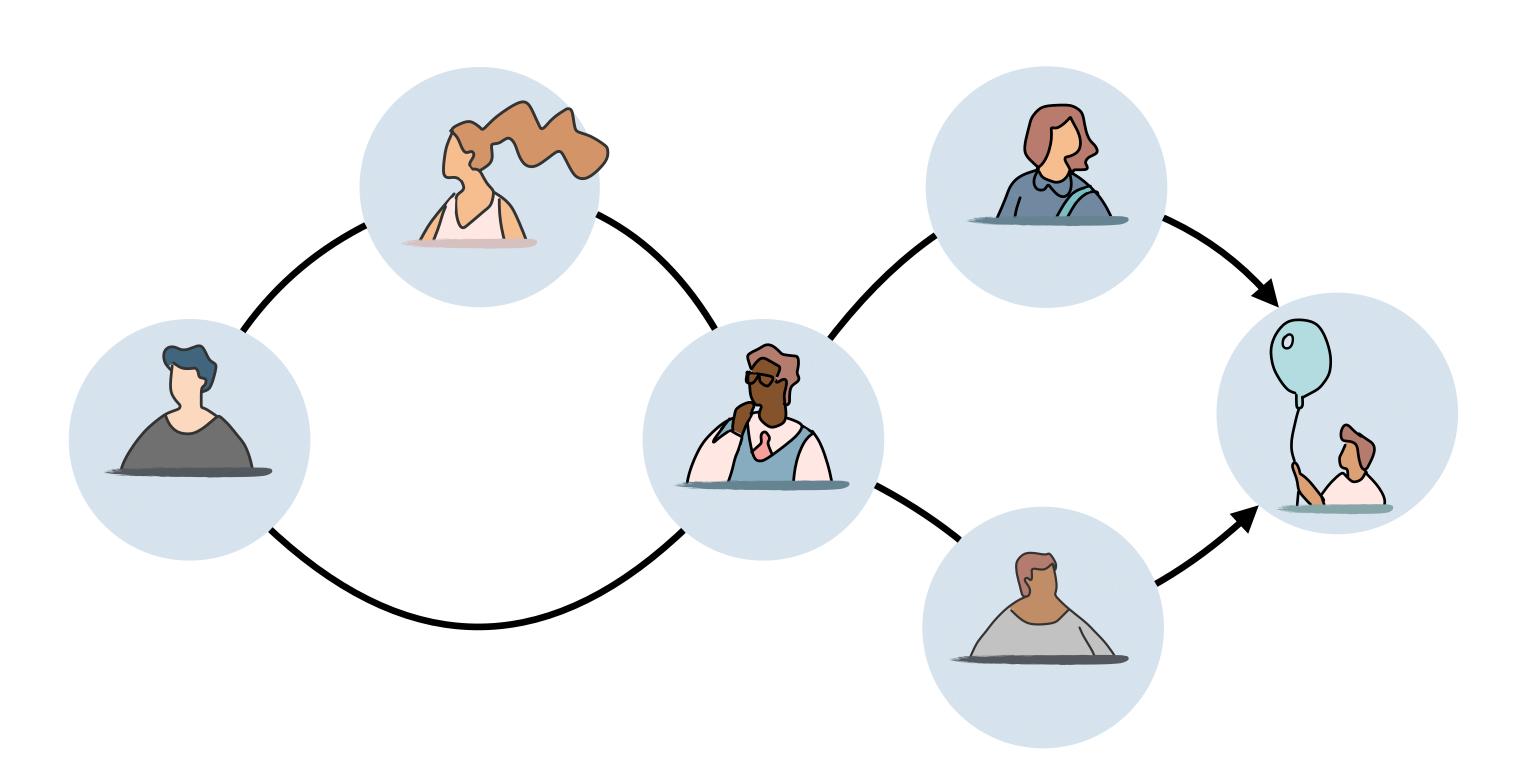
Small Multiples

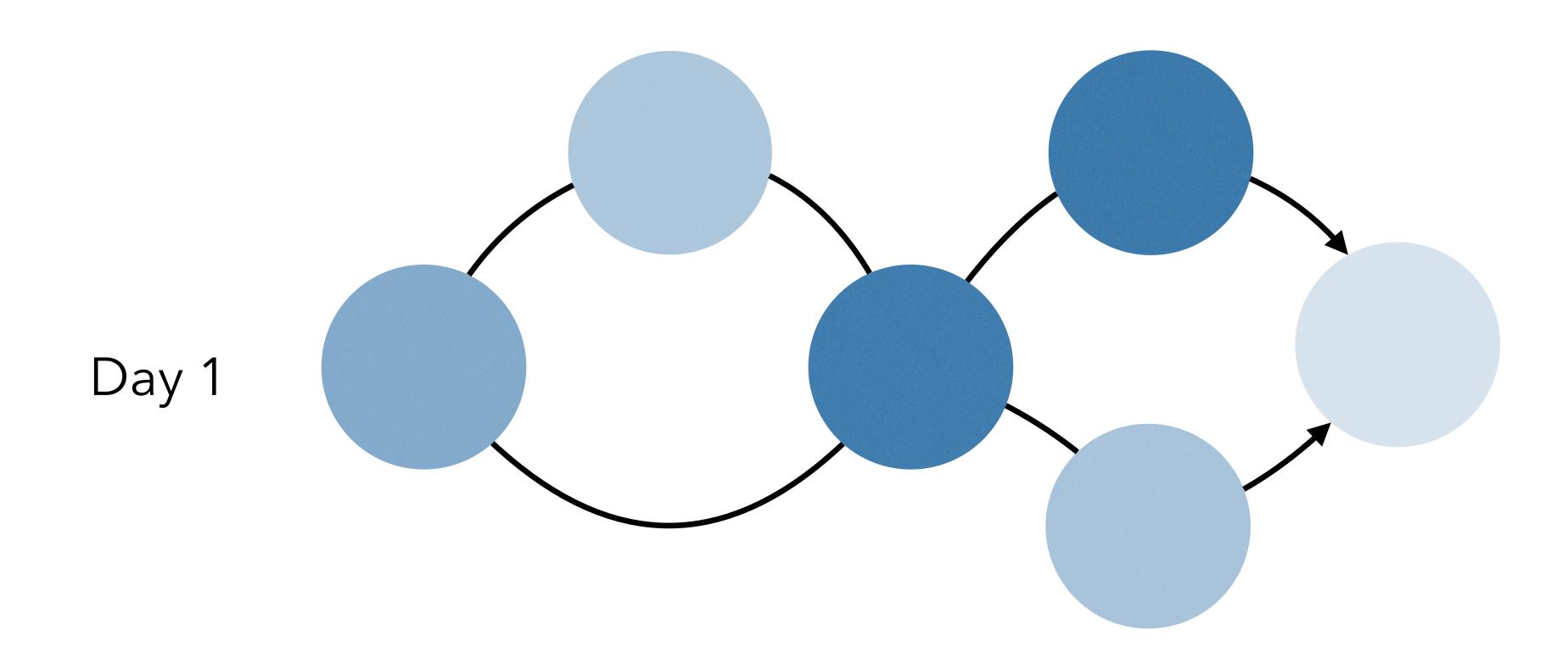


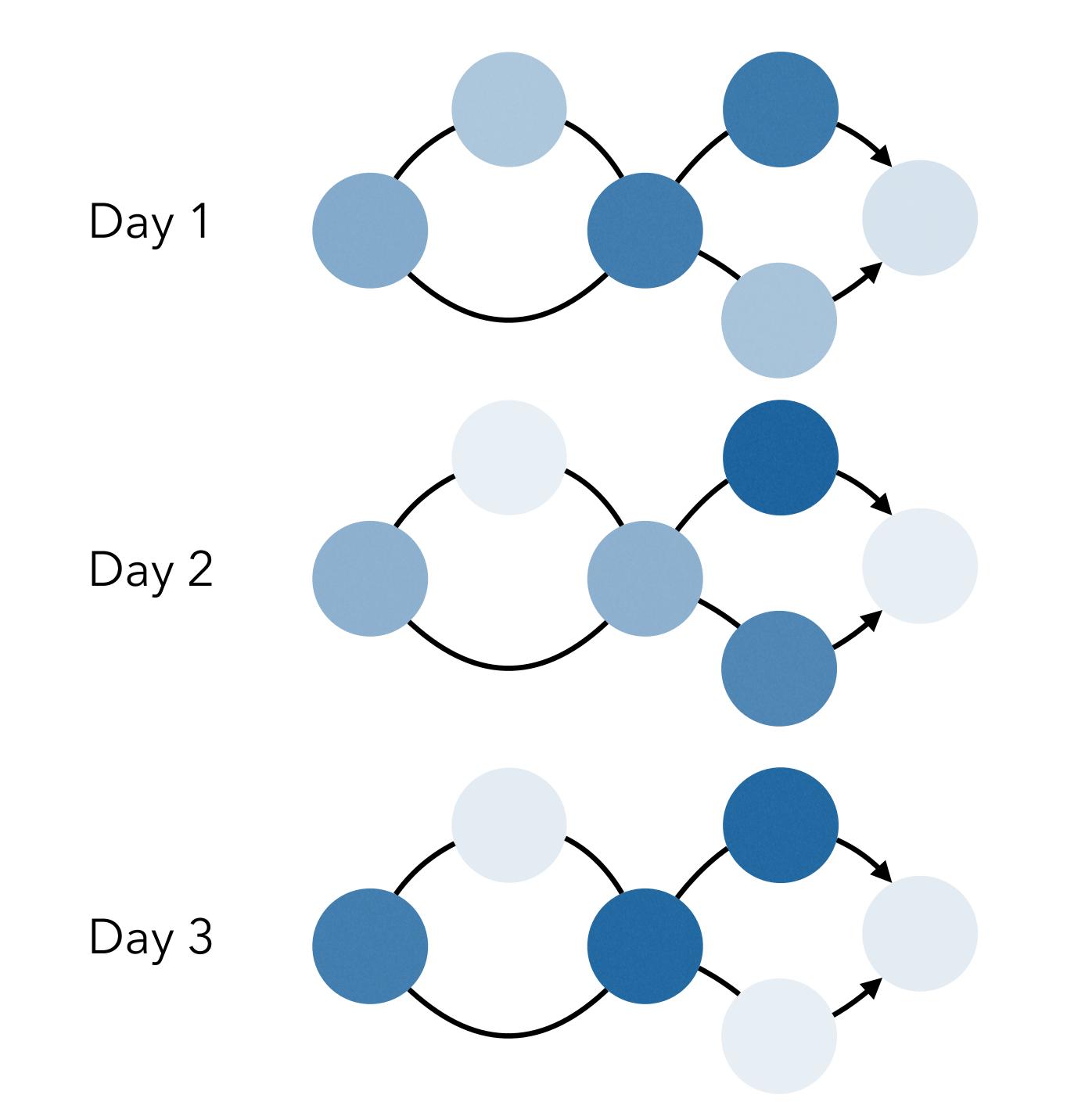
Hybrids

Small Multiples

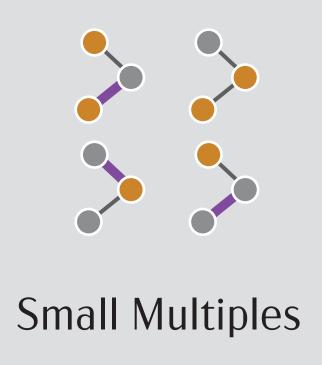


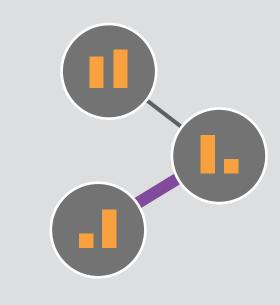






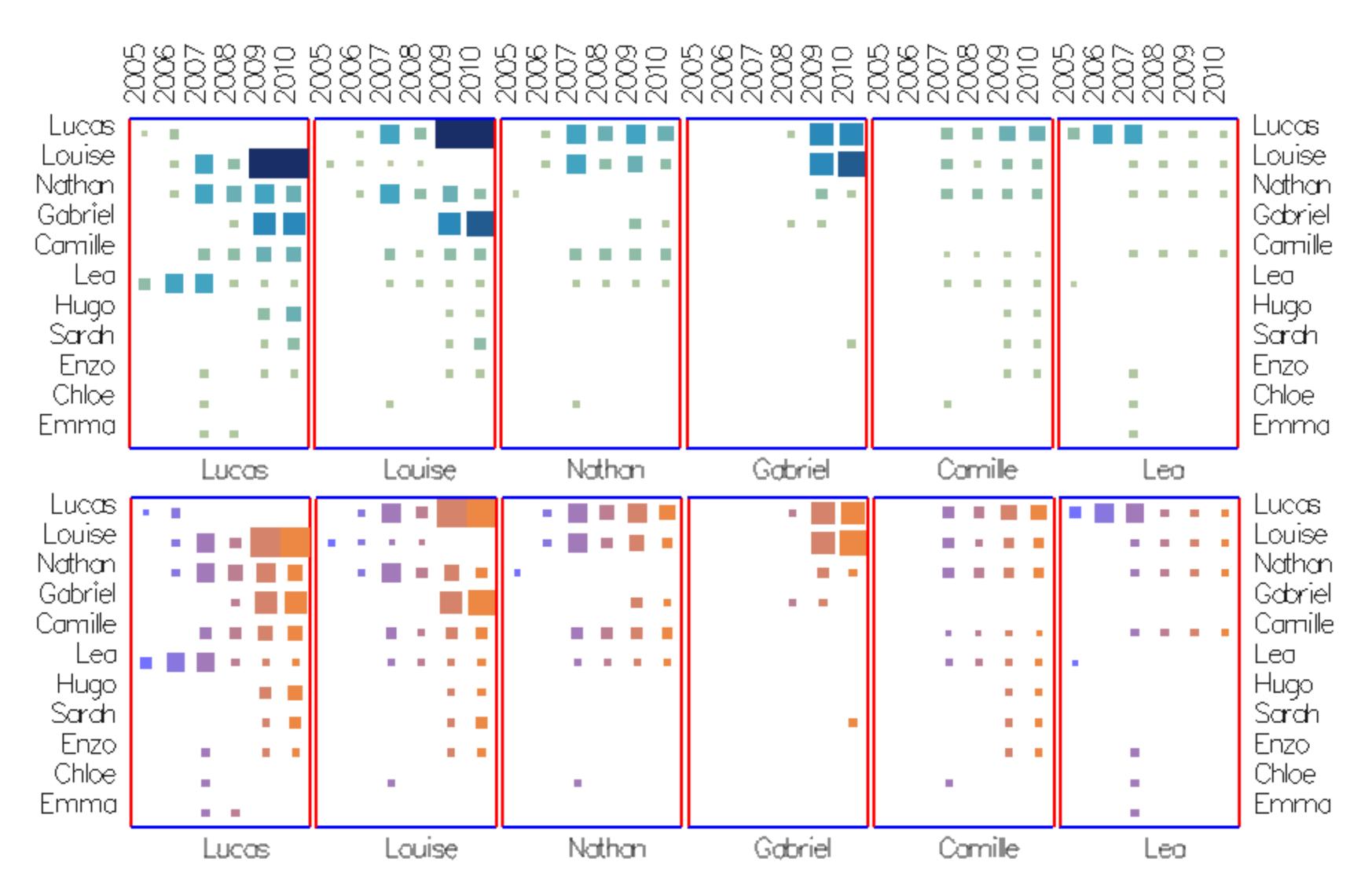




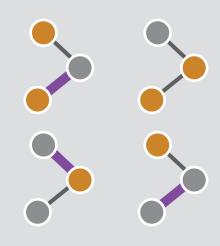


On-Node / On-Edge Encoding

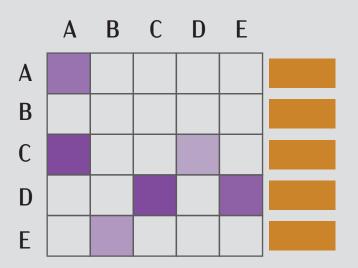
Peakspotting - https://truth-and-beauty.net/projects/peakspotting



Bach et al. 2014



Small Multiples



Adjacency Matrix

Common layout facilitates attribute comparisons in specific topological features



Recommended for small networks where the tasks are focused on attribute comparison

Multivariate Network Visualization Techniques

A companion website for the STAR Report on Multivariate Network Visualization Techniques.

TECHNIQUES WIZARD HOME

About

This is a companion website for a review article on multivariate network visualization techniques.

Multivariate networks are networks where both the structure of the network and the attributes of the nodes and edges matter. It turns out, these are very common. Every person in a social network, for example, has both, relationships and lot the school they went to, or the city they live with the school they went to, show both, these attributes and the shockure using these values attributes and the shockure ties are very common. Every person in a social other characteristics, such as their large, and the shockure ties are very common. Every person in a social other characteristics, such as their large, and the shockure ties are very common. Every person in a social other characteristics, such as their large, and the shockure ties are very common. Every person in a social other characteristics, such as their large, and the shockure ties are very common. Every person in a social other characteristics, such as their large, and the shockure ties are very common. Every person in a social other characteristics, such as their large, and the shockure ties are very common. Every person in a social other characteristics, such as their large, and the shockure ties are very common. Every person in a social other characteristics, such as their large, and the shockure ties are very common. Every person in a social other characteristics, such as their large, and the shockure ties are very common. Every person in a social other characteristics, such as their large, and the shockure ties are very common. Every person in a social other characteristics, such as their large, and the shockure ties are very common. Every person in a social other characteristics, such as the shockure ties are very common. Every person in a social other characteristics, such as the shockure ties are very common. Every person in a social other characteristics, such as the shockure ties are very common. Every person in a social other characteristics, such as the shockure ties are very common. Every person in a social other characteristics, such as the shockure ties are very common. Every person in a social other characteristics are very common. Ever techniques, we can analyze, for example, if a network of friends predominantly went to the same high school.

The visualization research community has developed many techniques to visualize these kinds of networks, and our review article - and this website - are designed to help you sort through these options.

Browse through the techniques illustrated below, or use our wizard to find the right multivariate network visualization technique for your datasets and tasks!

Get in touch if you have questions or comments.

Use the Wizard

Technique recommendations to fit your needs!

Read the Review Article

The State of the Art in Visualizing Multivariate Networks

Carolina Nobre, Miriah Meyer, Marc Streit, and Alexander Lex To appear in Computer Graphics Forum (EuroVis 2019)