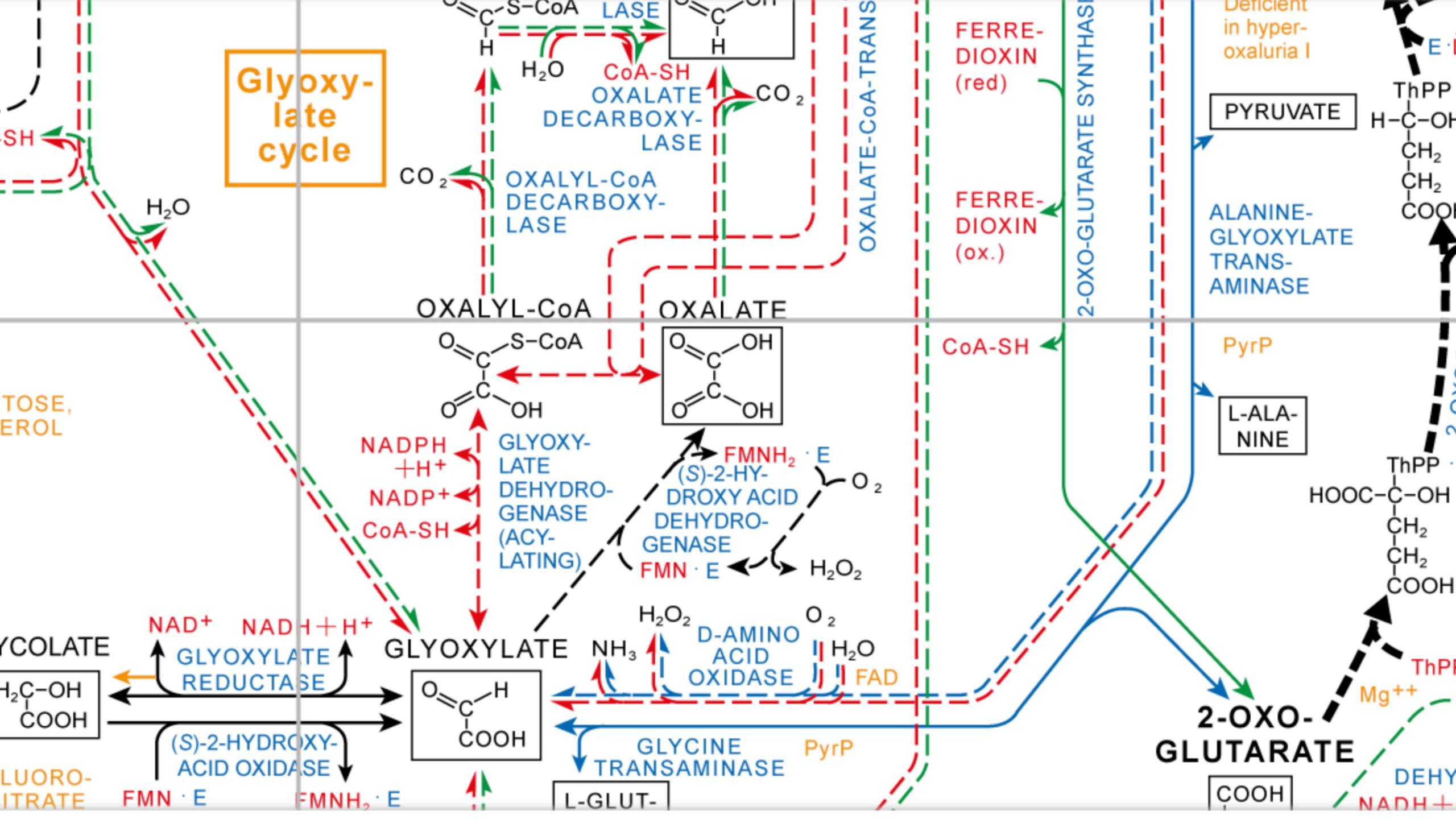
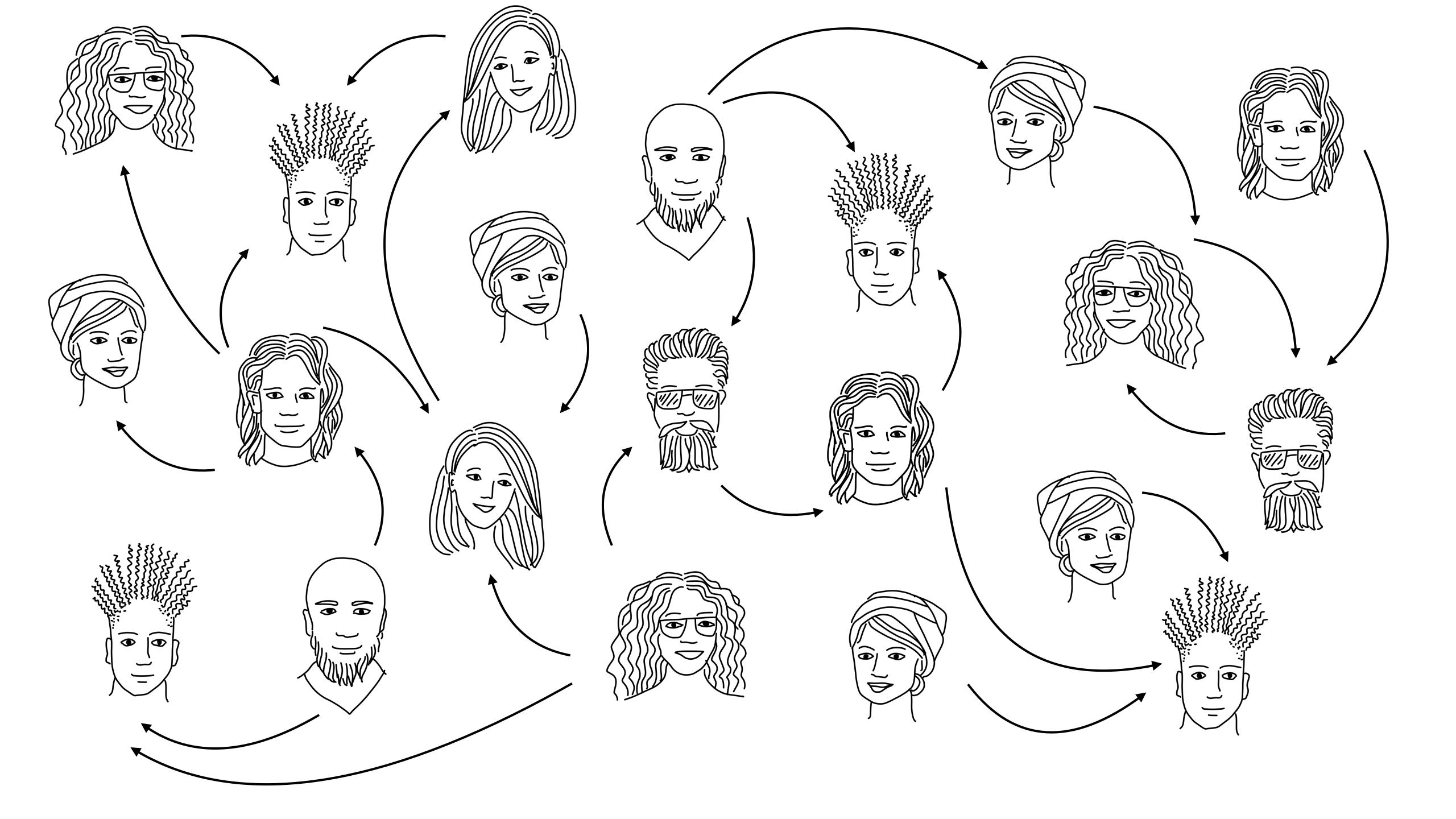
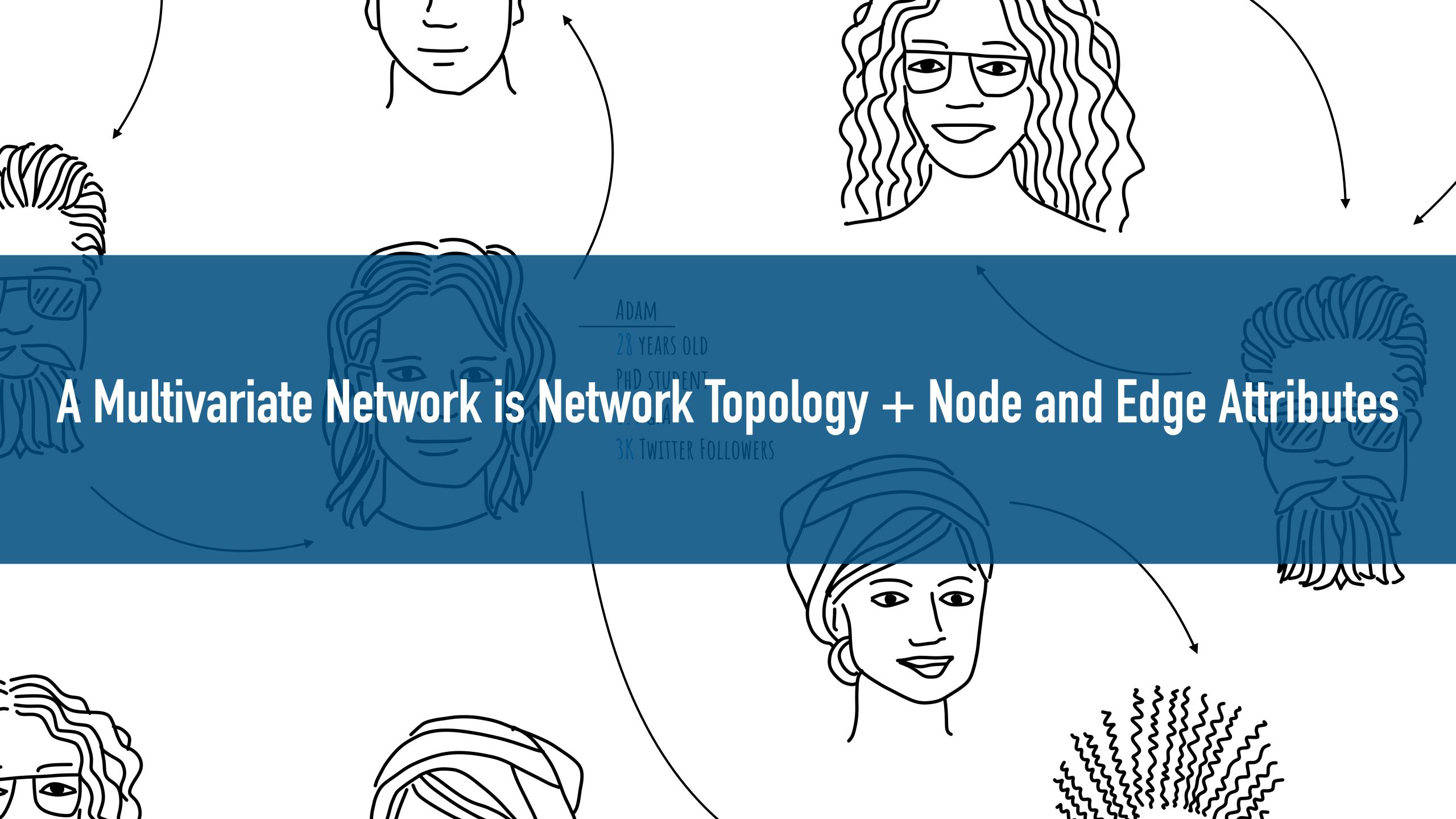
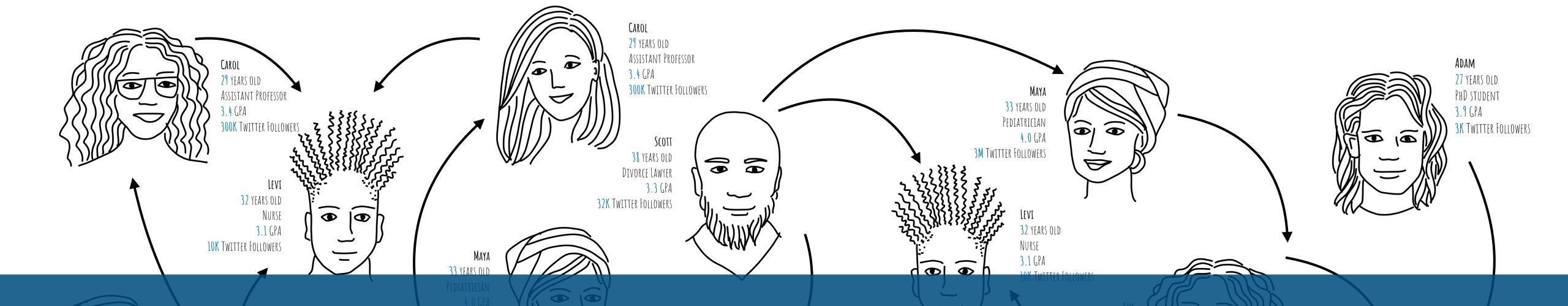
VISUALIZING MULTIVARIATE NETWORKS

Carolina Nobre



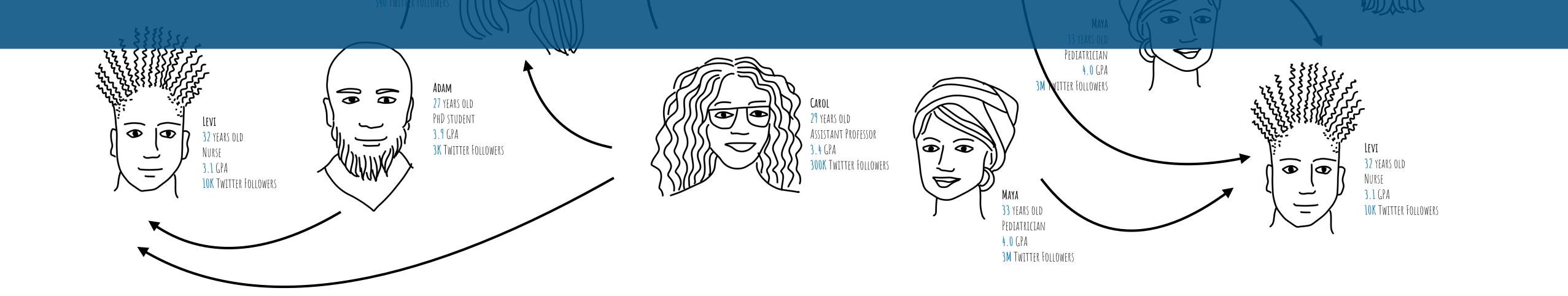






Tradeoff between Topology and Attributes

Choosing efficient encodings for one aspect often interferes with the ability to effectively visualize the other.



SURVEYED 205 PAPERS FROM 1991 – 2018

Technique Papers, Evaluation Papers, Application Papers

The State of the Art in Visualizing Multivariate Networks

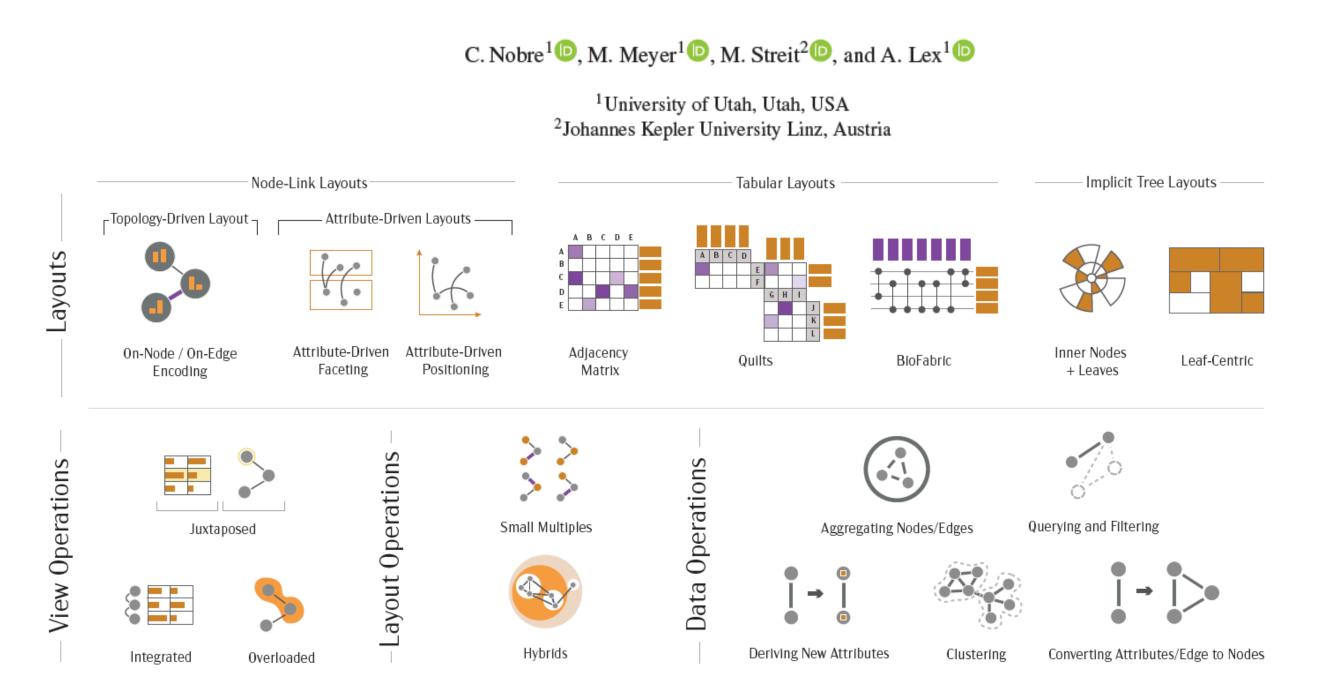
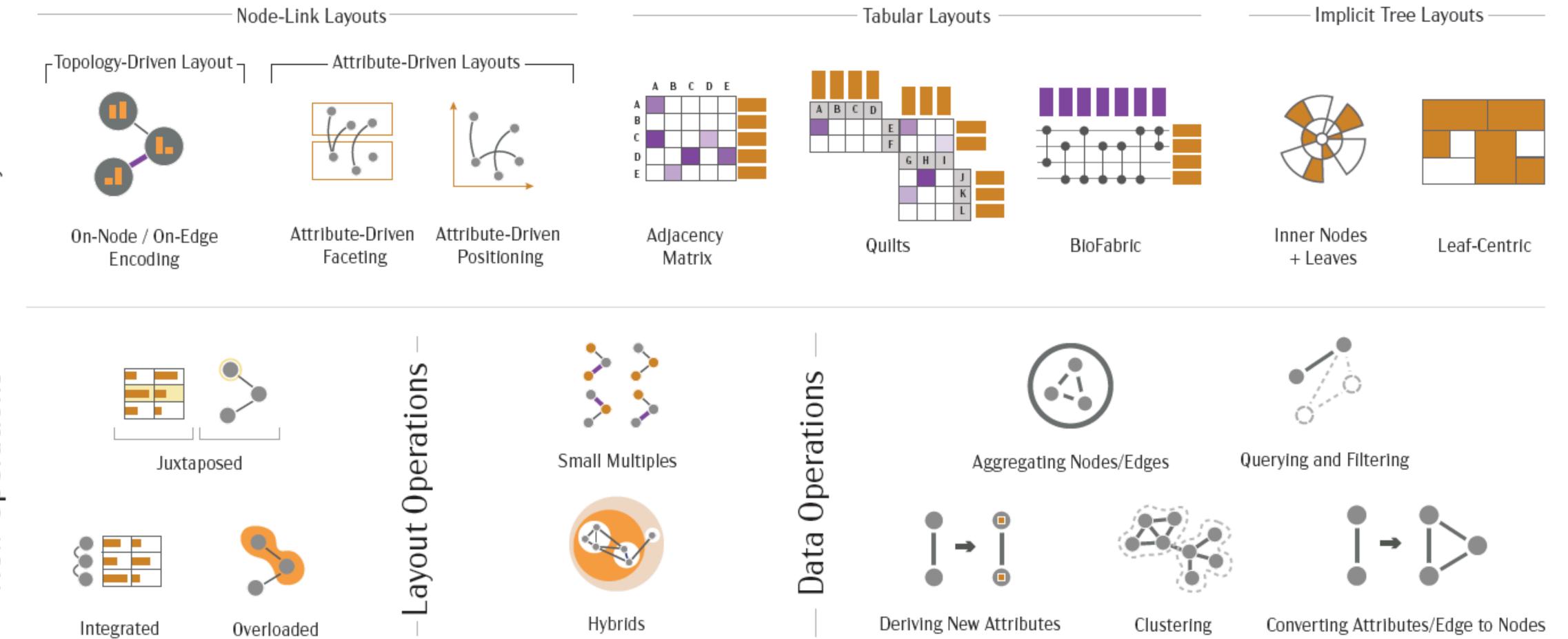


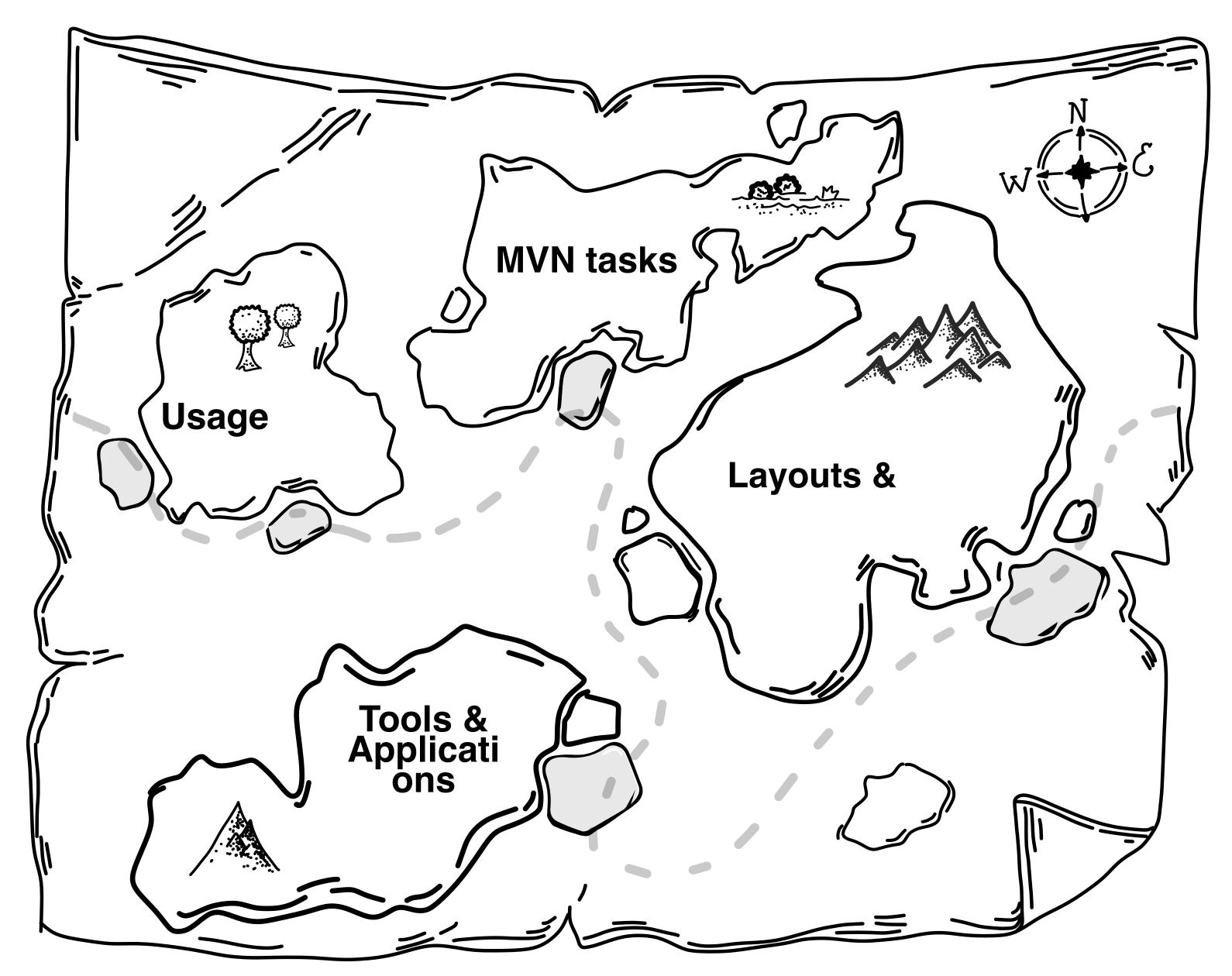
Figure 1: A typology of operations and layouts used in multivariate network visualization. Layouts describe the fundamental choices for encoding multivariate networks. View Operations capture how topology and attribute focused visualizations can be combined. Layout Operations are applied to basic layouts to create specific visualization techniques. Data Operations are used to transform a network or derive attributes before visualizations. The colors reflect node attributes (orange), edge attributes (purple), and topology (grey).

Abstract

Multivariate networks are made up of nodes and their relationships (links), but also data about those nodes and links as attributes. Most real-world networks are associated with several attributes, and many analysis tasks depend on analyzing both, relationships and attributes. Visualization of multivariate networks, however, is challenging, especially when both the topology of the network and the attributes need to be considered concurrently. In this state-of-the-art report, we analyze current practices and classify techniques along four axes: layouts, view operations, layout operations, and data operations. We also provide an analysis of tasks specific to multivariate networks and give recommendations for which technique to use in which scenario. Finally, we survey application areas and evaluation methodologies.



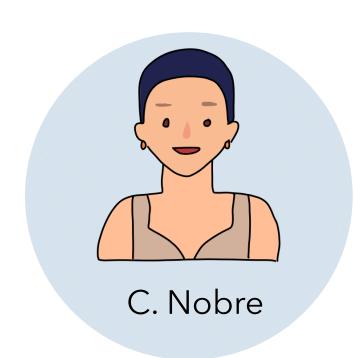
Land of Multivariate

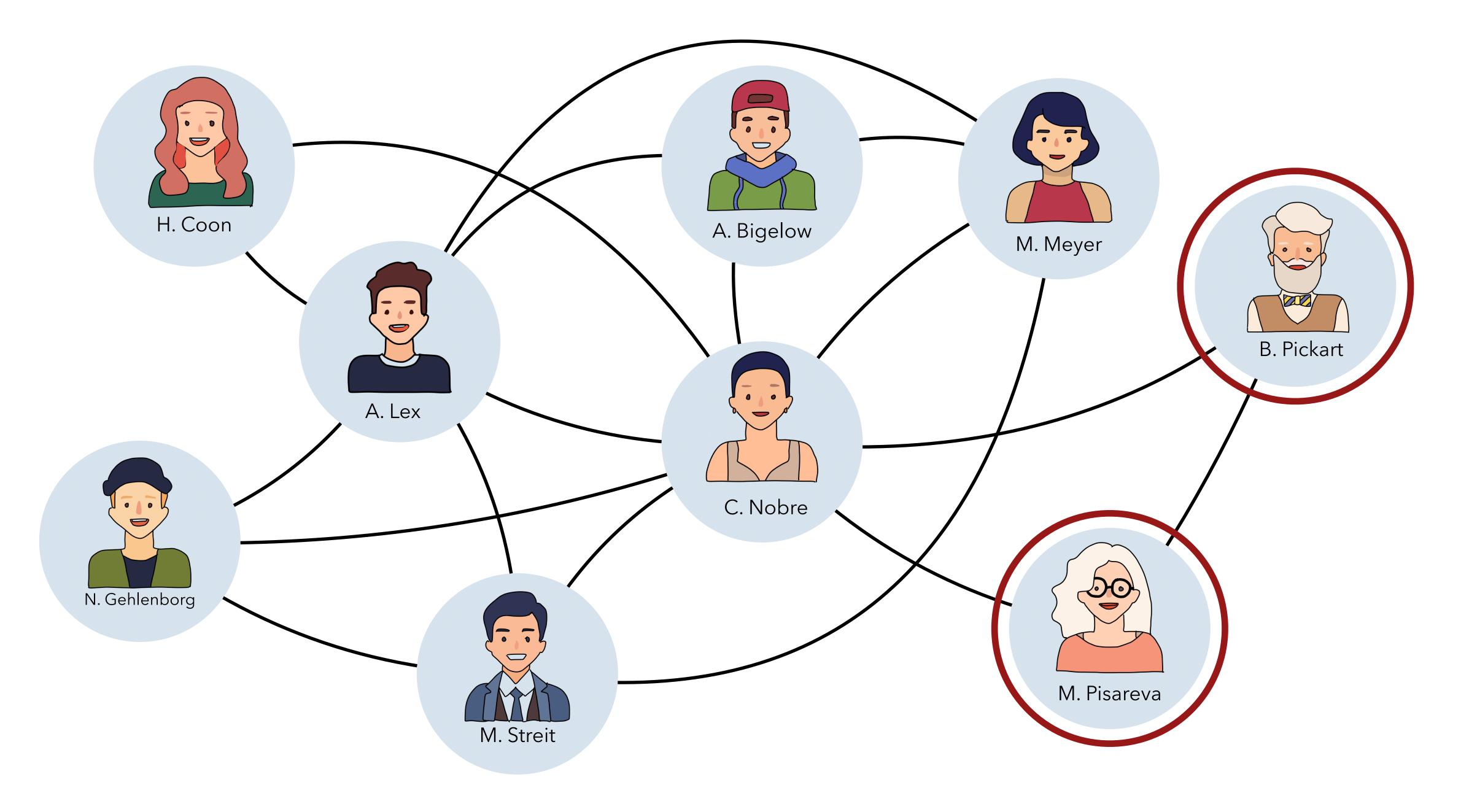


MVNV Tasks

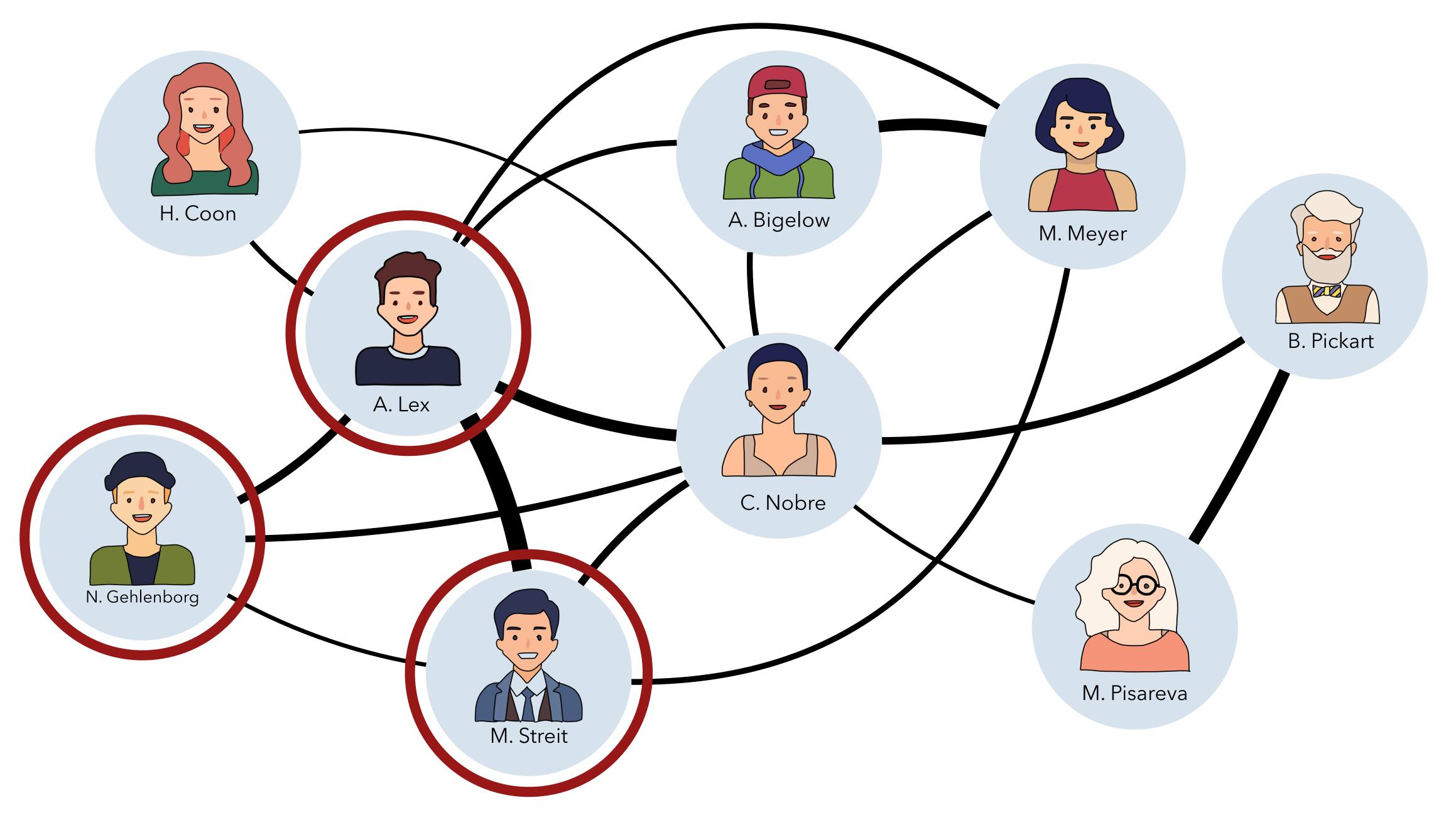
How is an MVN task different than a regular graph task?

MVN Tasks rely on both the topology of the network and the attributes of the nodes and edges

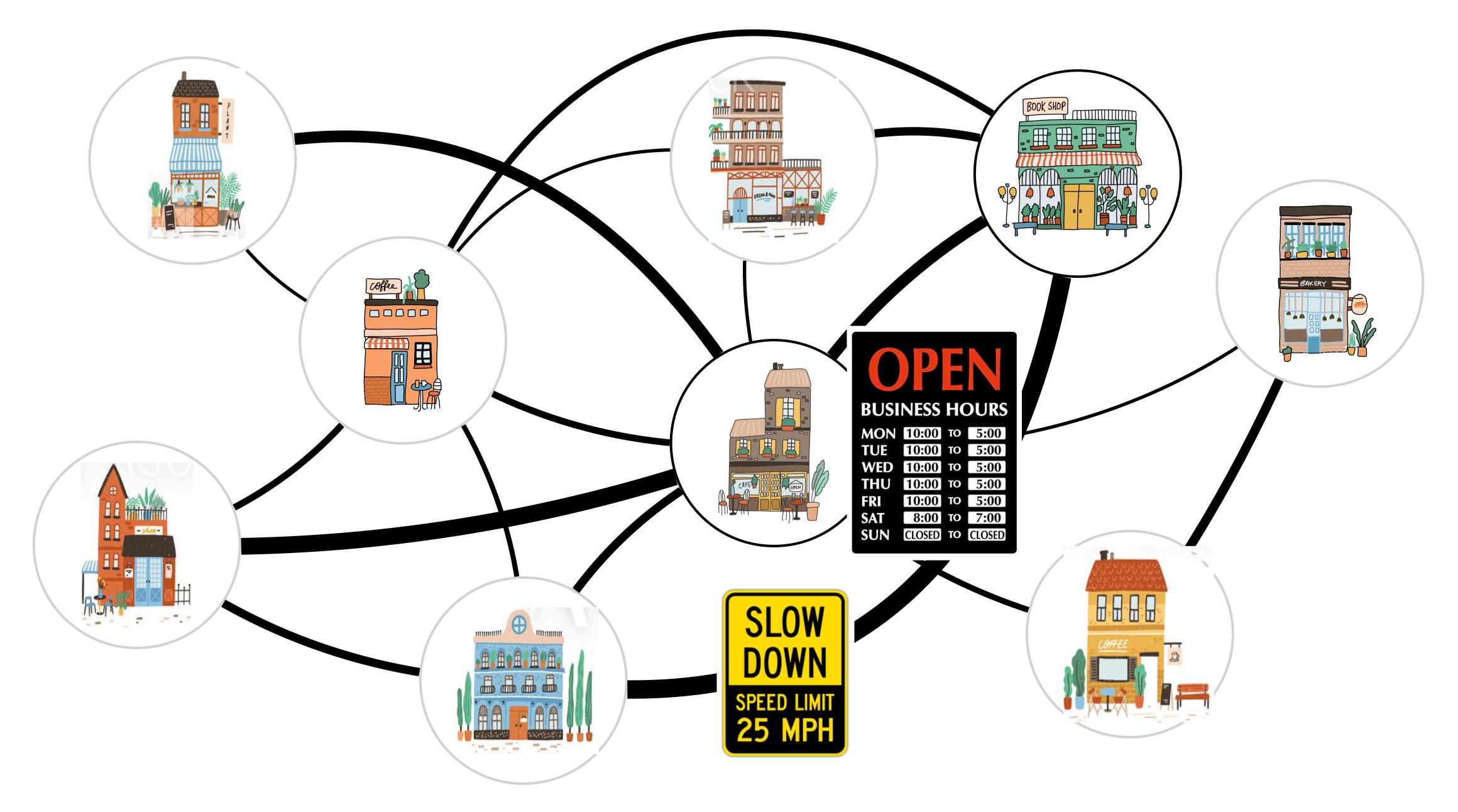




How many of my collaborators are from the oceanography field?



Which cluster of authors has the highest number of combined collaborations?

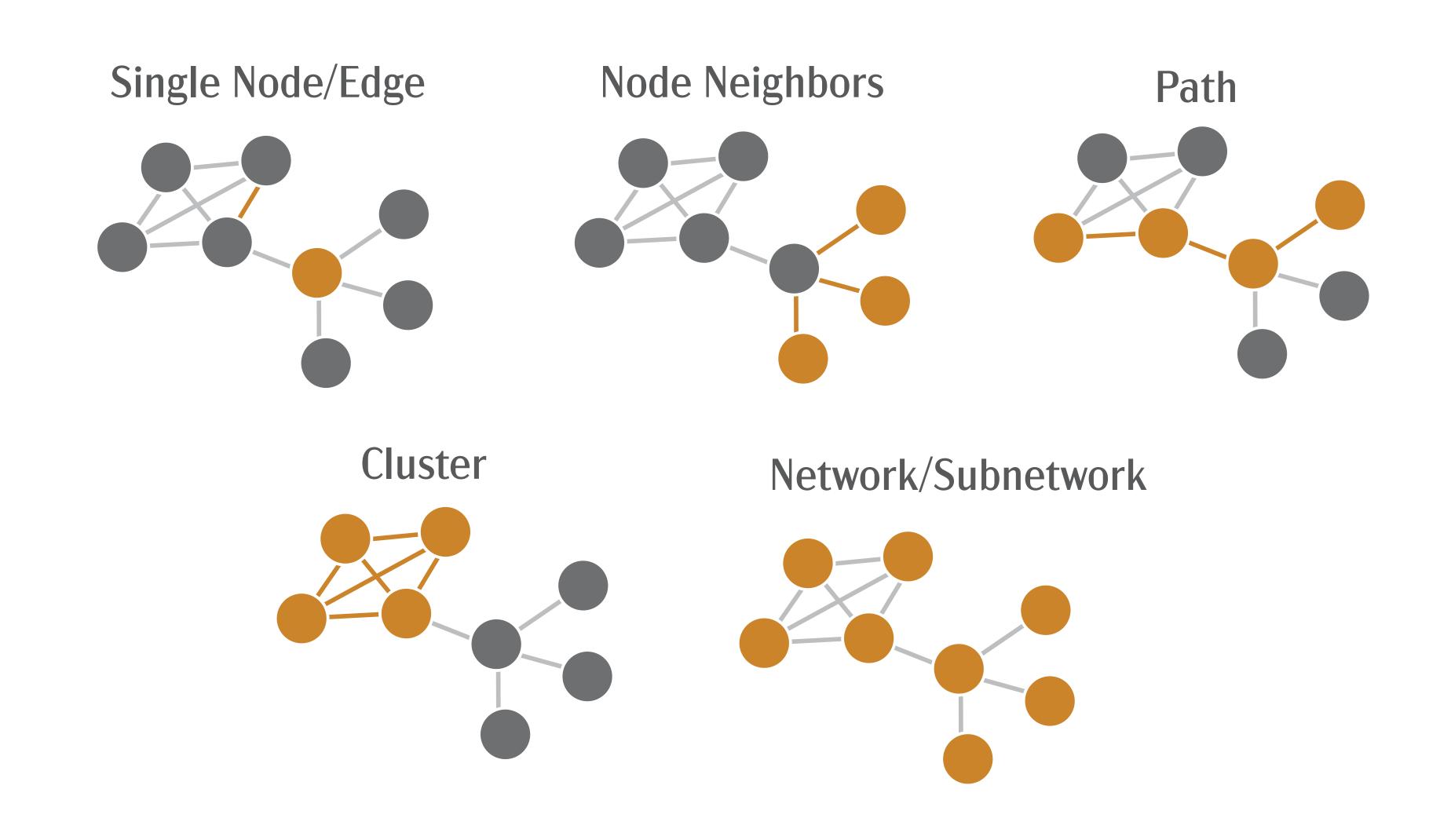


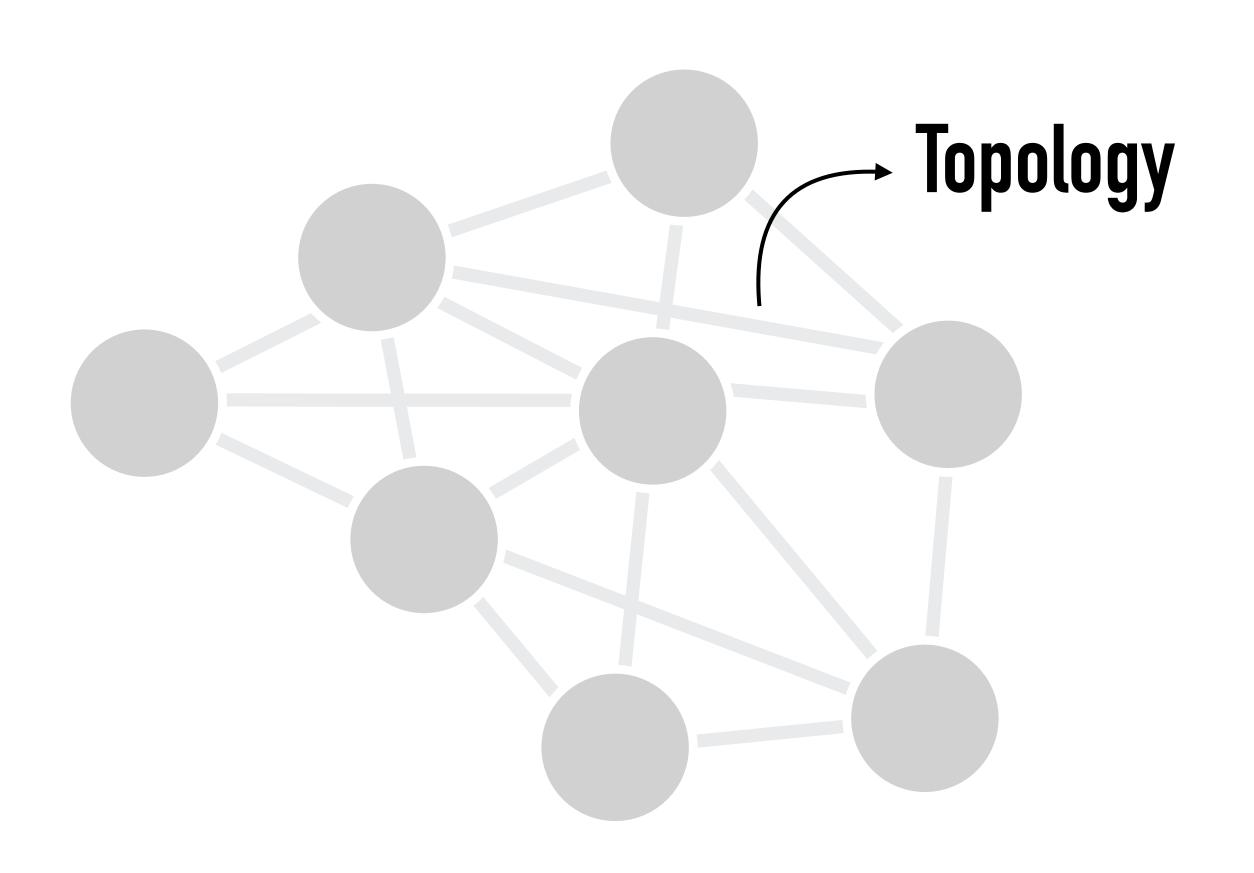
What is an efficient way I can complete all my errands?

- How many of my collaborators are in the oceanography field?
- Which cluster has the highest number of collaborations?
- Nhat is the fastest route to get all my errands done?

Tasks that rely on the topology of the network and the attributes of the nodes and edges

MVNV tasks are applied to topological structures





NAME: MAYA

AGE: 23

NATIONALITY: BRAZILIAN

GPA: 3.8

FRIENDS 3 YEARS

NAME: MAYA AGE: 23 NATIONALITY: BRAZILIAN GPA: 3.8 FRIENDS 3 YEARS DEGREE: 4

NAME: PEDRO

AGE: 25

NATIONALITY: BRAZILIAN

GPA: 3.3

DEGREE: 3

BRAZILIANS

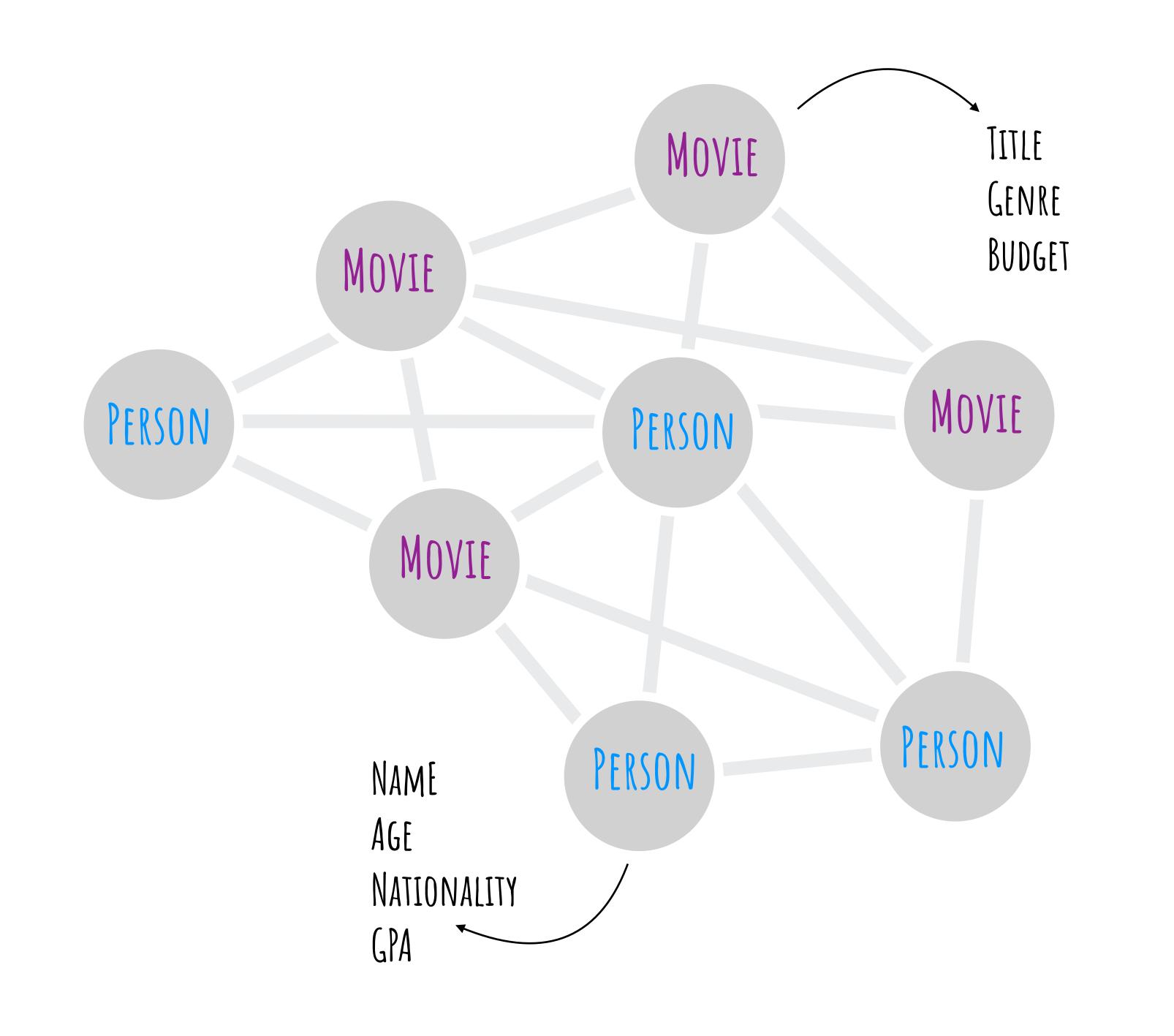
NAME: MAYA

AGE: 23

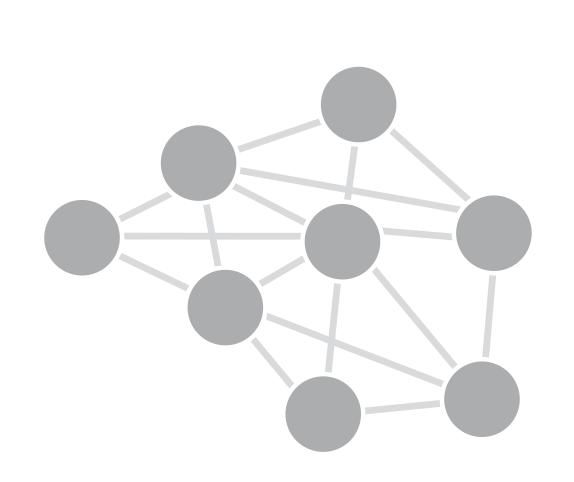
NATIONALITY: BRAZILIAN

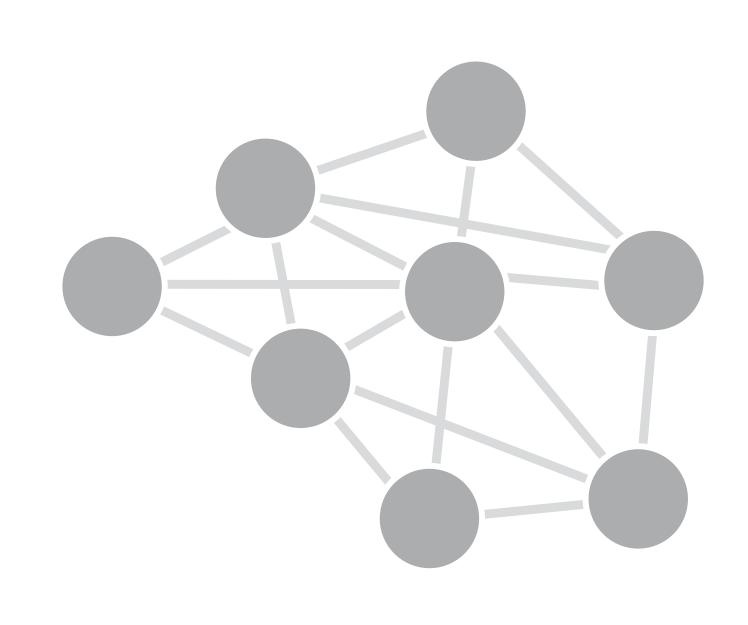
GPA: 3.8

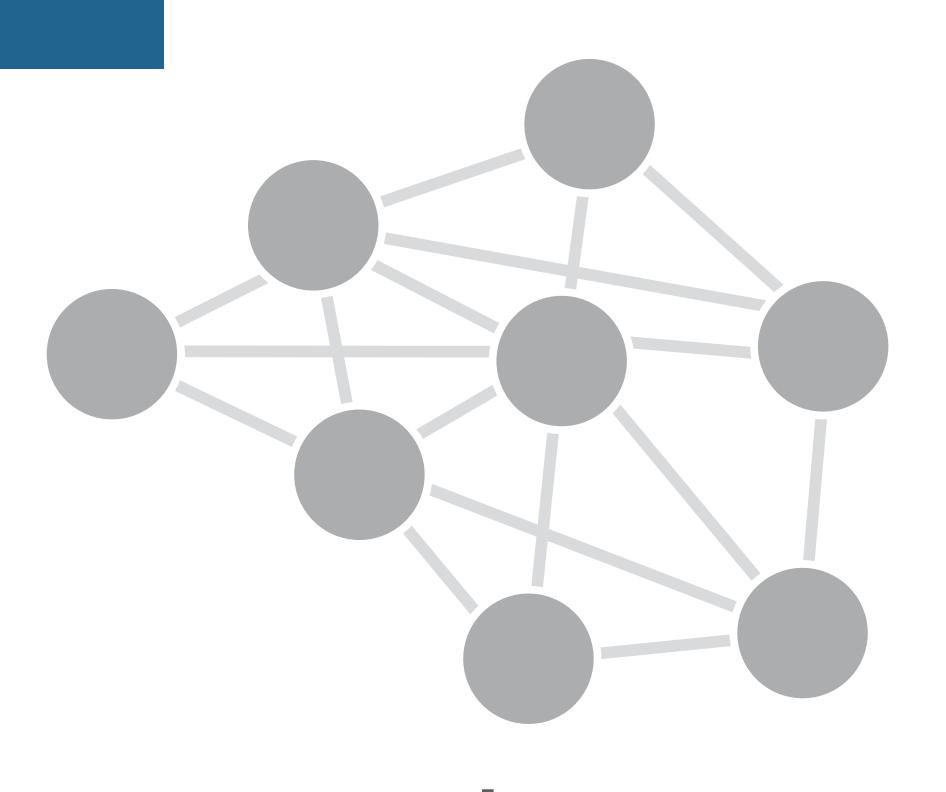
DEGREE: 4



Network Size





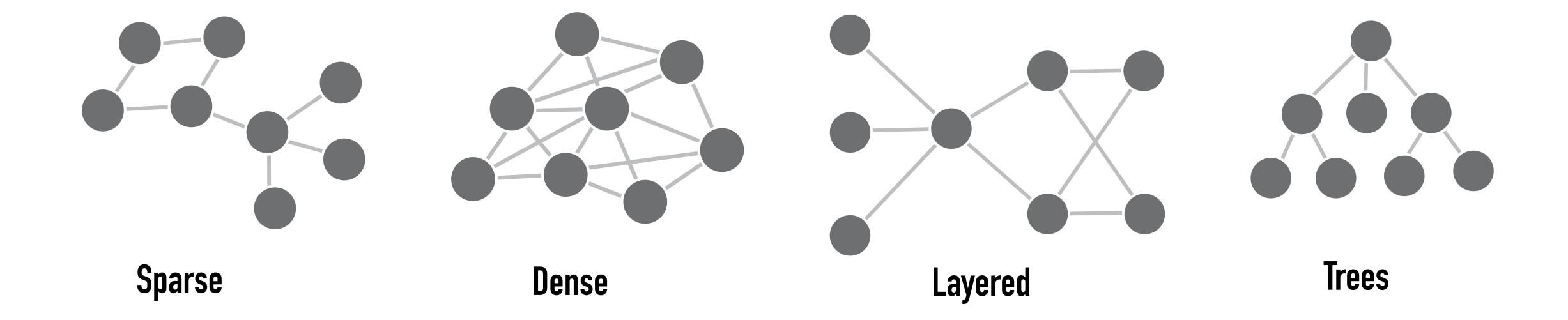


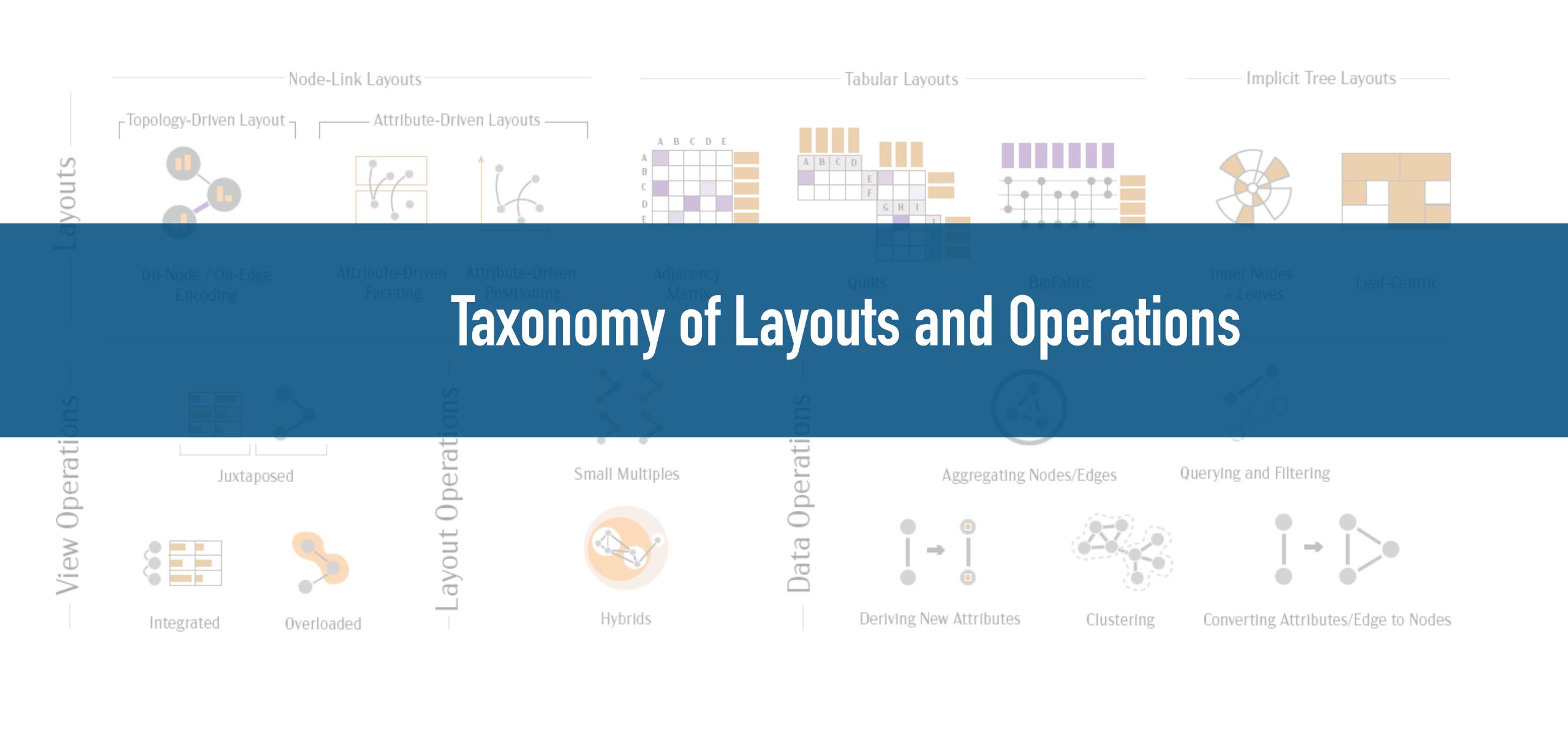
Small <100

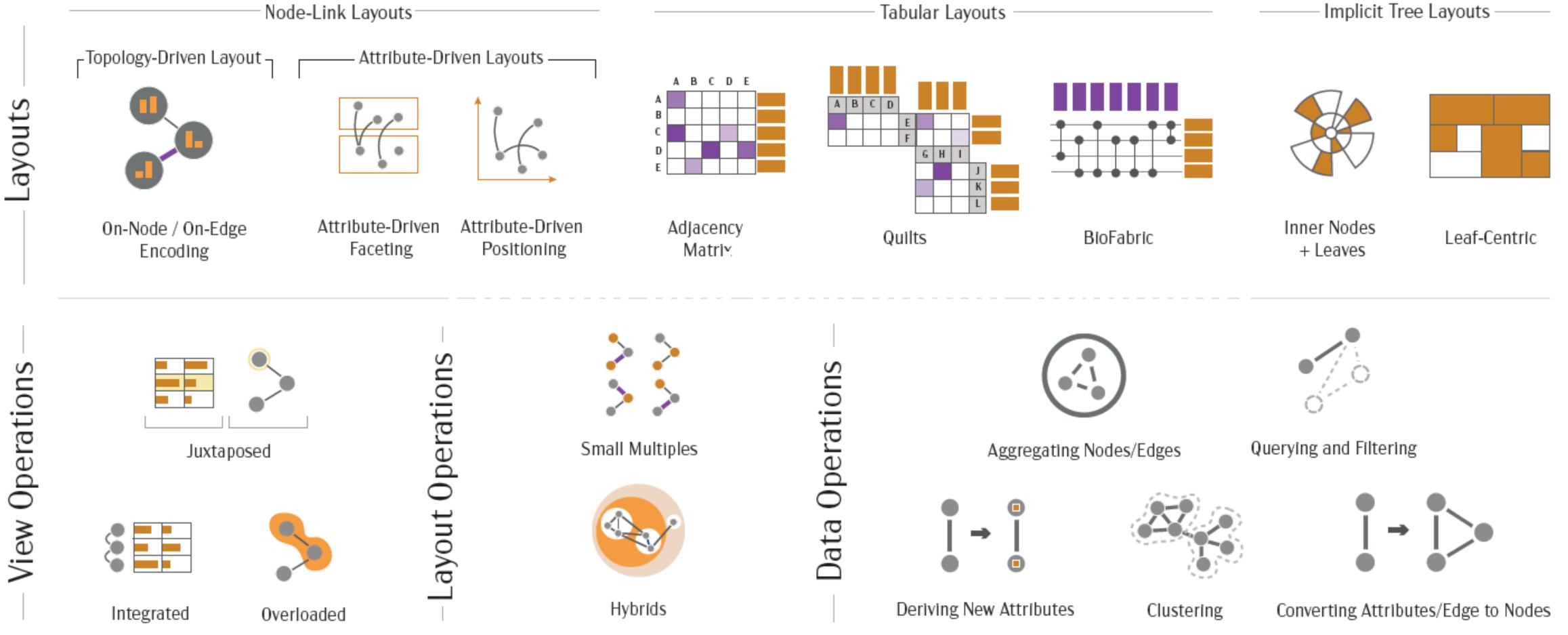
Medium
100-1000

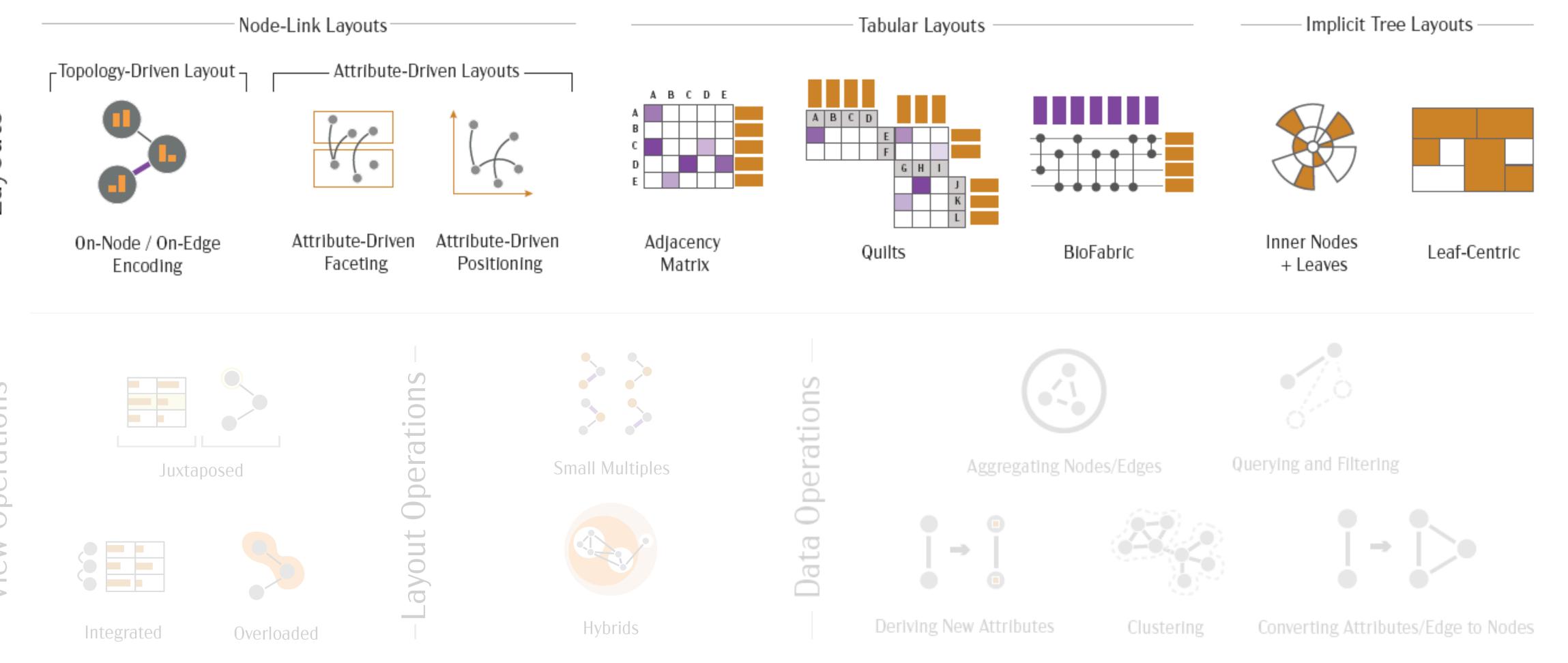
Large > 1000

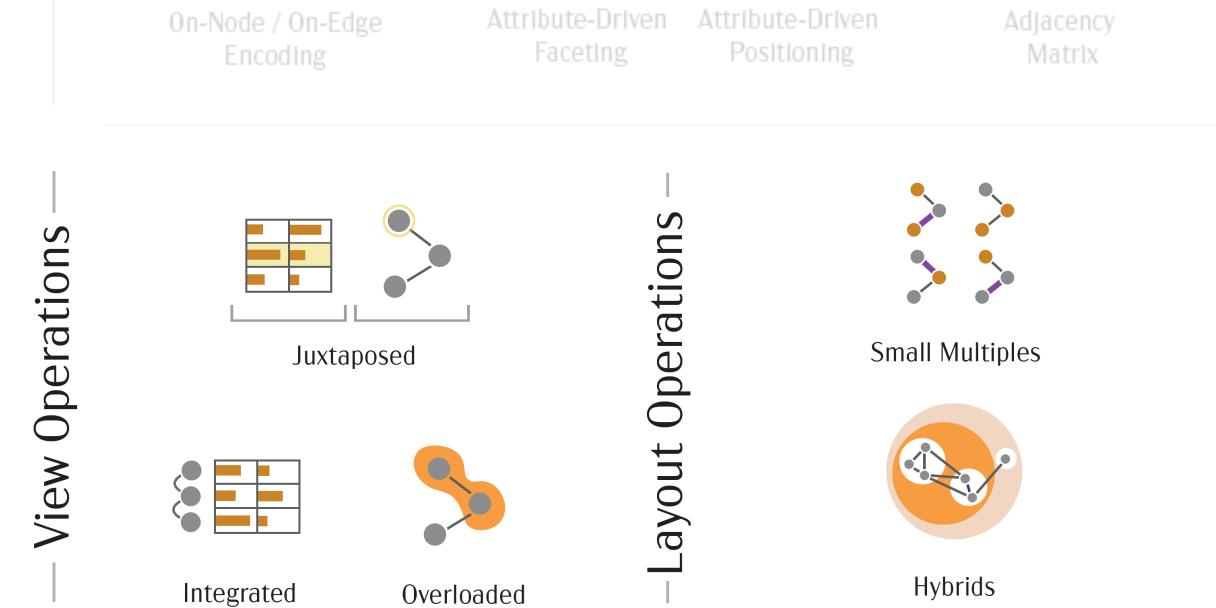
Network Types







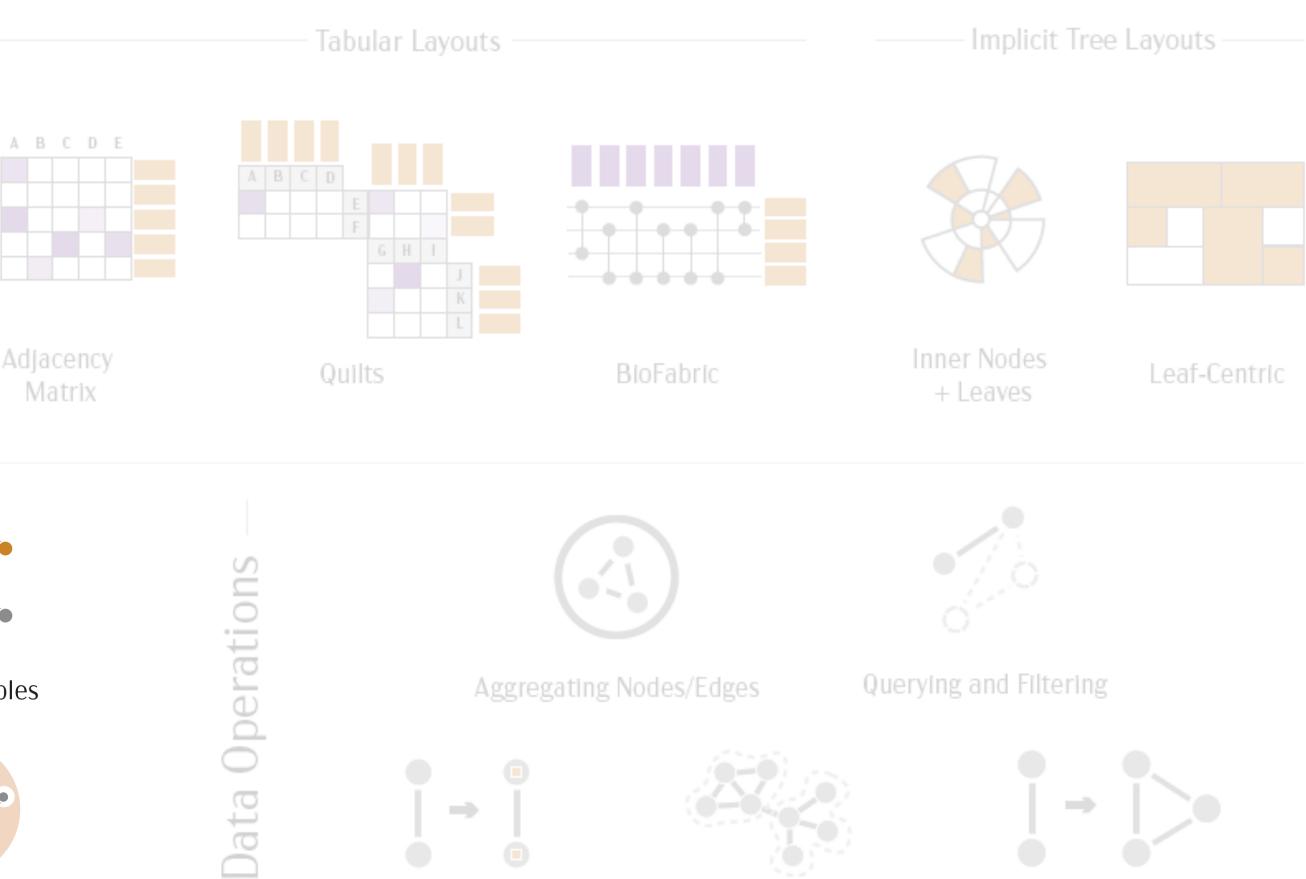




Node-Link Layouts

Attribute-Driven Layouts -

┌Topology-Driven Layout ┐



Clustering

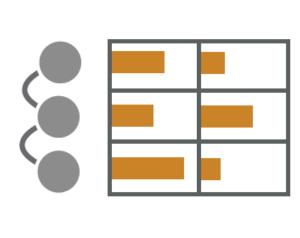
Converting Attributes/Edge to Nodes

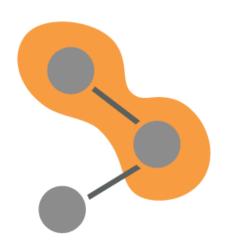
 \Rightarrow

Deriving New Attributes

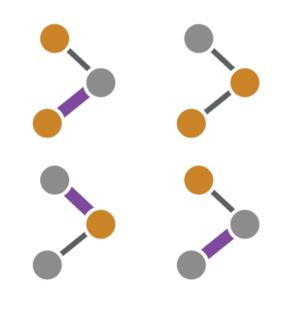
Operations View

Juxtaposed





Overloaded

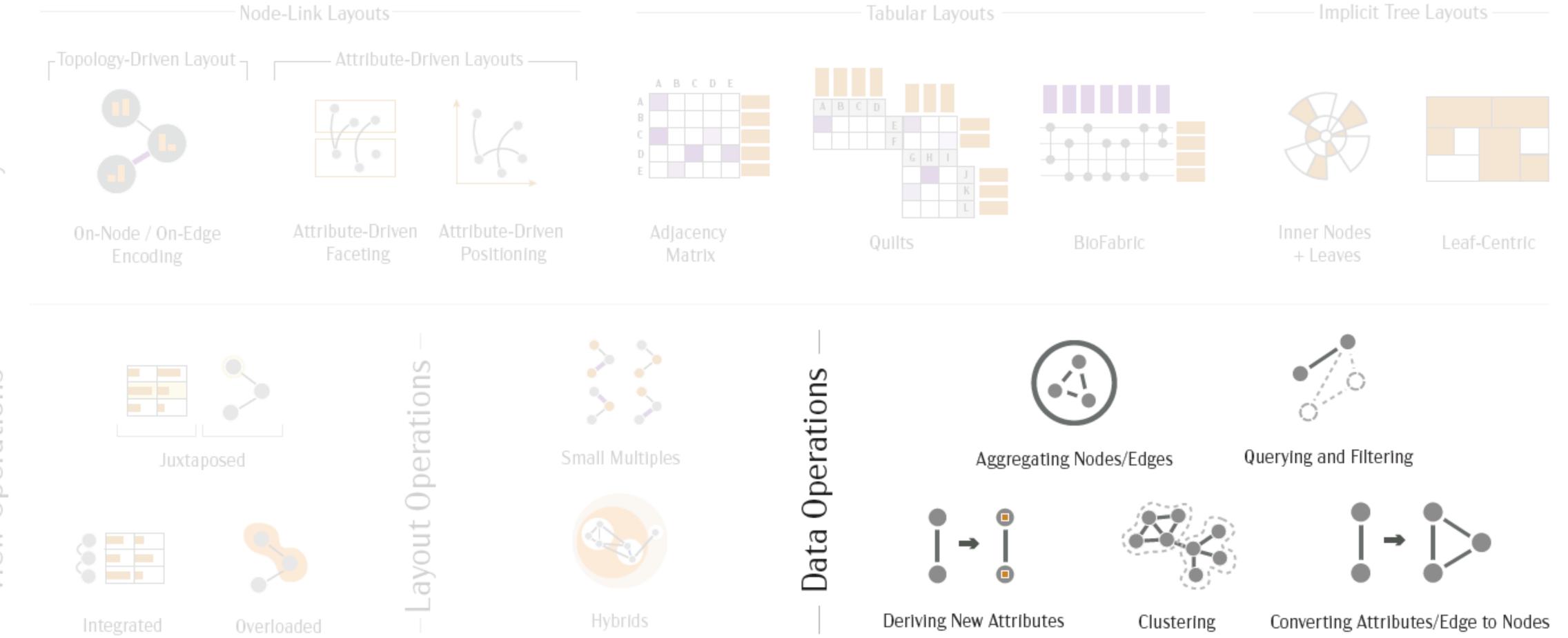


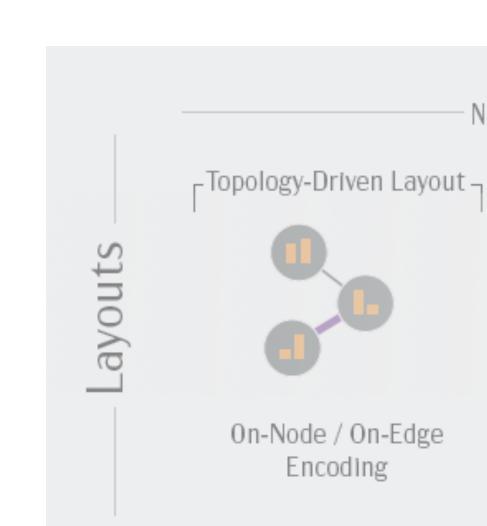
Small Multiples

Hybrids

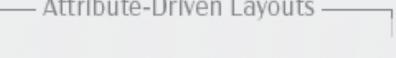
Separate views for **Topology and Attributes**

Multiple layouts for **Topology or Attributes**





Attribute-Driven Layouts



On-Node / On-Edge

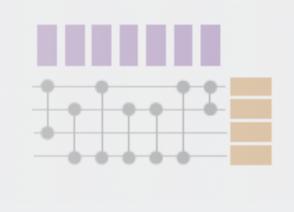
Attribute-Driven Faceting

Attribute-Driven Positioning

Quilts

Tabular Layouts

Adjacency Matrix

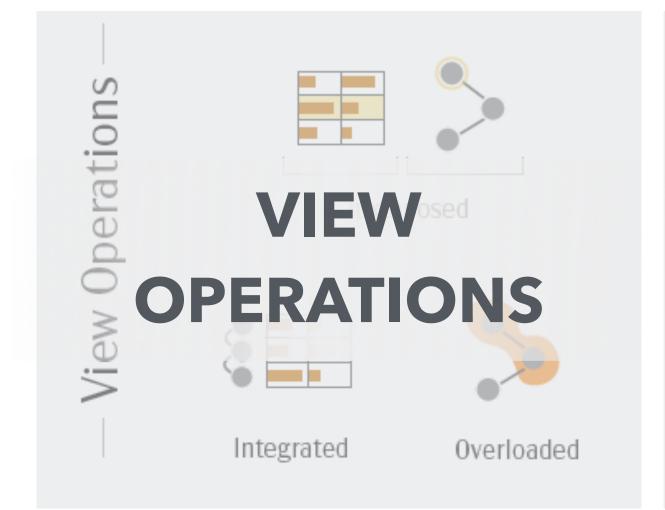


BioFabric

Implicit Tree Layouts

Inner Nodes + Leaves

Leaf-Centric



Encoding

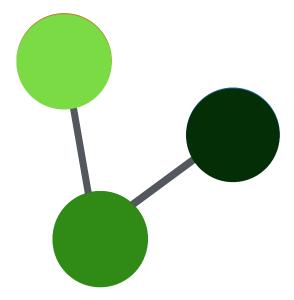
Node-Link Diagram with on-node encoding

LAYOUTS

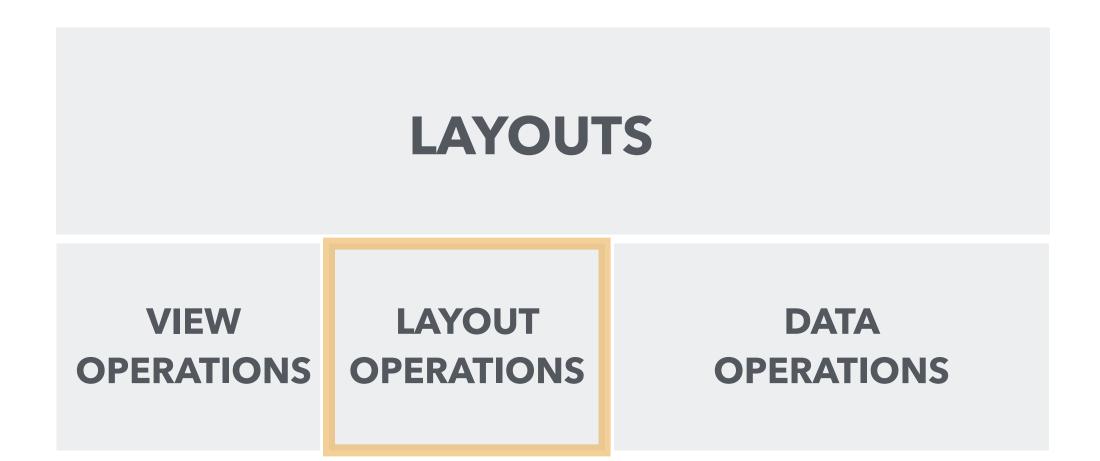
VIEW OPERATIONS OPERATIONS

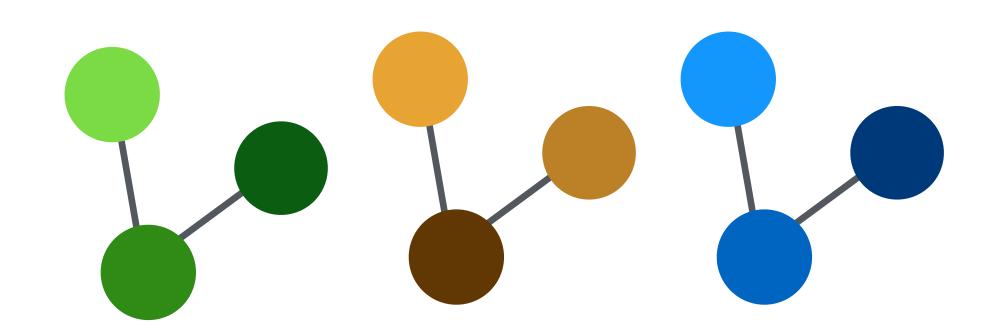
LAYOUT

DATA **OPERATIONS**



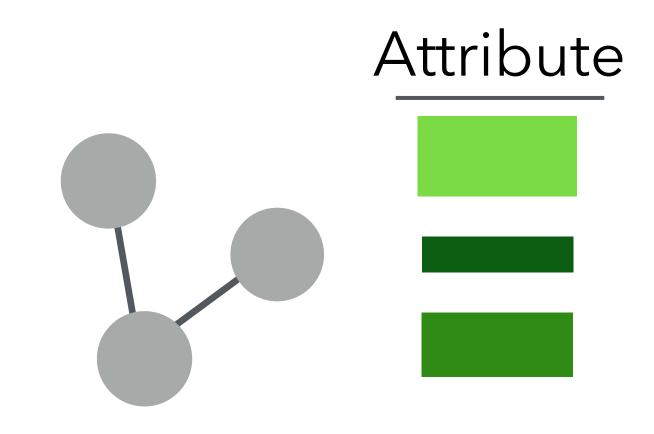
Small Multiples





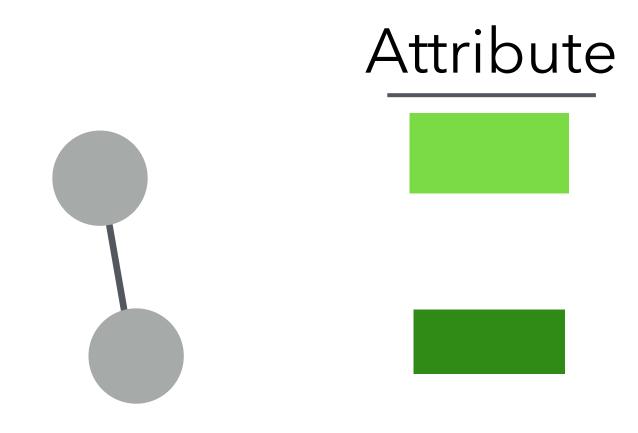
VIEW LAYOUT DATA OPERATIONS OPERATIONS

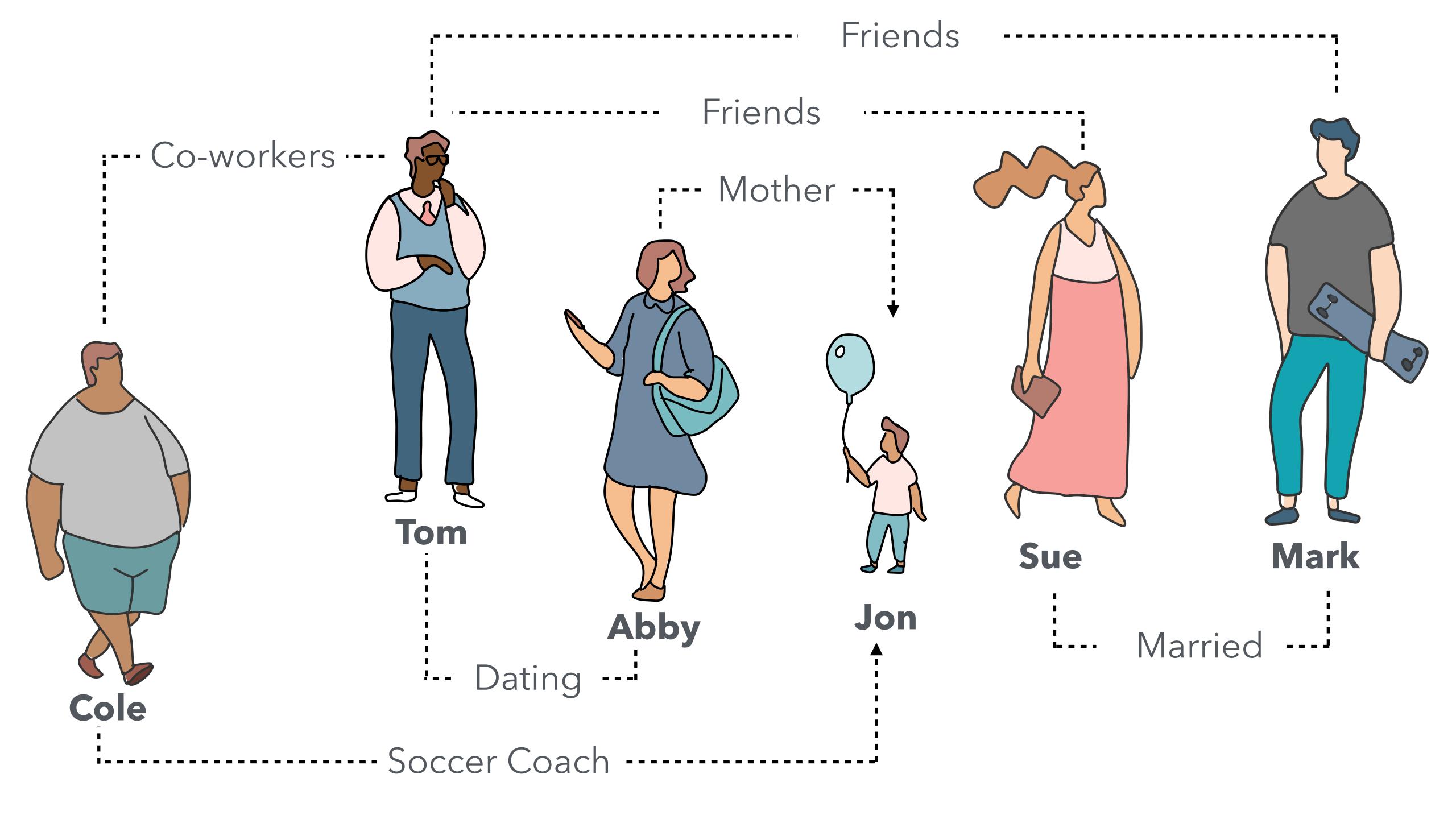
Juxtaposed Views

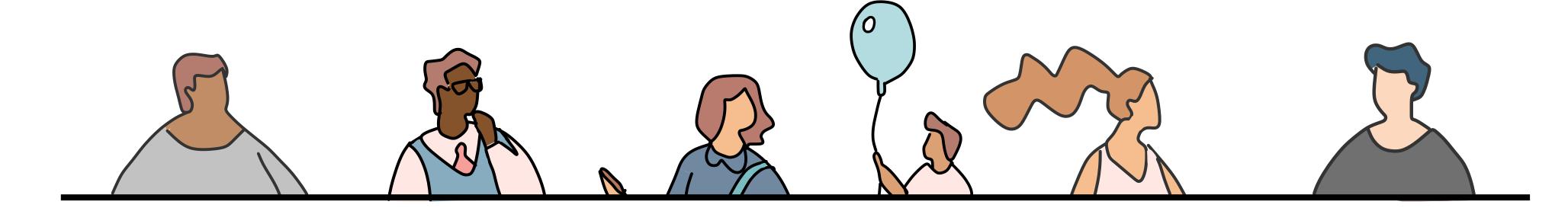


VIEW COPERATIONS LAYOUT DATA OPERATIONS OPERATIONS

Filter Data



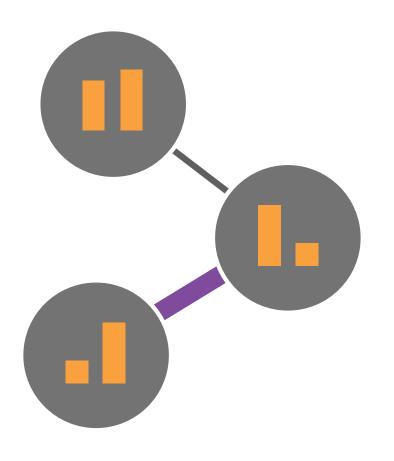


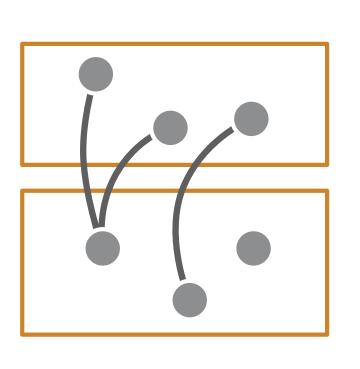


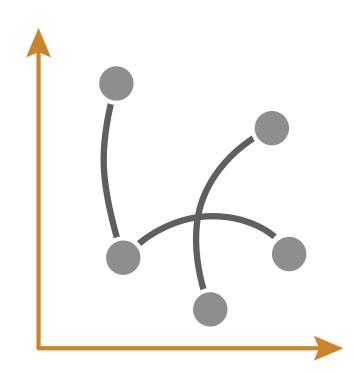
Name	Cole	Tom	Abby	Jon	Sue	Mark
Beverage	Port	Beer	Port	Coke	Coke	Beer
Day 1	1	0	4	3	3	5
Day 2	0	2	5	3	5	5
Day 3	4	1	2	2	4	3

Source	Target	Type	Duration	
		Co-workers	3 years	
		Soccer Coach	2 years	
		Dating	1 year	
		Mother / Son	7 years	
		Friends	12 years	
		Friends	3 years	
		Married	6 years	

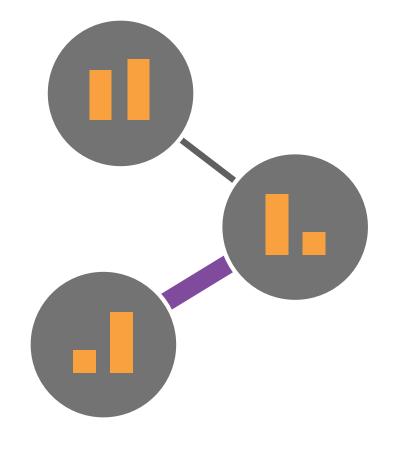
Node-Link Layouts



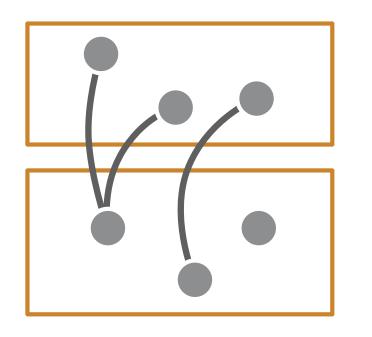


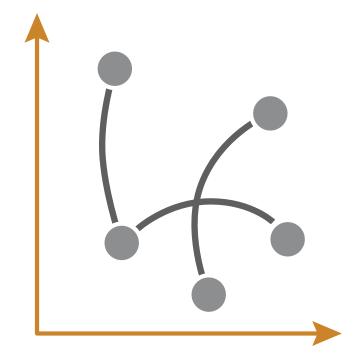


Topology Driven Layout

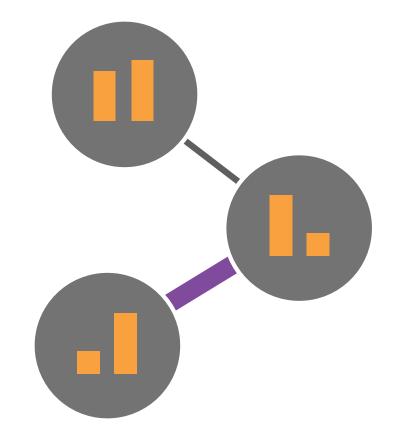


Attribute Driven Layouts



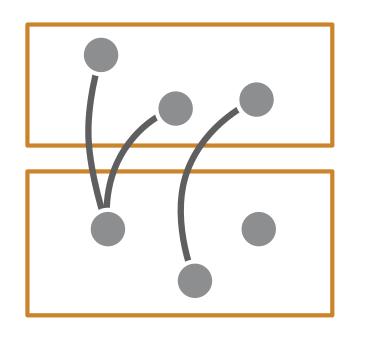


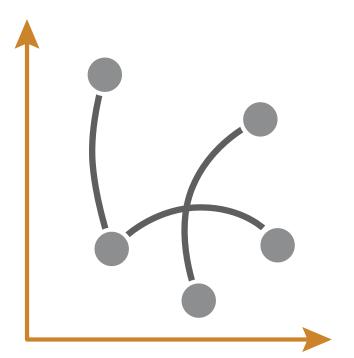
Topology Driven Layout



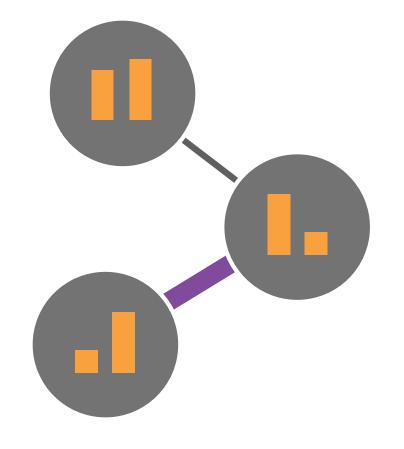
On-Node / On-Edge Encoding

Attribute Driven Layouts



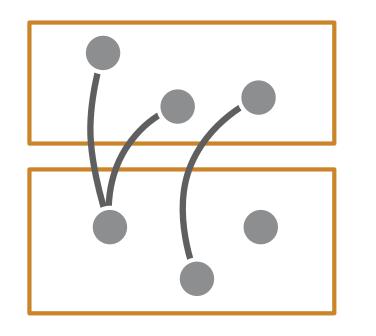


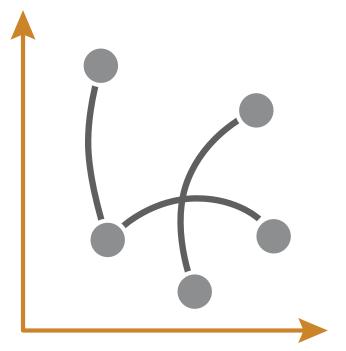
Topology Driven Layout



On-Node / On-Edge Encoding

Attribute Driven Layouts



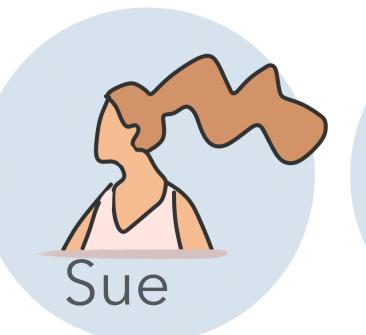


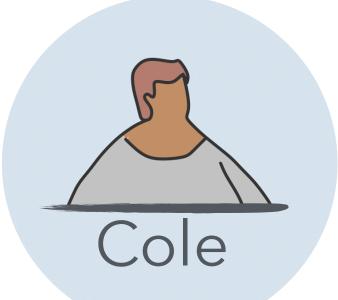
Attribute-Driven Faceting

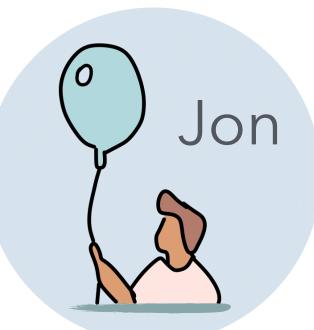
Attribute-Driven Positioning

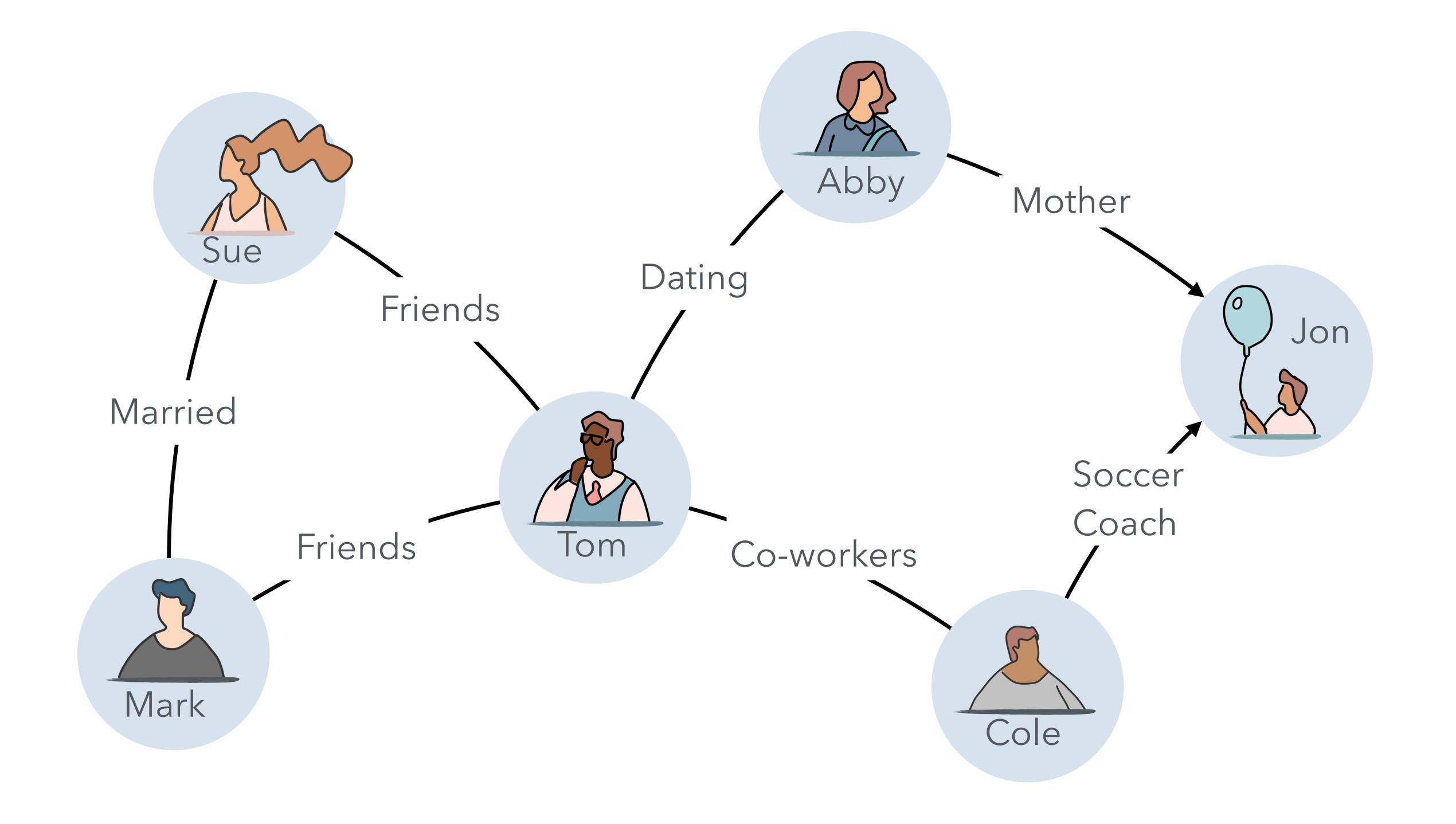
On-Node / On-Edge Encoding

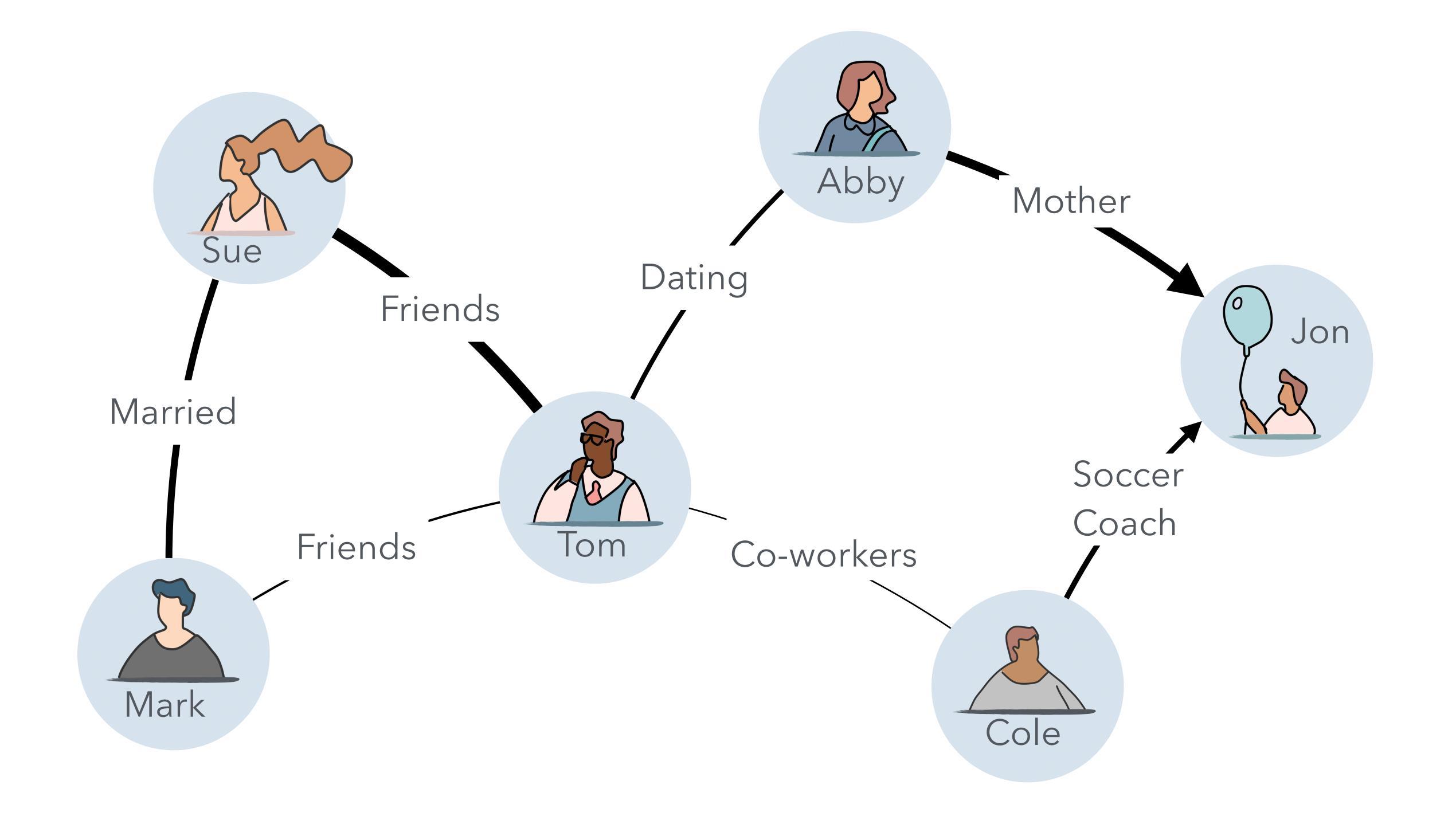


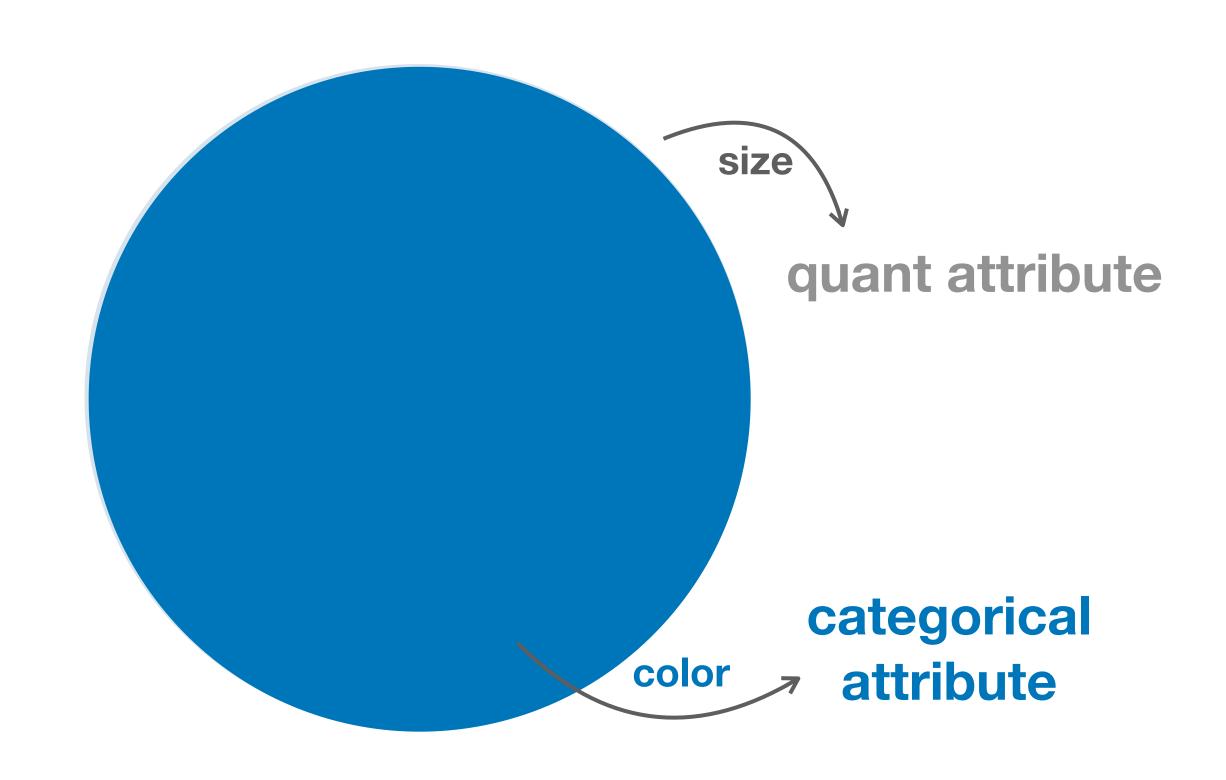


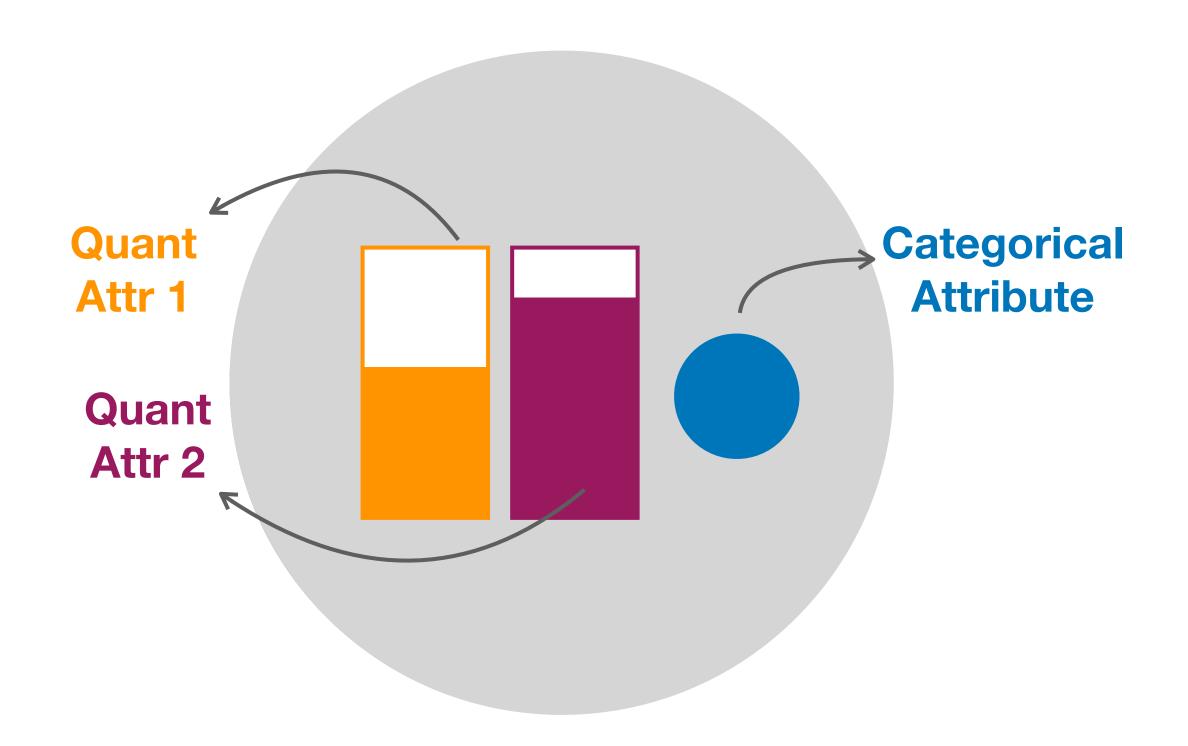


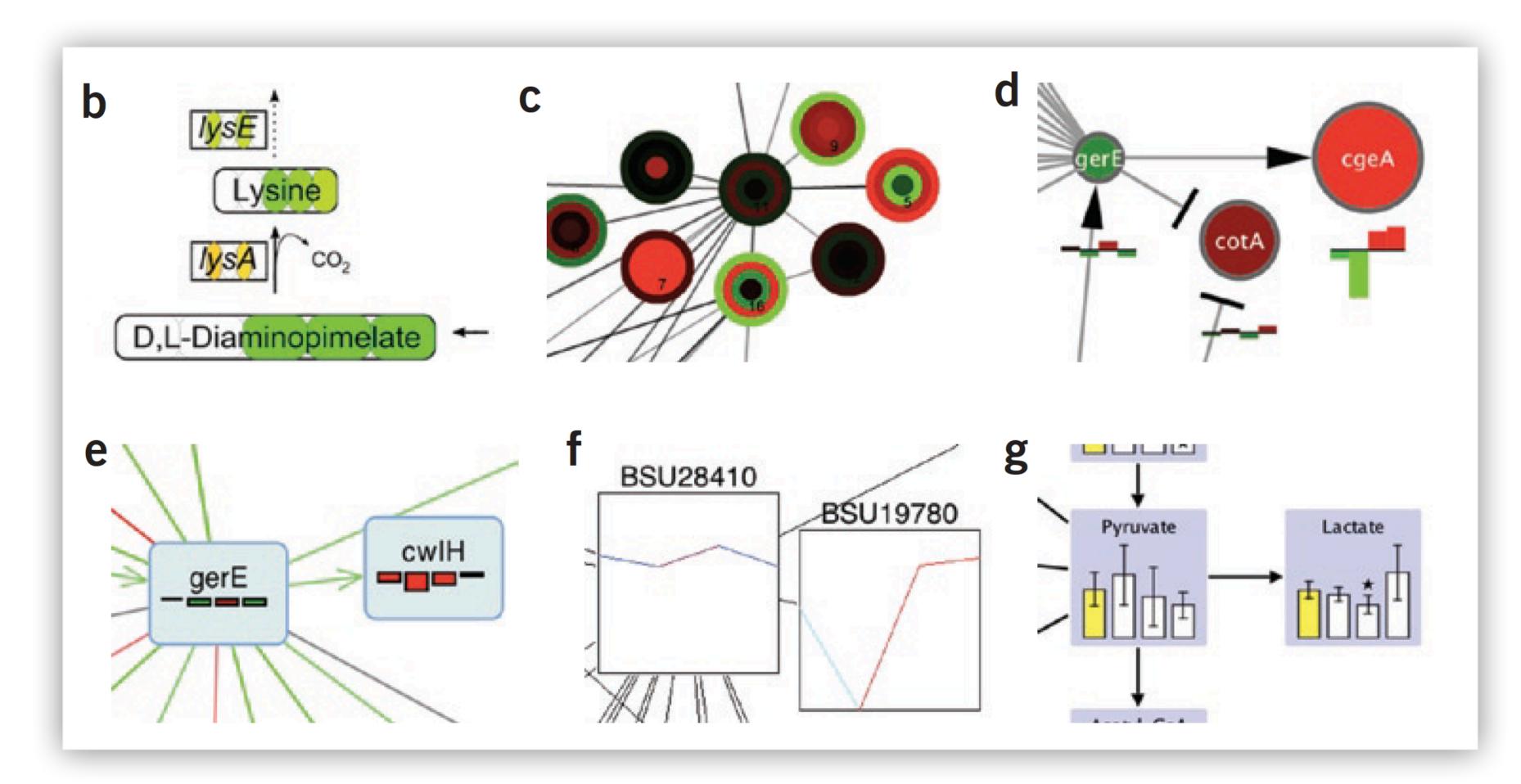




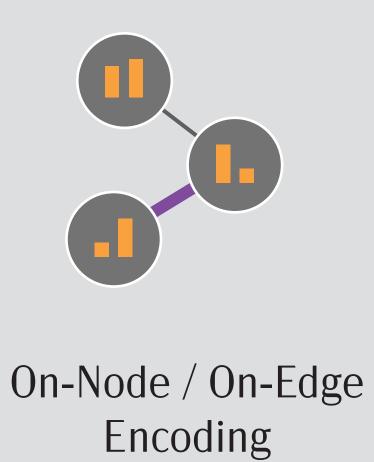


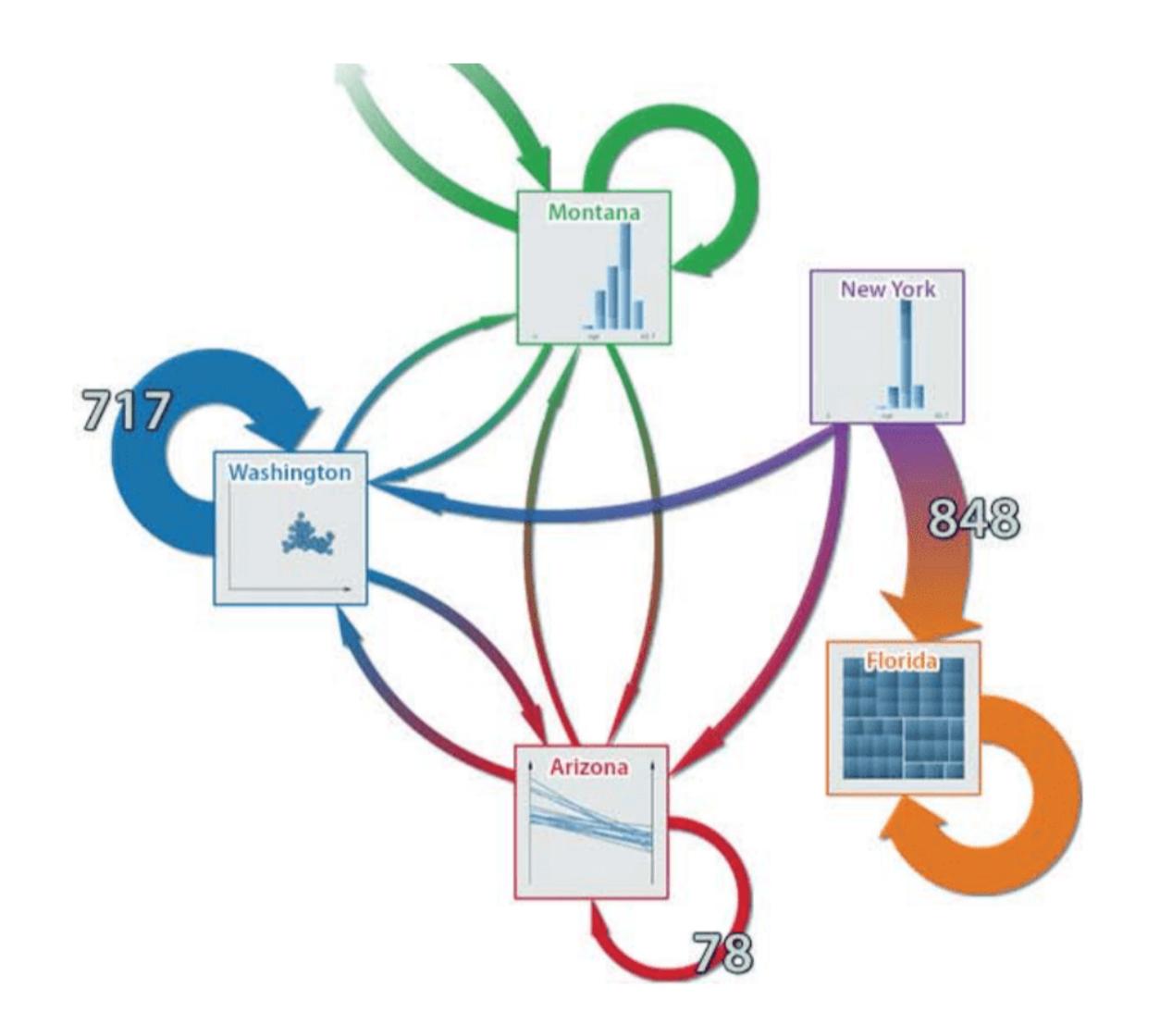


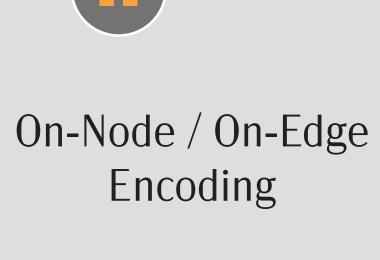




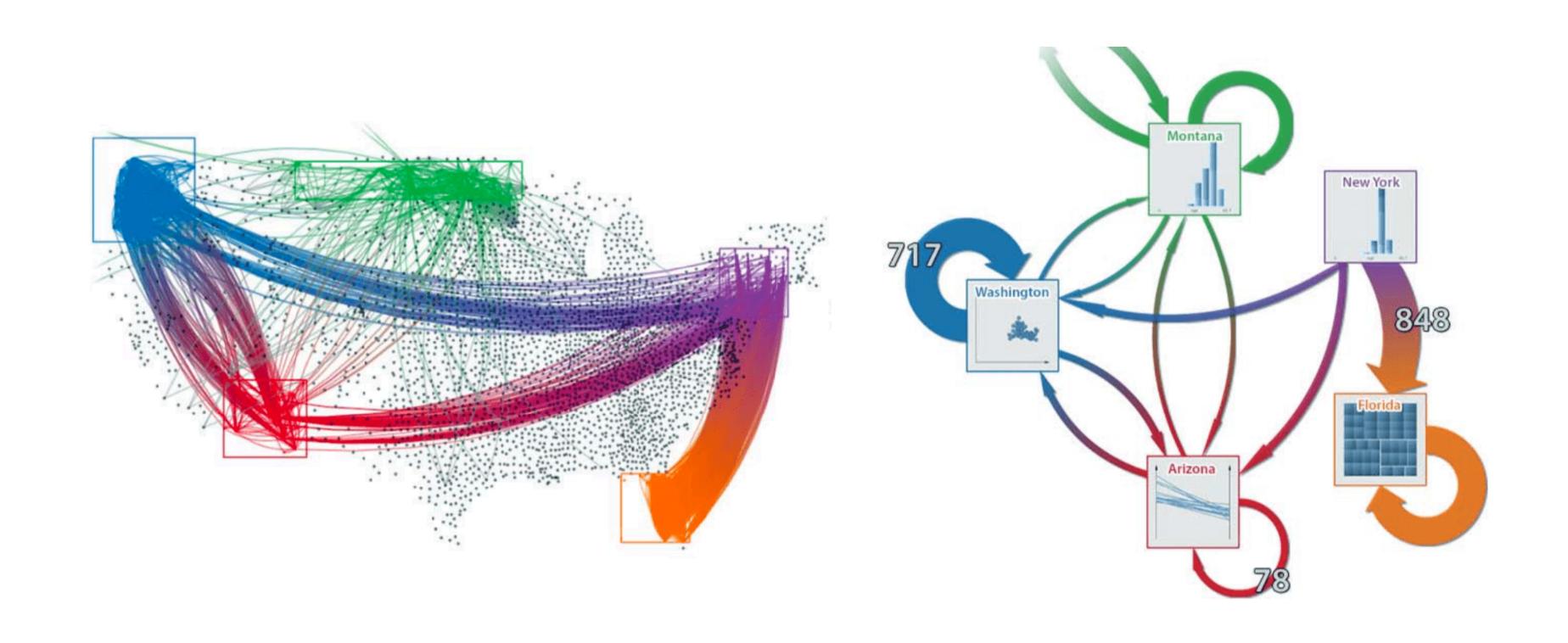
Gehlenborg et al. 2010



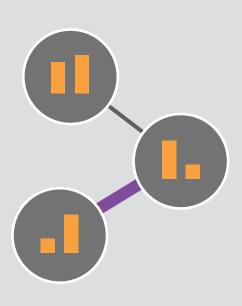




Elzen and Wijk, 2014

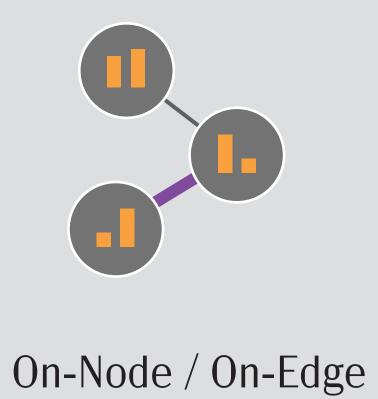


Aggregating Nodes/Edges



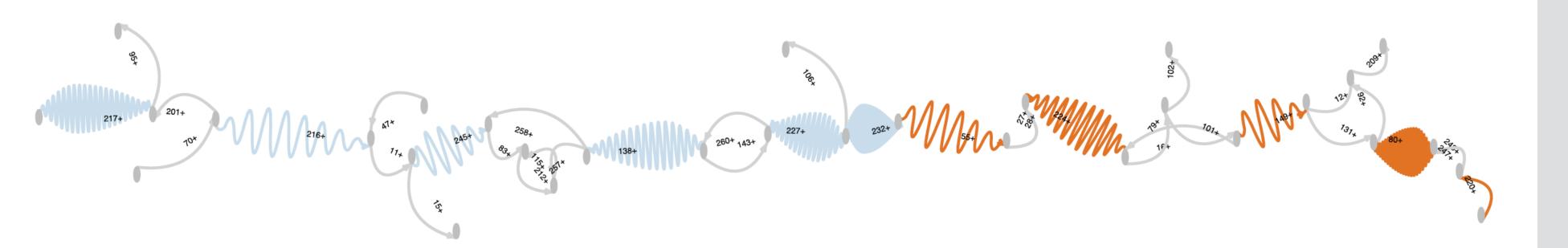
On-Node / On-Edge Encoding

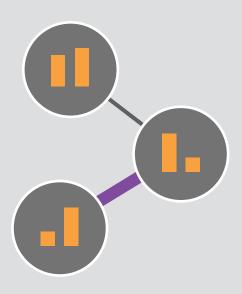
Elzen and Wijk, 2014



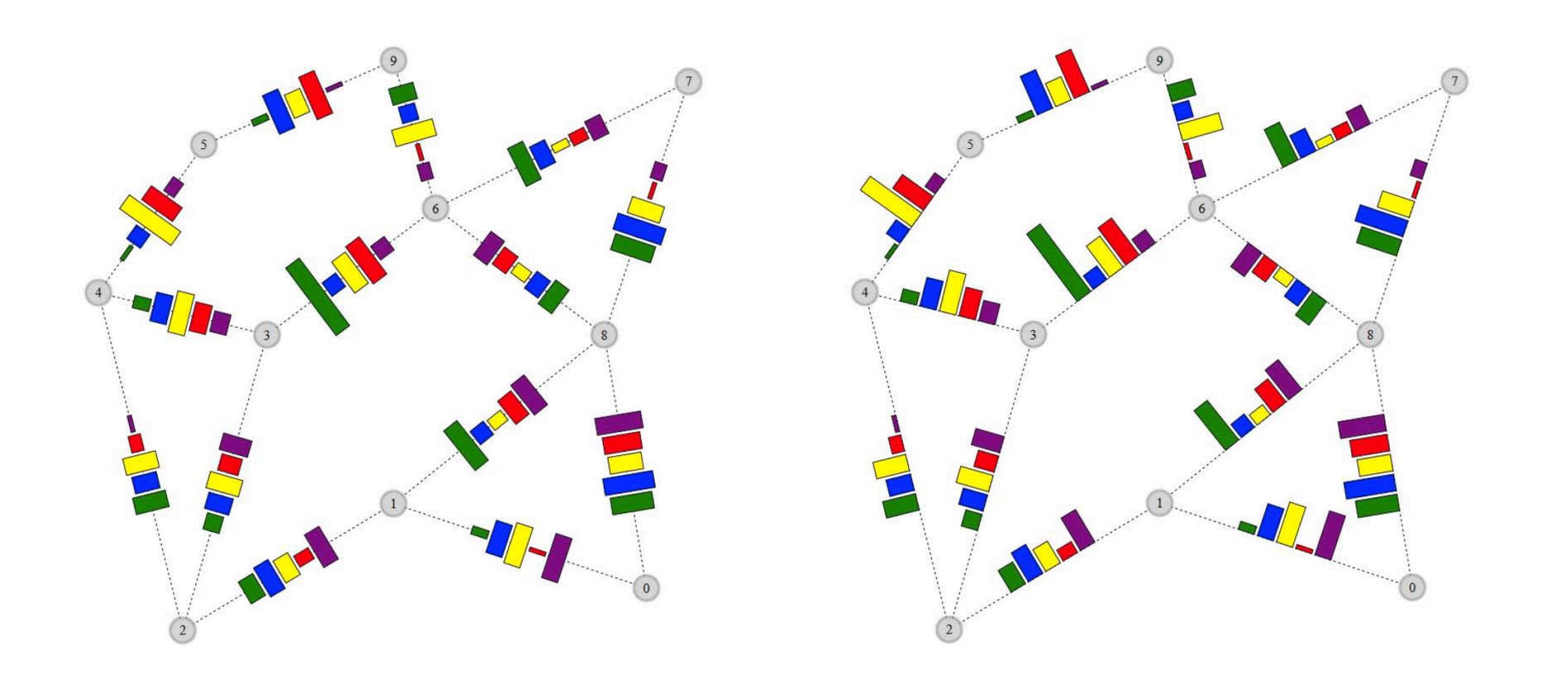
Encoding

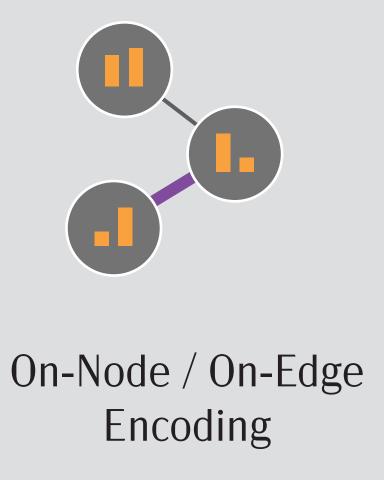
Jankun-Kelly and Ma, 2003





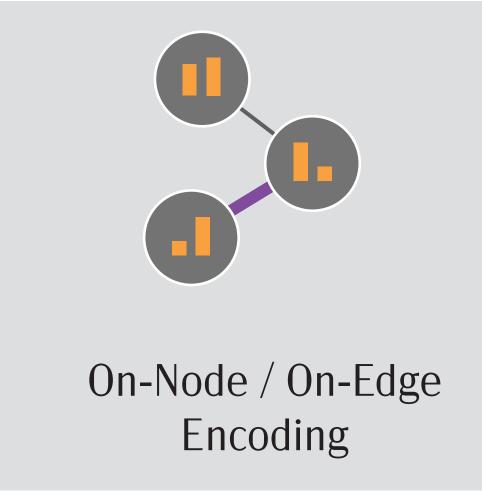
On-Node / On-Edge Encoding





Schöffel et al, 2016

Is easily understood by most users
Works well for all types of networks

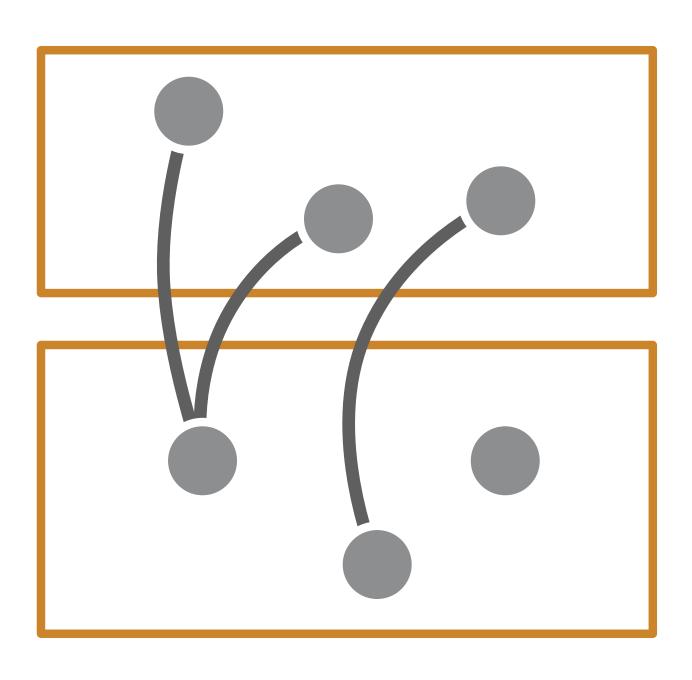


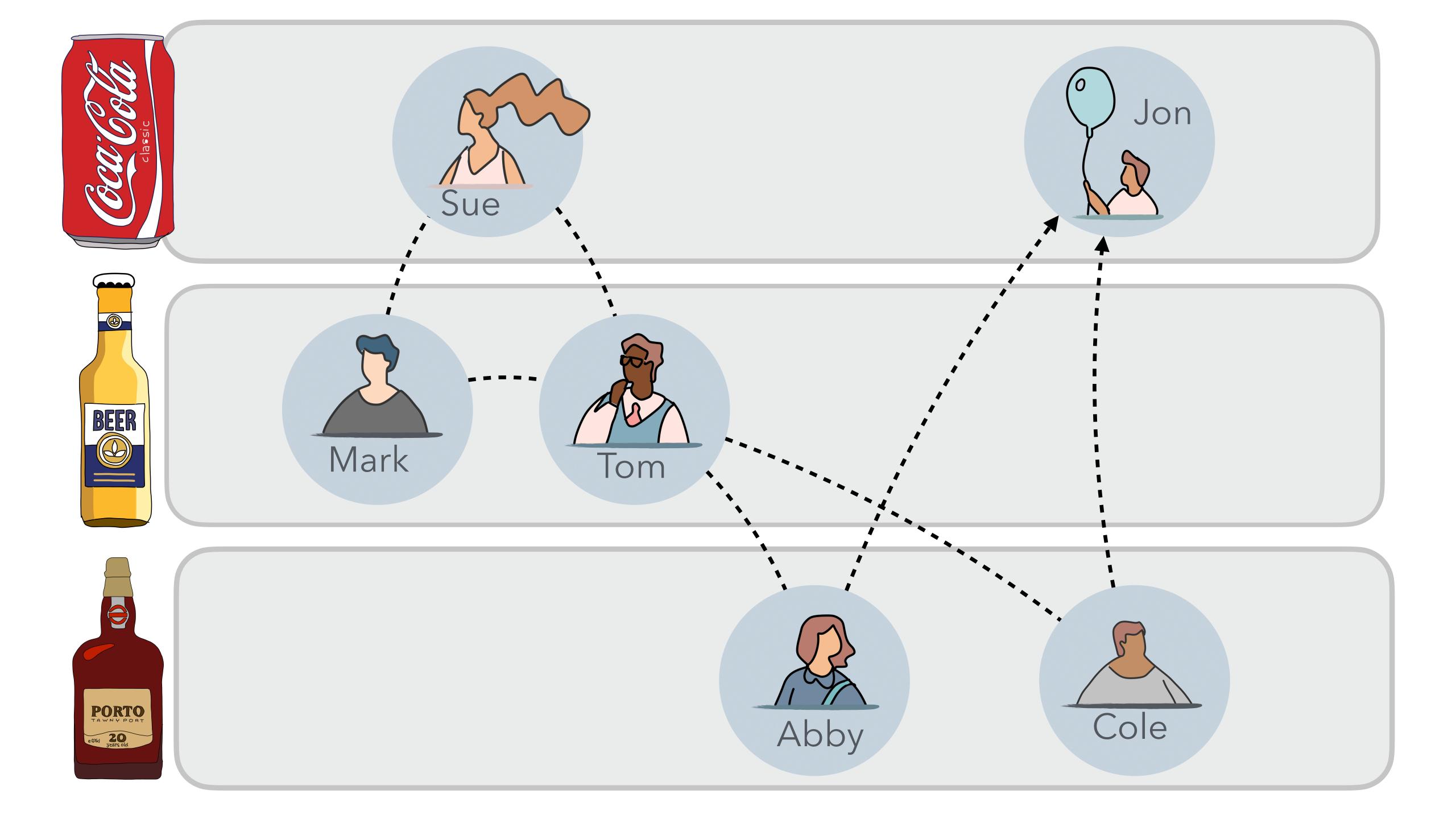
Scalability.

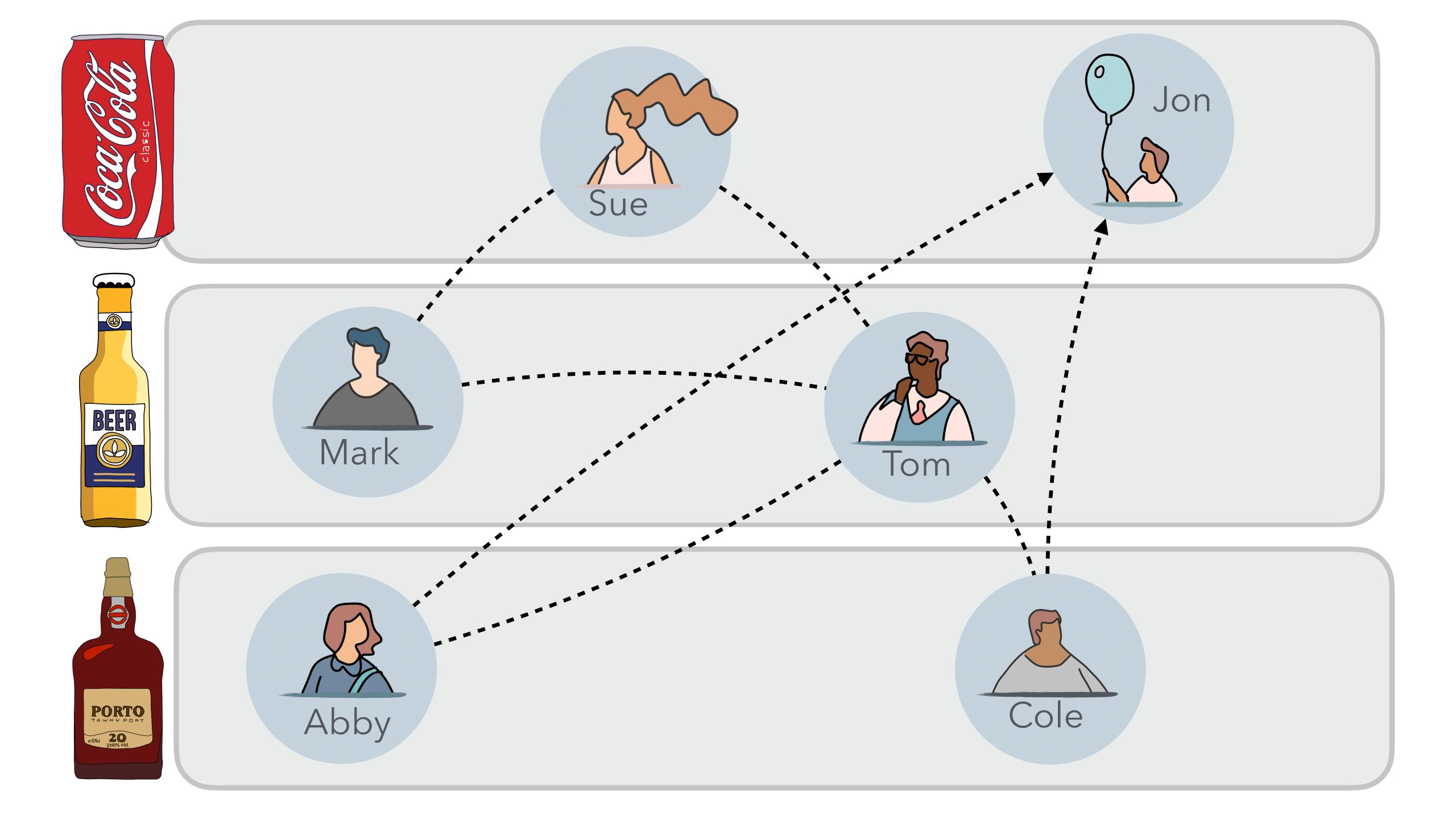
Node size leaves little space to encode attributes.

Recommended for small networks when only a few (usually under five) attributes on the nodes are shown, or in combination with a zooming/filtering strategy

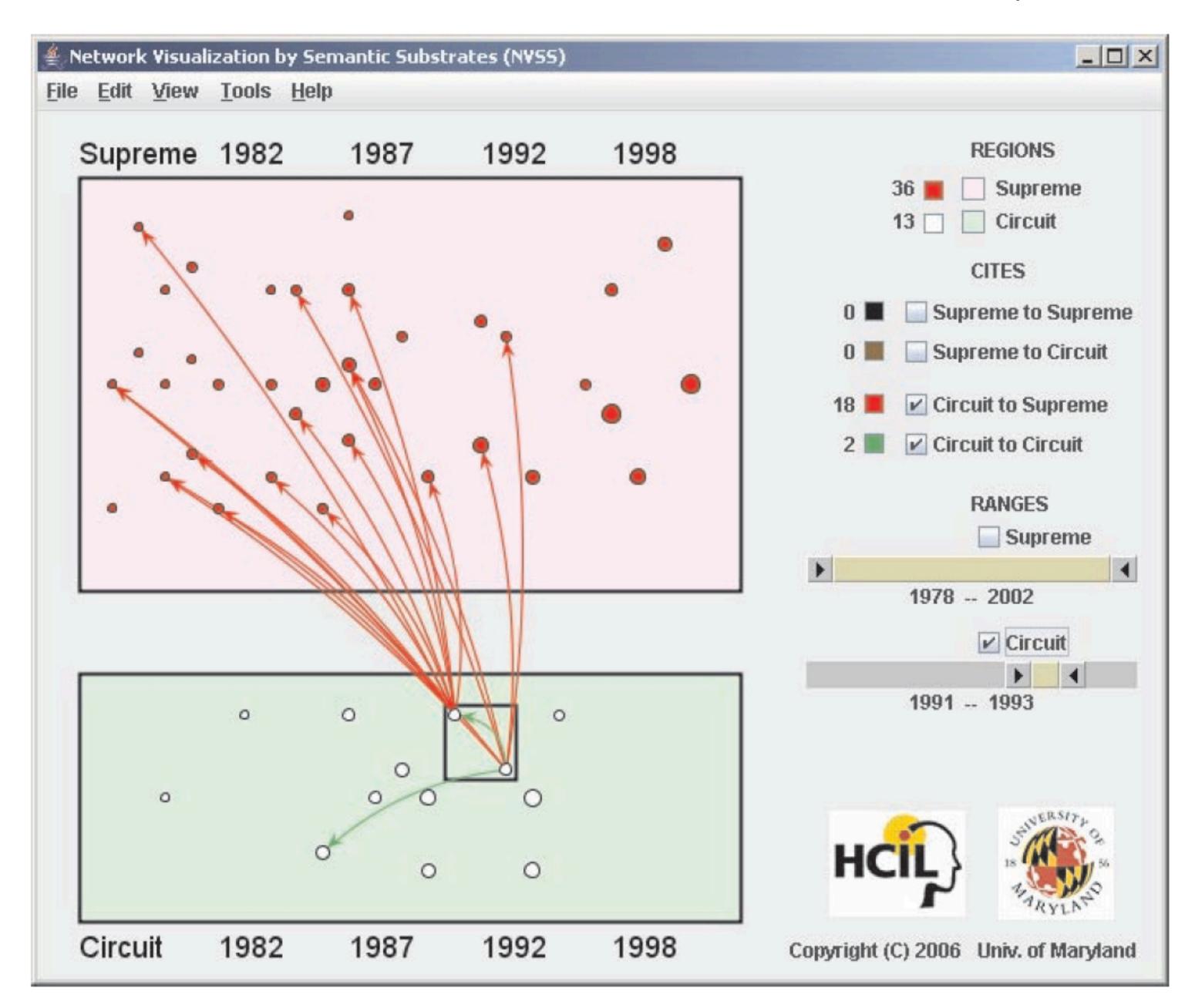
Attribute-Driven Faceting

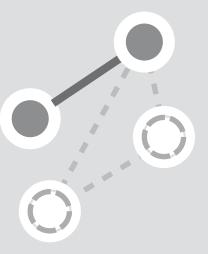




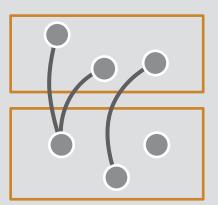


Semantic Substrates Shneiderman and Aris, 2006

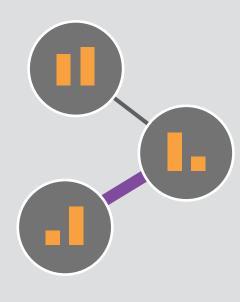




Querying and Filtering

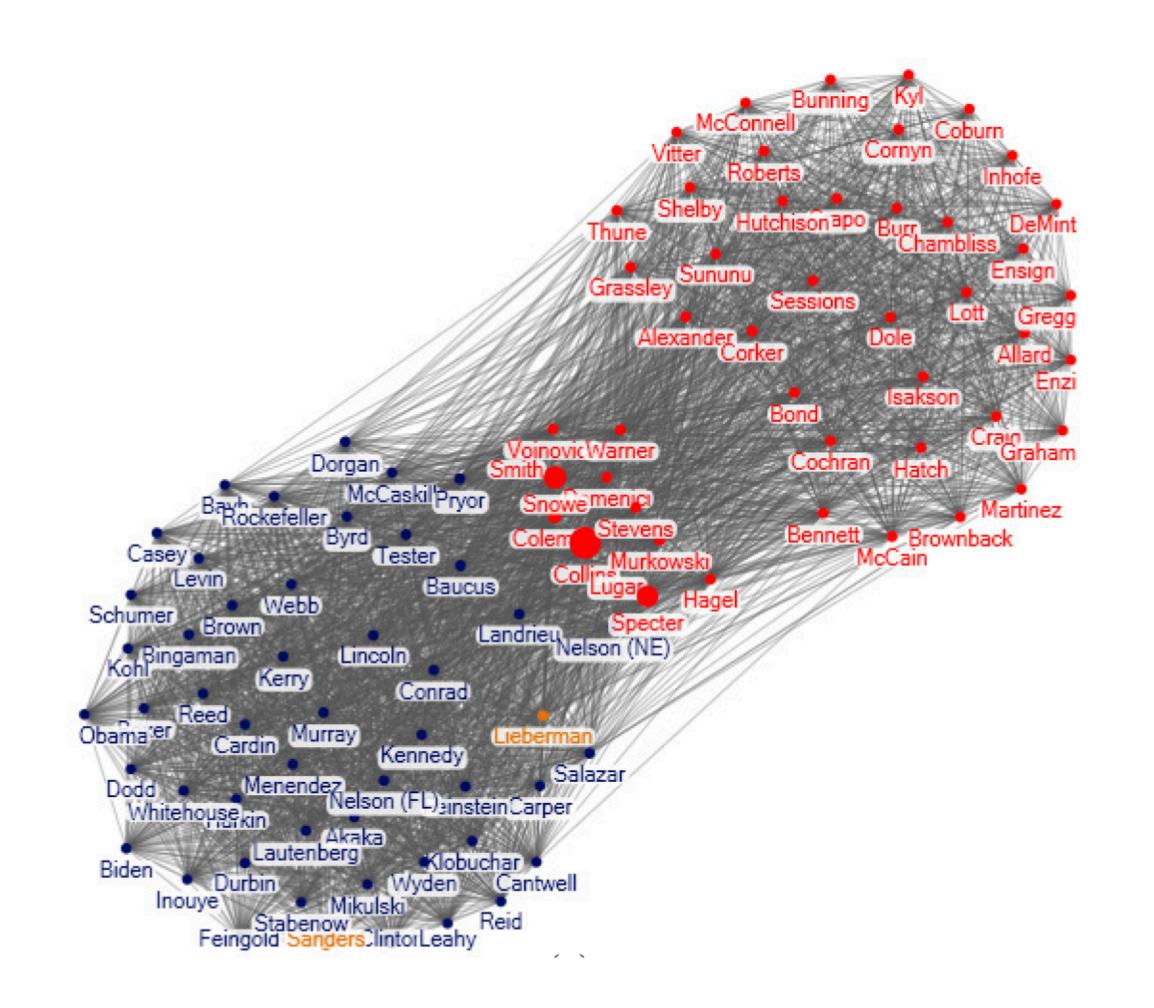


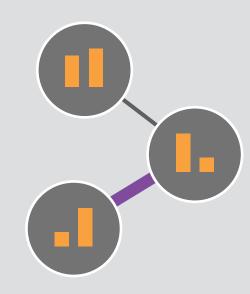
Attribute-Driven Faceting



On-Node / On-Edge Encoding

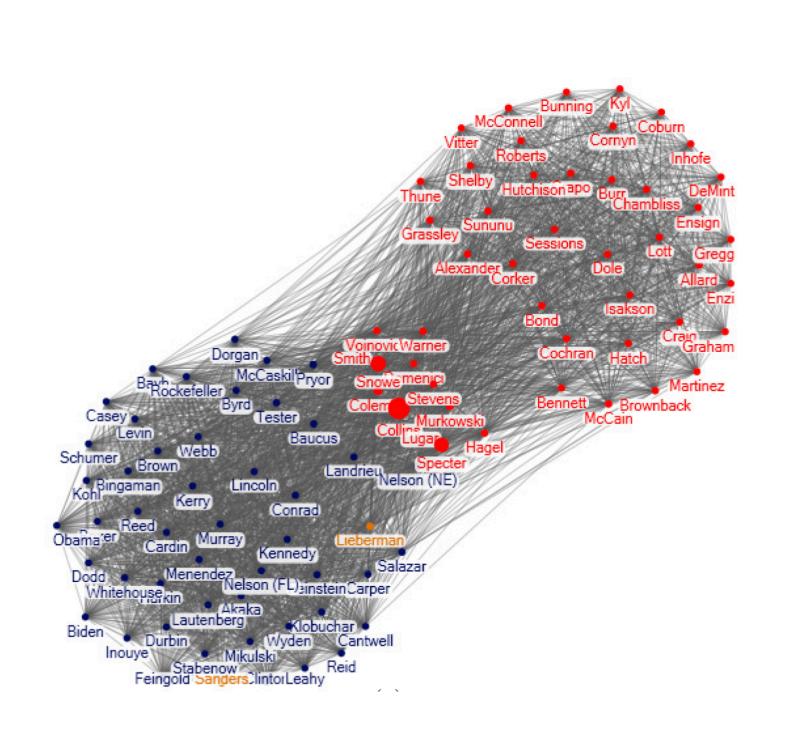
Group-in-a-box Rodrigues et al. 2011

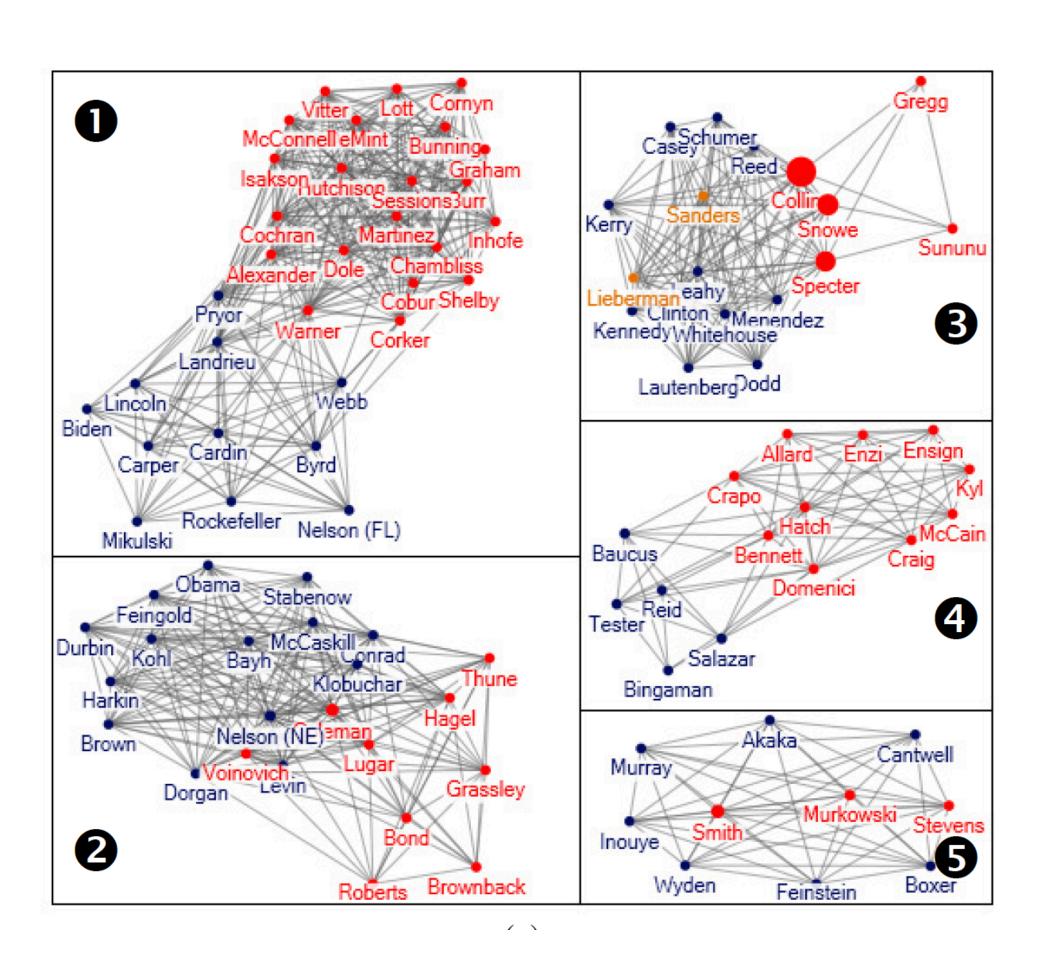


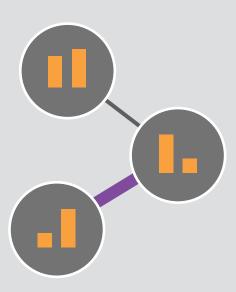


On-Node / On-Edge Encoding

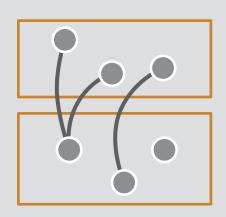
Group-in-a-box Rodrigues et al. 2011





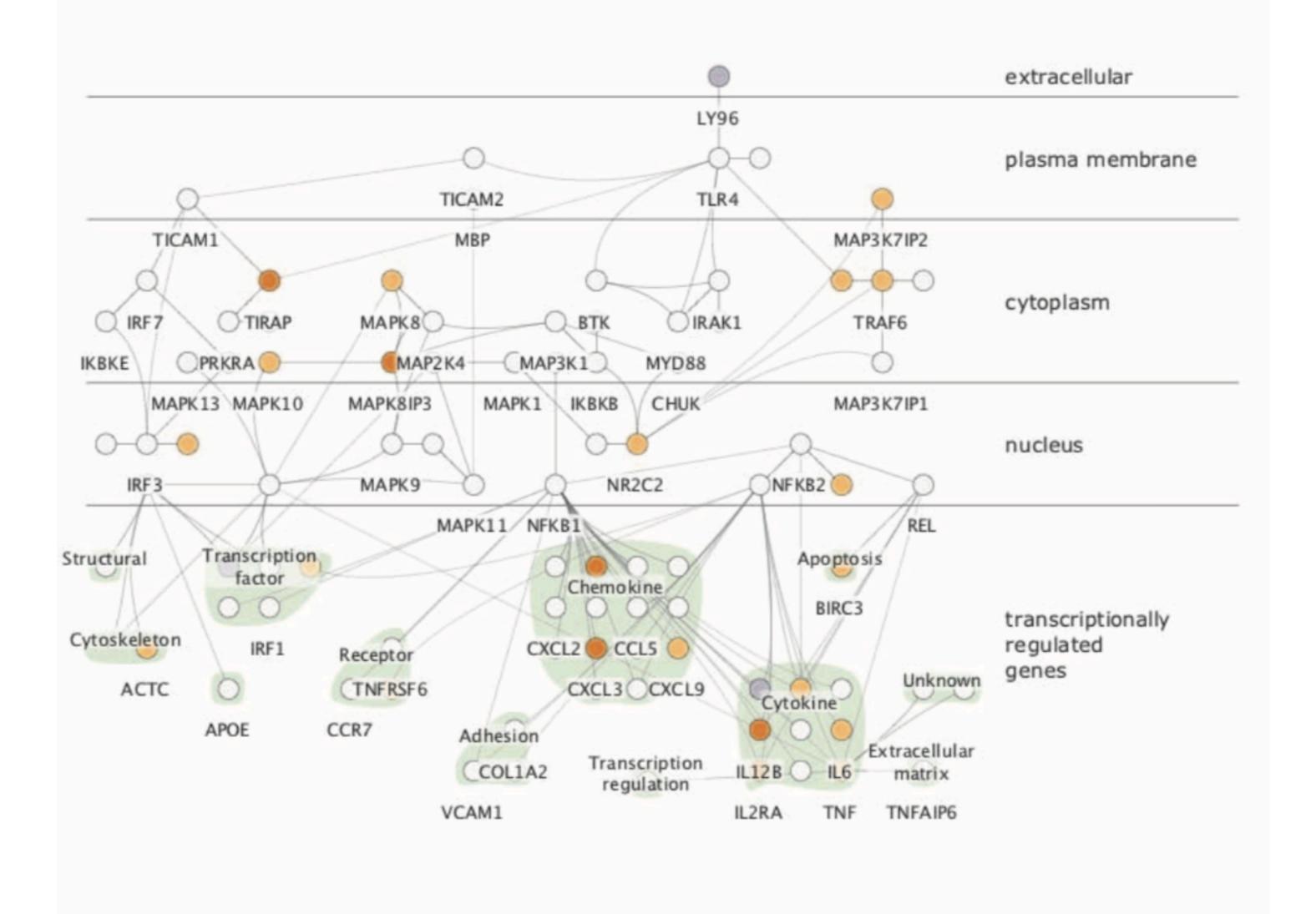


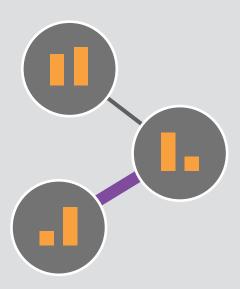
On-Node / On-Edge Encoding



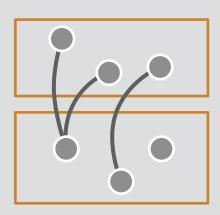
Attribute-Driven Faceting

Cerebral Barskey et al. 2008

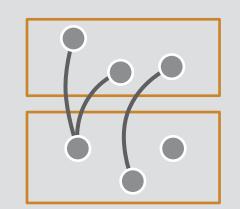




On-Node / On-Edge Encoding



Attribute-Driven Faceting



Well suited for networks with different node types or with an important categorical or set-like attribute.

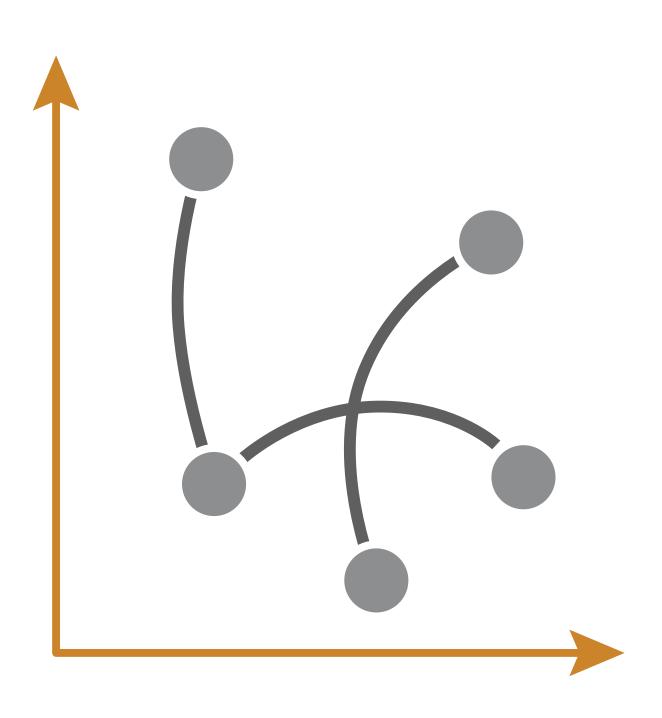
Attribute-Driven Faceting

Less scalable with respect to the number of nodes and network density than node-link layouts.

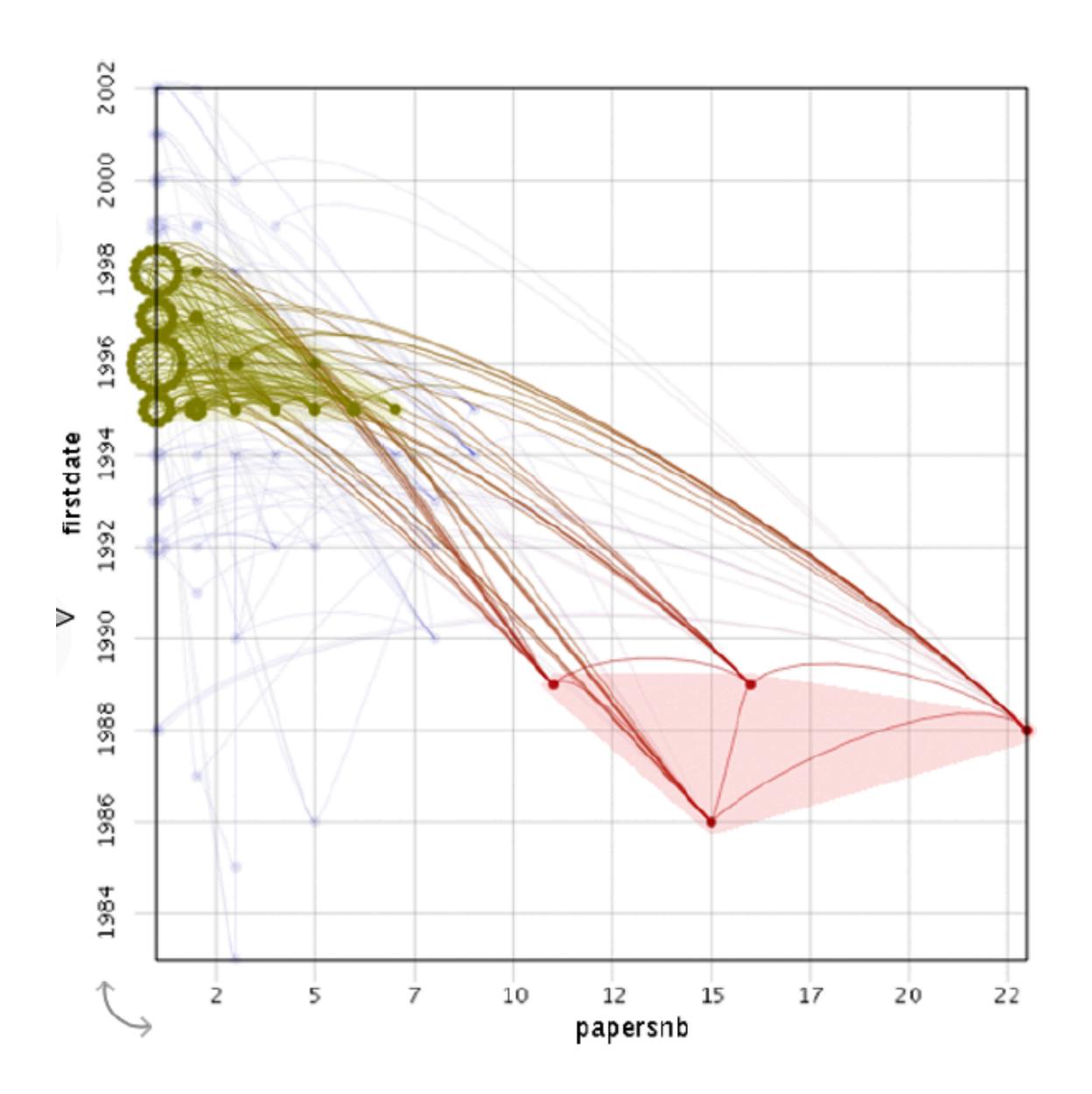
Neighborhoods, paths, and clusters are not easily visible if they span different facets.

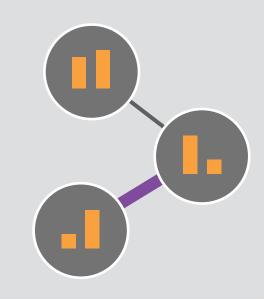
Recommended for networks where nodes can be separated into groups easily and where these groups are central to the analysis

Attribute-Driven Positioning

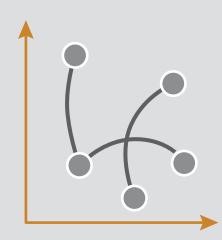


Graph Dice Bezerianos et al. 2010



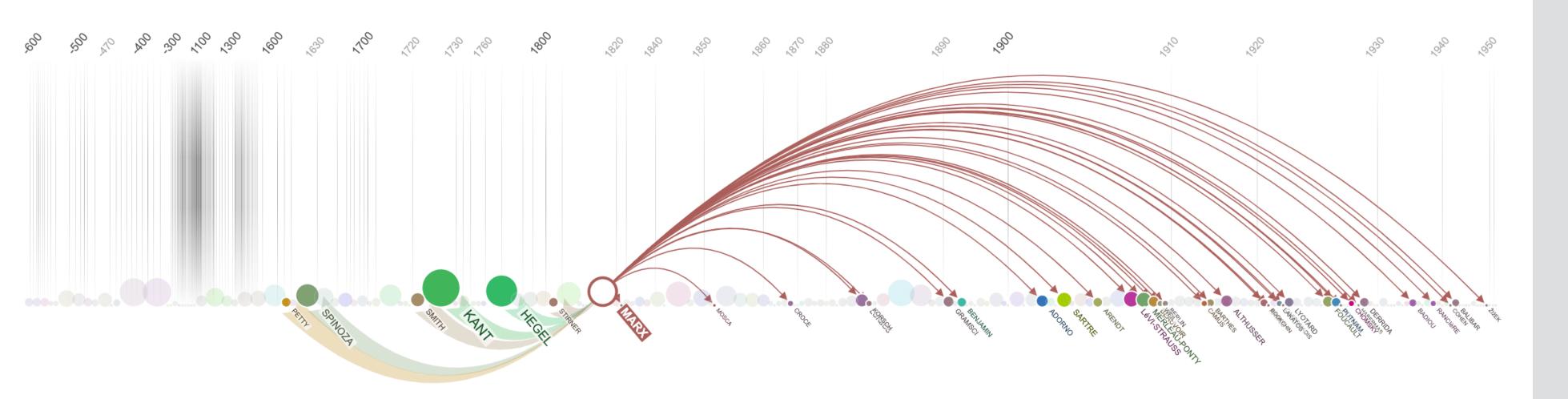


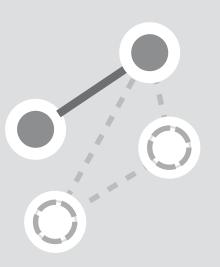
On-Node / On-Edge Encoding



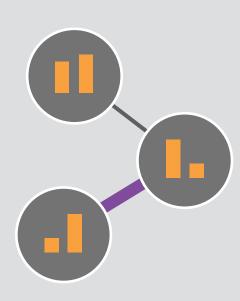
Attribute-Driven Positioning

Edge Map Dork et al. 2011

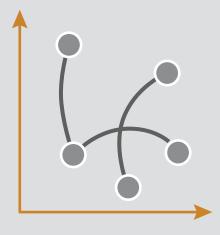




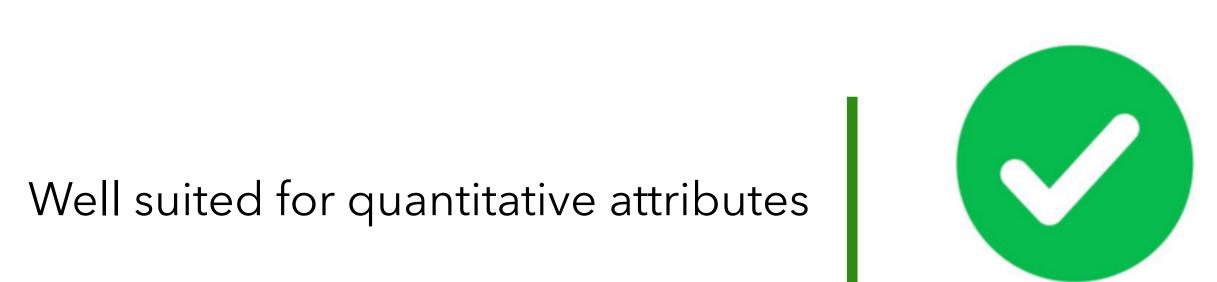
Querying and Filtering



On-Node / On-Edge Encoding



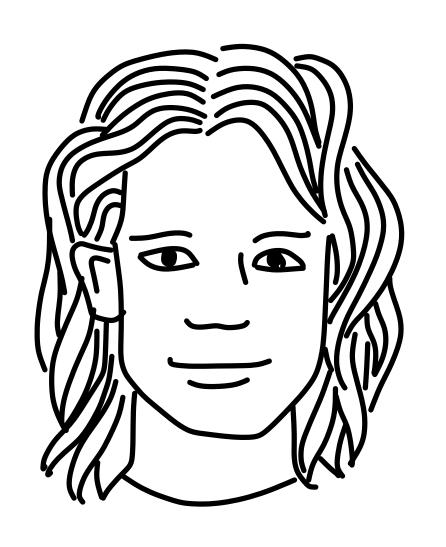
Attribute-Driven Positioning



Does not lend itself well to visualizing the topology of the network.

Recommended for smaller, sparse networks where relationships between node attributes are paramount to the analysis task, and topological features only provide context

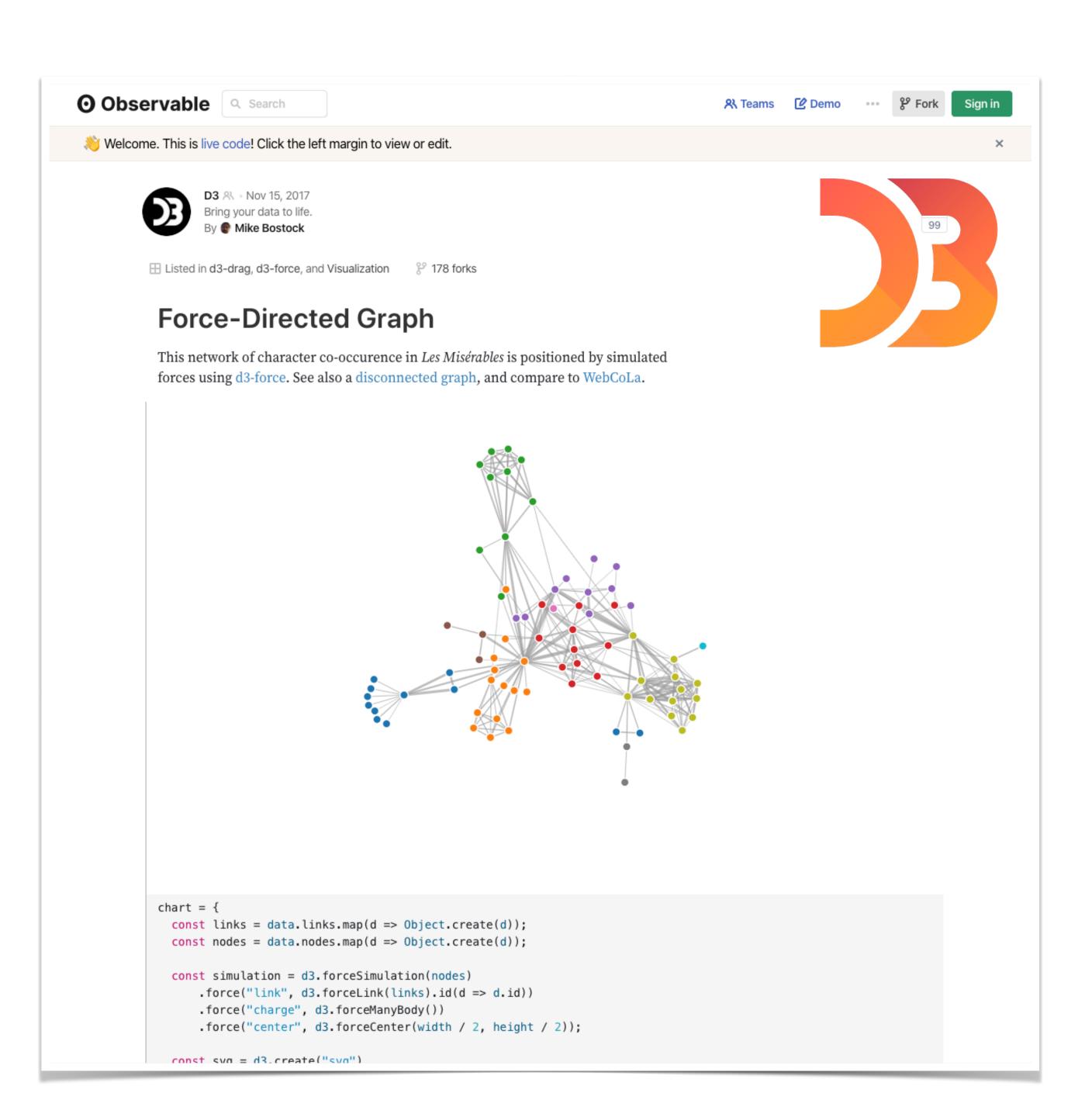
Tools and Applications

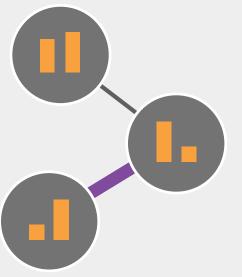


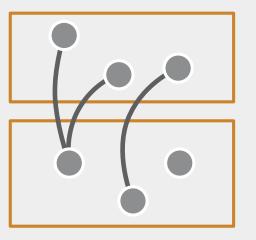
Bradgraphic designer

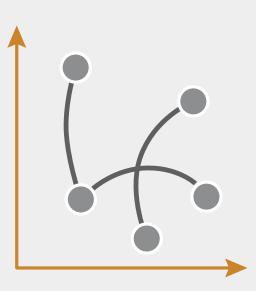
Maya developer

JS

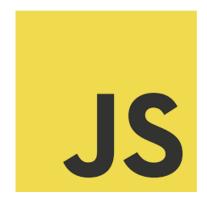








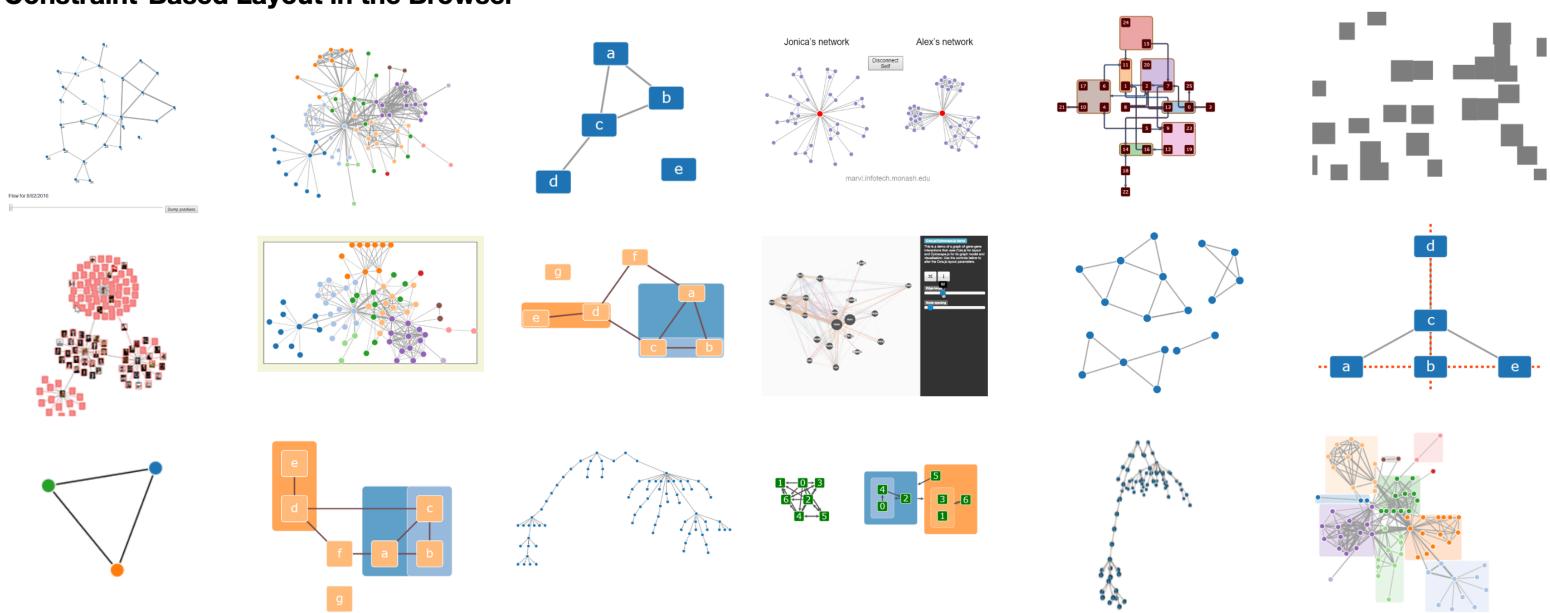
Cola.js (A.K.A. "WebCoLa") is an open-source JavaScript library for arranging your HTML5 documents and diagrams using constraint-based optimization techniques.

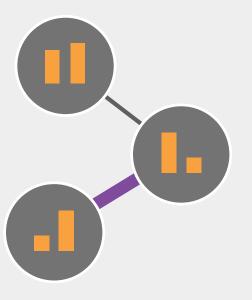


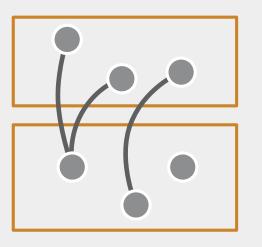
Overview Wiki API Source

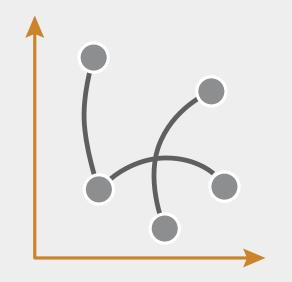
cola.js

Constraint-Based Layout in the Browser



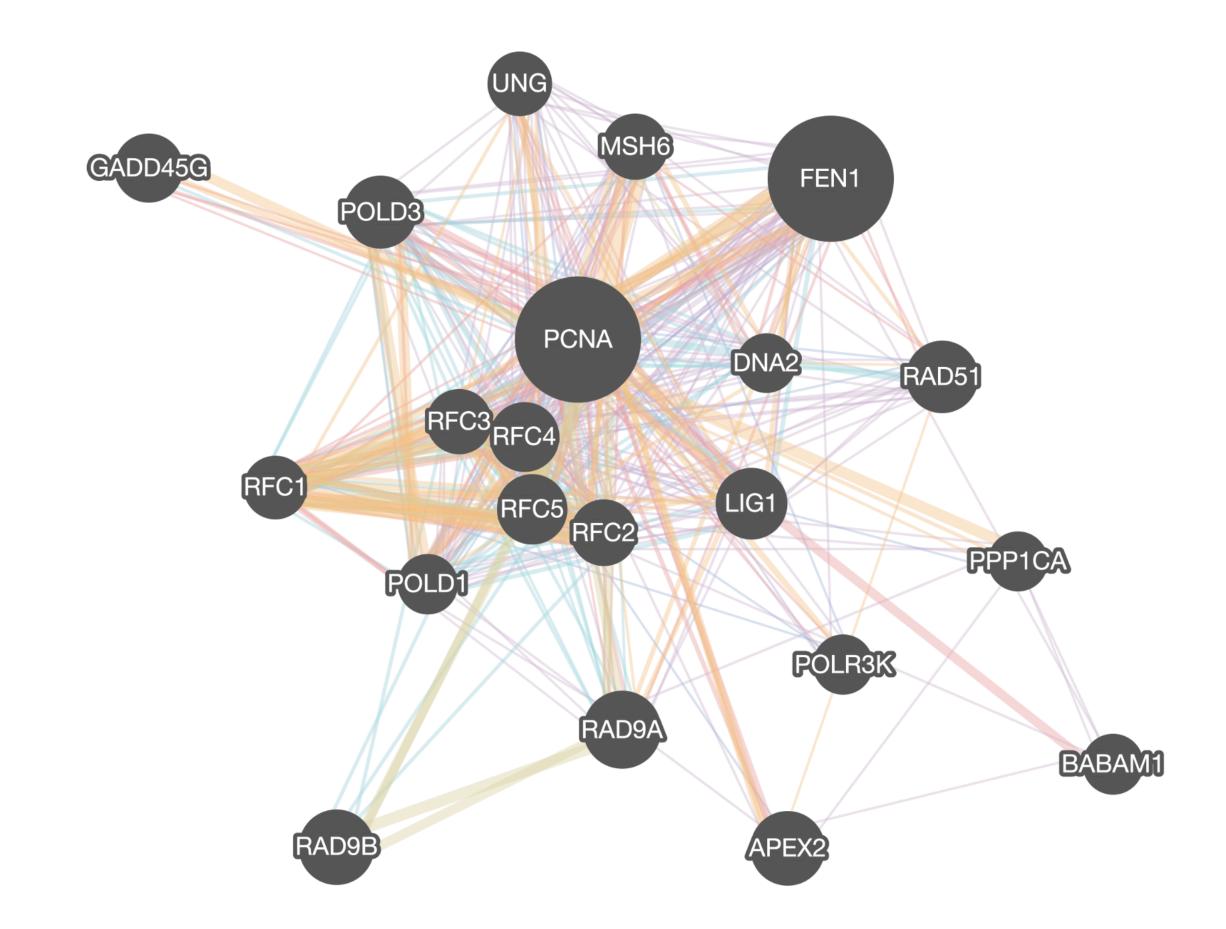


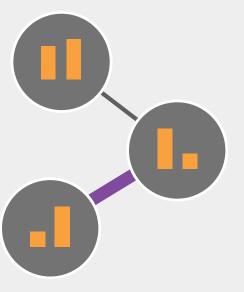


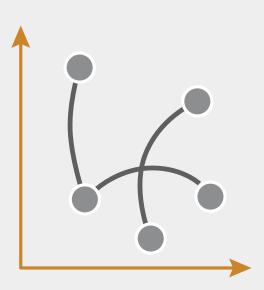


Graph theory (network) library for visualisation and analysis

Repo GitHub Updates Twitter News and tutorials Blog Questions StackOverflow Ask a question StackOverflow npm installs 100k/month master branch passing unstable branch passing Greenkeeper enabled





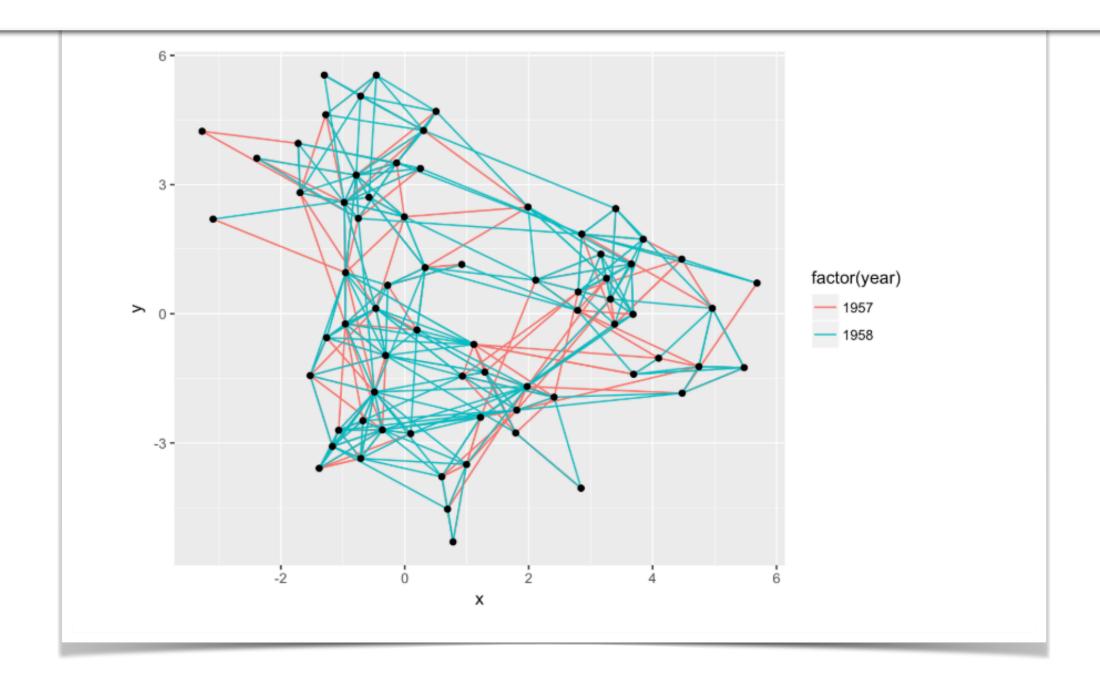


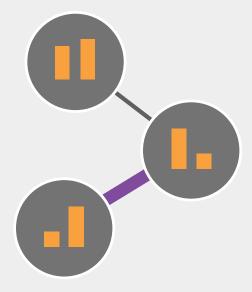
ggraph

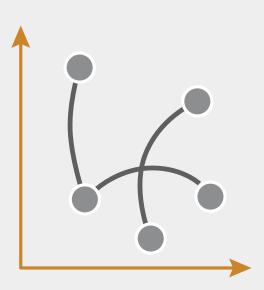
/dʒi:.dʒiˈraːf/ (or g-giraffe)

A grammar of graphics for relational data

ggraph is an extension of ggplot2 aimed at supporting relational data structures such as networks, graphs, and trees. While it builds upon the foundation of ggplot2 and its API it comes with its own self-contained set of geoms, facets, etc., as well as adding the concept of *layouts* to the grammar.







Navigation

Create random graph

Create Edges

Color Node Points

Create Network Graph

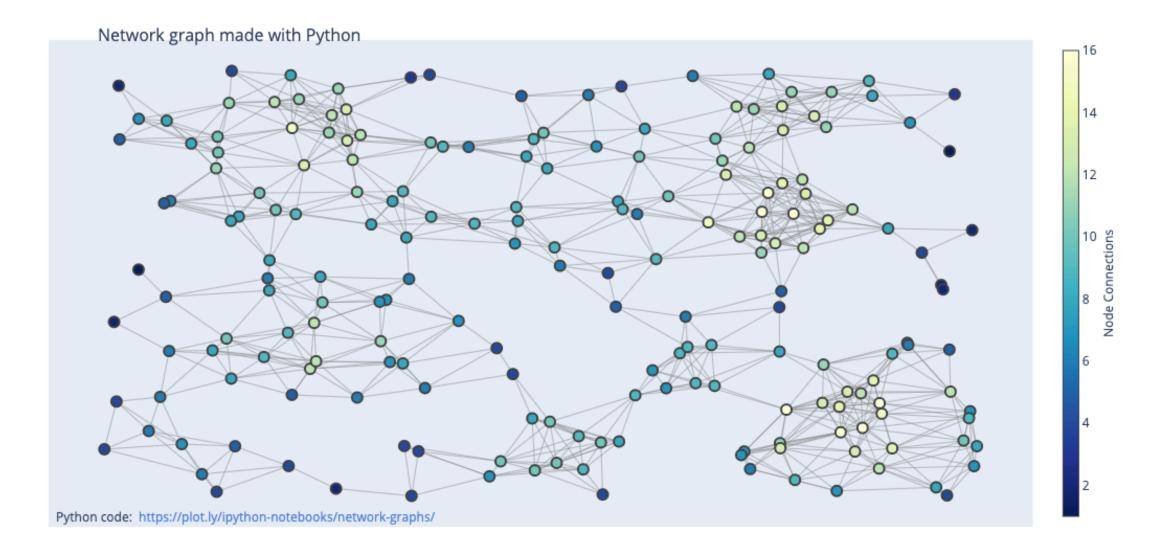
Dash Example

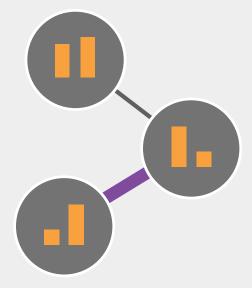
Reference

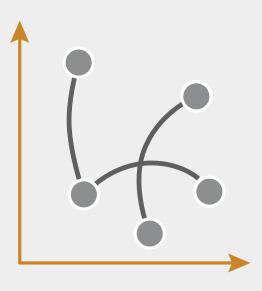
Back To Python

Create Network Graph

```
fig = go.Figure(data=[edge_trace, node_trace],
             layout=go.Layout(
                title='<br/>Network graph made with Python',
                titlefont_size=16,
                showlegend=False,
                hovermode='closest',
                margin=dict(b=20,l=5,r=5,t=40),
                annotations=[ dict(
                    text="Python code: <a href='https://plot.ly/ipython-notebooks/network-graphs/'> https://plot.l
y/ipython-notebooks/network-graphs/</a>",
                    showarrow=False,
                    xref="paper", yref="paper",
                    x=0.005, y=-0.002 )],
                xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
                yaxis=dict(showgrid=False, zeroline=False, showticklabels=False))
fig.show()
```







developer

NetworkX

Stable (notes)

2.3 — April 2019 download | doc | pdf

Latest (notes)

2.4 development github | doc | pdf

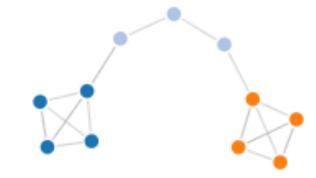
Archive

Contact

Mailing list Issue tracker

Software for complex networks

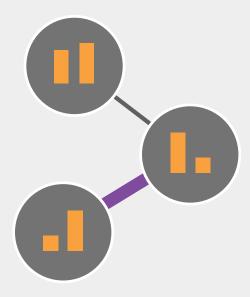
NetworkX is a Python package for the creation, manipulation, and study of the structure, dynamics, and functions of complex networks.

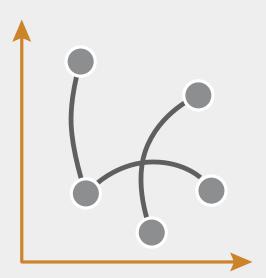


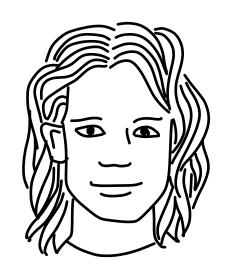
Features

- Data structures for graphs, digraphs, and multigraphs
- Many standard graph algorithms
- · Network structure and analysis measures
- · Generators for classic graphs, random graphs, and synthetic networks
- Nodes can be "anything" (e.g., text, images, XML records)
- · Edges can hold arbitrary data (e.g., weights, time-series)
- Open source <u>3-clause BSD license</u>
- Well tested with over 90% code coverage
- Additional benefits from Python include fast prototyping, easy to teach, and multiplatform

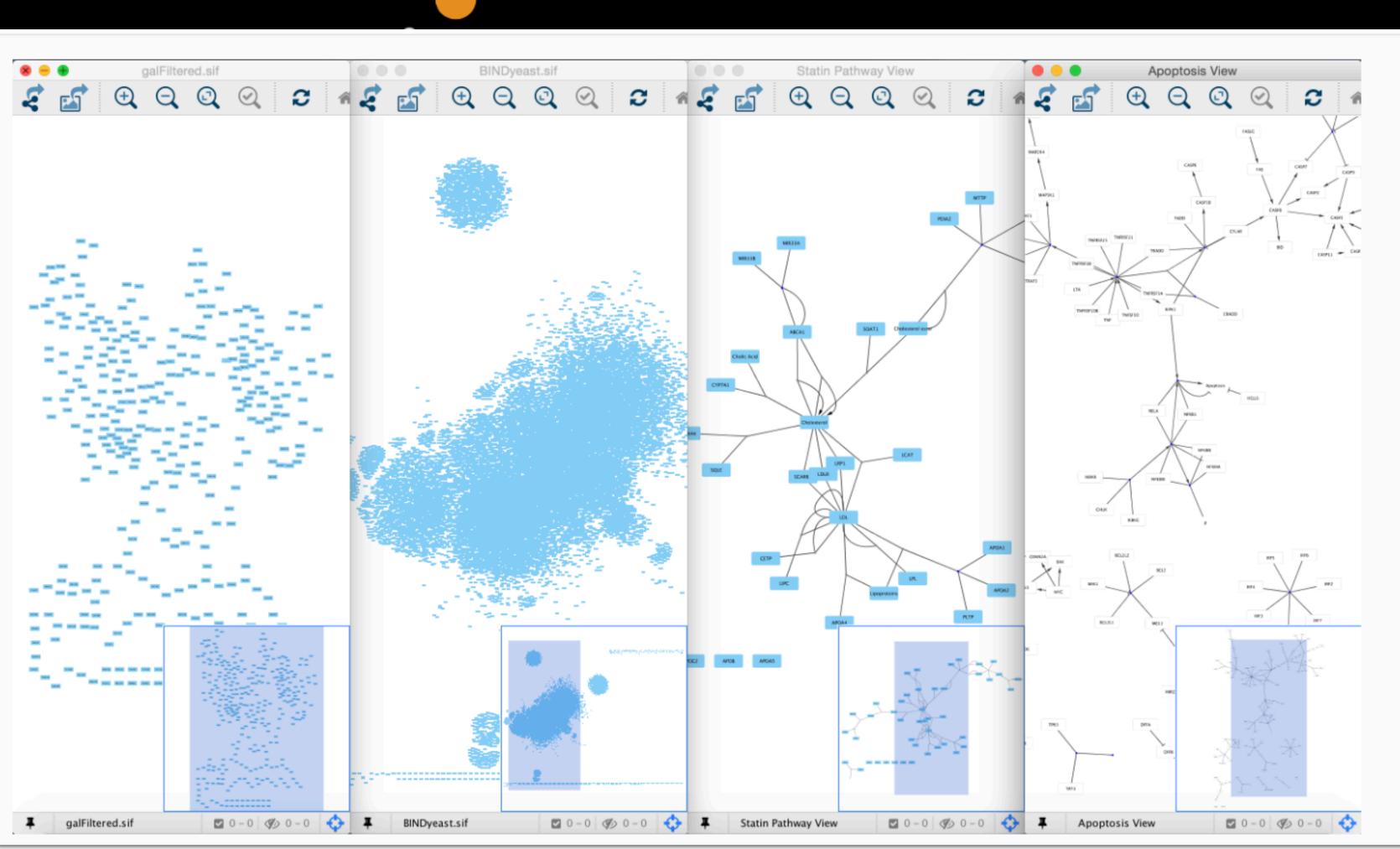
©2014-2019, NetworkX developers. | Powered by Sphinx 2.0.1 & Alabaster 0.7.12

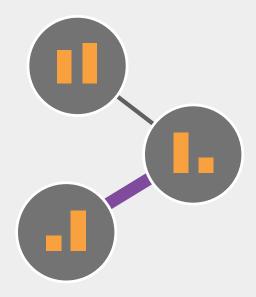


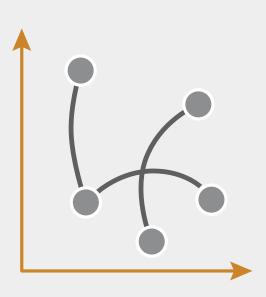


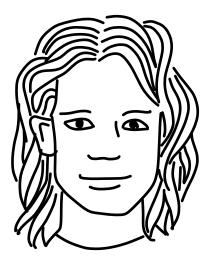


graphic designer









Download | Blog | Wiki | Forum | Support | Bug tracker

Home Features Learn Develop Plugins Services Consortium

graphic designer

The Open Graph Viz Platform

Gephi is the leading visualization and exploration software for all kinds of graphs and networks. Gephi is open-source and free.

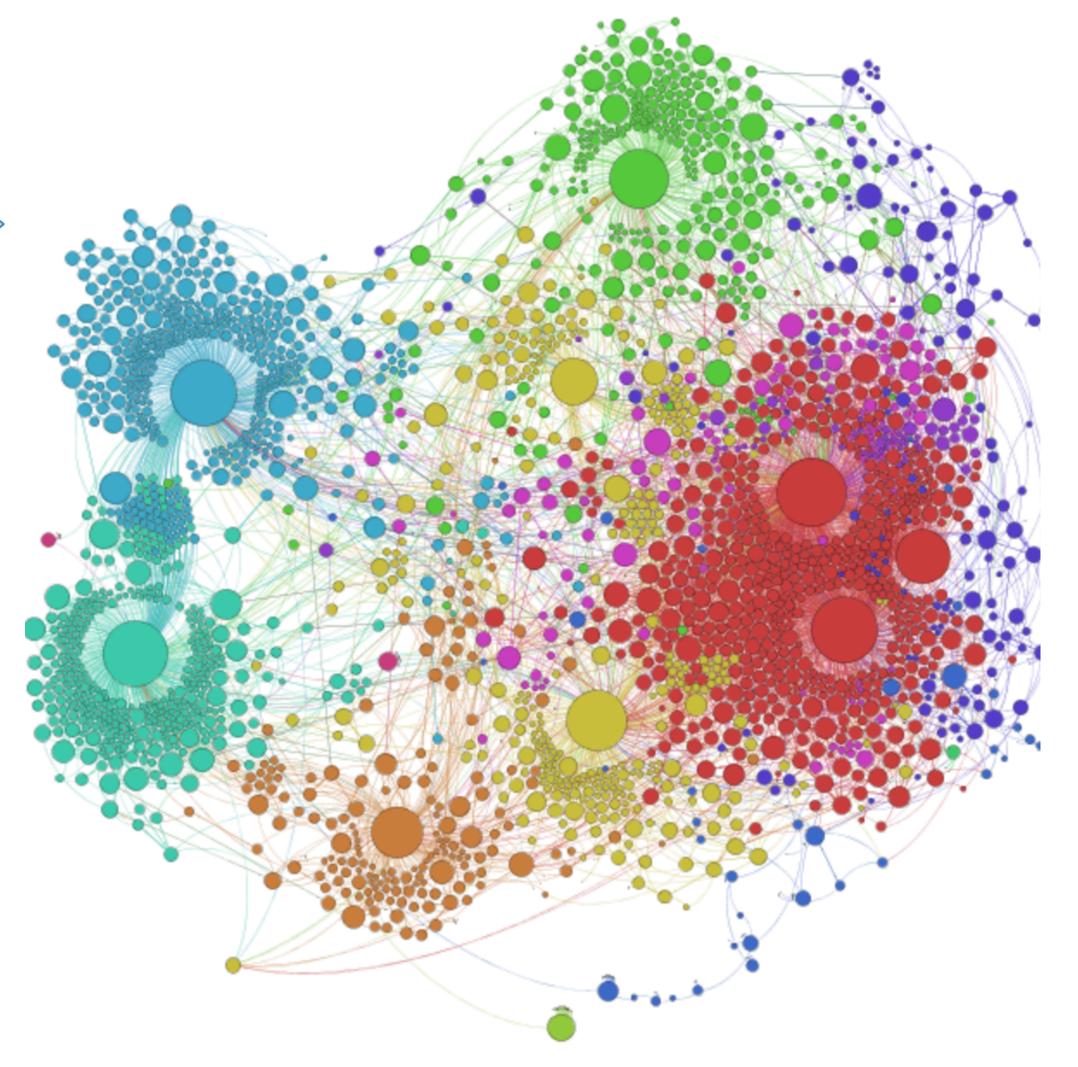
Runs on Windows, Mac OS X and Linux.

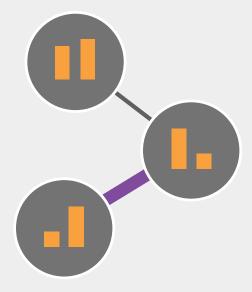
Learn More on Gephi Platform »

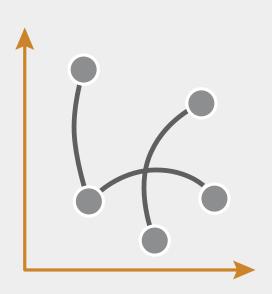
Release Notes | System Requirements

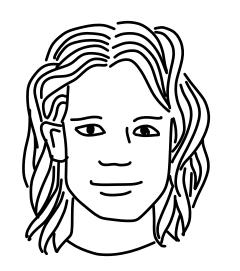
► Features
► Quick start

ScreenshotsVideos









graphic designer

difference between

G8: #gdpr toddwright_gdpr shares data cmswire

#dataprivacy sasâ develop

#cmworld cmswire #cx...

G12: next criteo...

G4: digital kahootz ways G13: cmos cmswire customer #ai experience use gaogle hubspot

gdpr lisamloftis

marketing

world G18: #ff takeaways ennlavio cms year's scarletts #cmworld legisla g m. digital more espail #cust. cust. cms stati...

G45:

domnic... G42:

customer westmo... G34;

G15: G23: G24: G21: 3 G22: G27: G26: cmswire digital advice cmswire #cx. busines nicocha cmswir. #leade increa.

#hr work G35: tran... #hot.. for.. #in.. me.. ne... #hot.. for.. #hot.. for.. #in.. me.. ne... #hot.. for.. for..

customer centric description (G34):

centric description (G34):

centric description (G34):

digit dig

G52: G69: G71: G72: G57: G58: G56: G54: G55: inno...nee_inte...nee_em...ser...co...nee_lija...

equ tim #s. G1 G1 G7 G1 G9 G9 G9

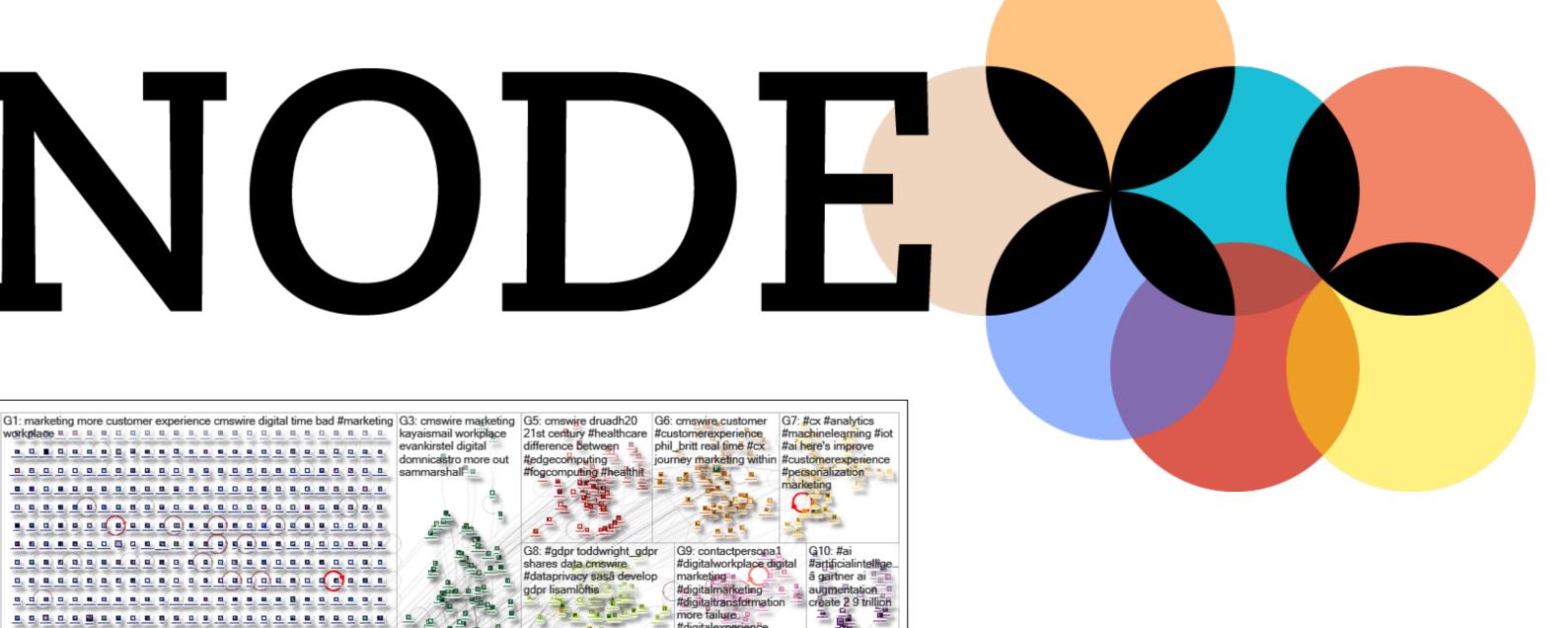
G1_G1_G1_G1_G1_G1_

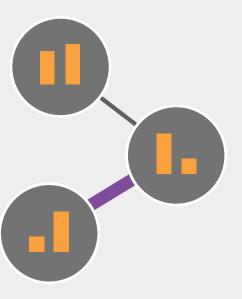
#edgecomputing #fogcomputing #healthit

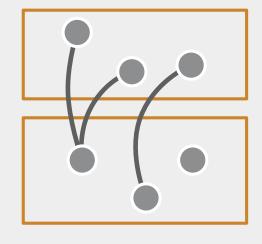
evankirstei digitai domnicastro more out

G2: cmswire marketing customer digital more workplace experience

#digitalmarketing #digitalworkplace time



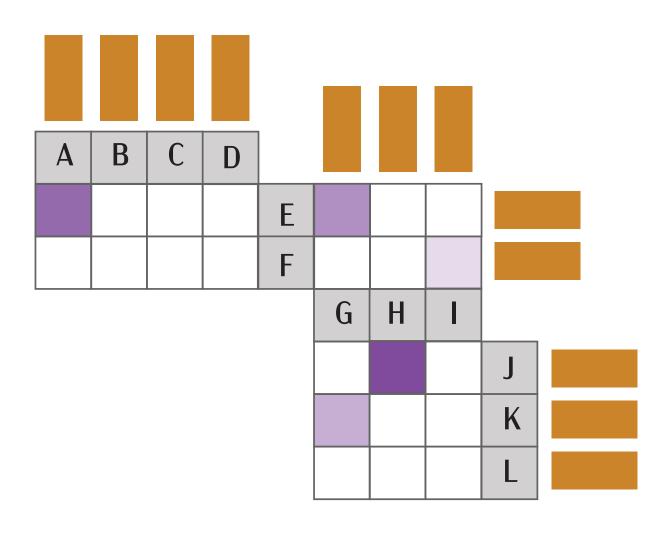




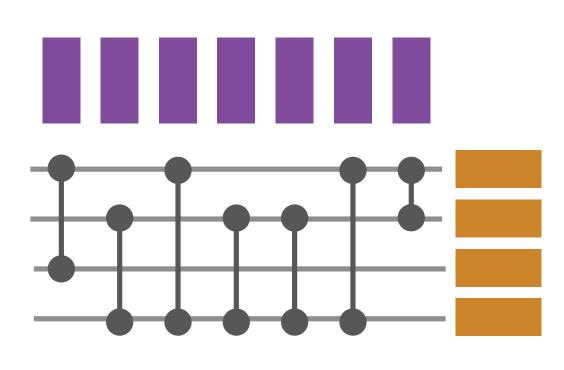
Tabular Layouts



Adjacency Matrix

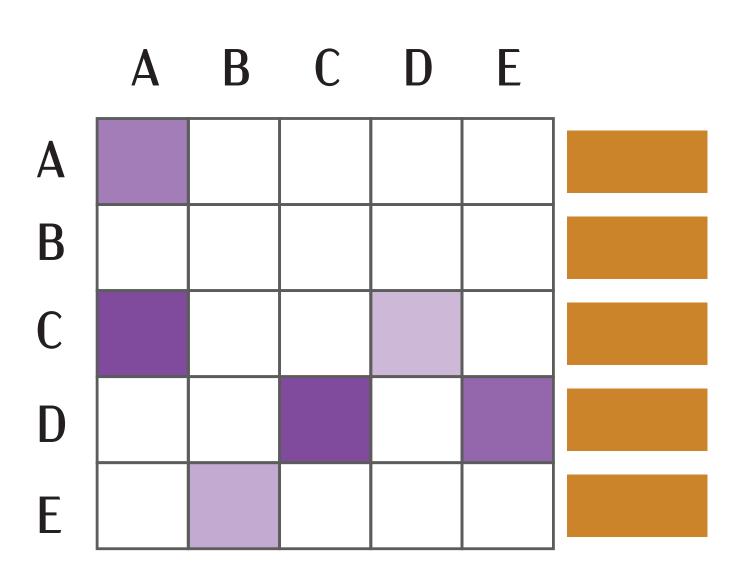


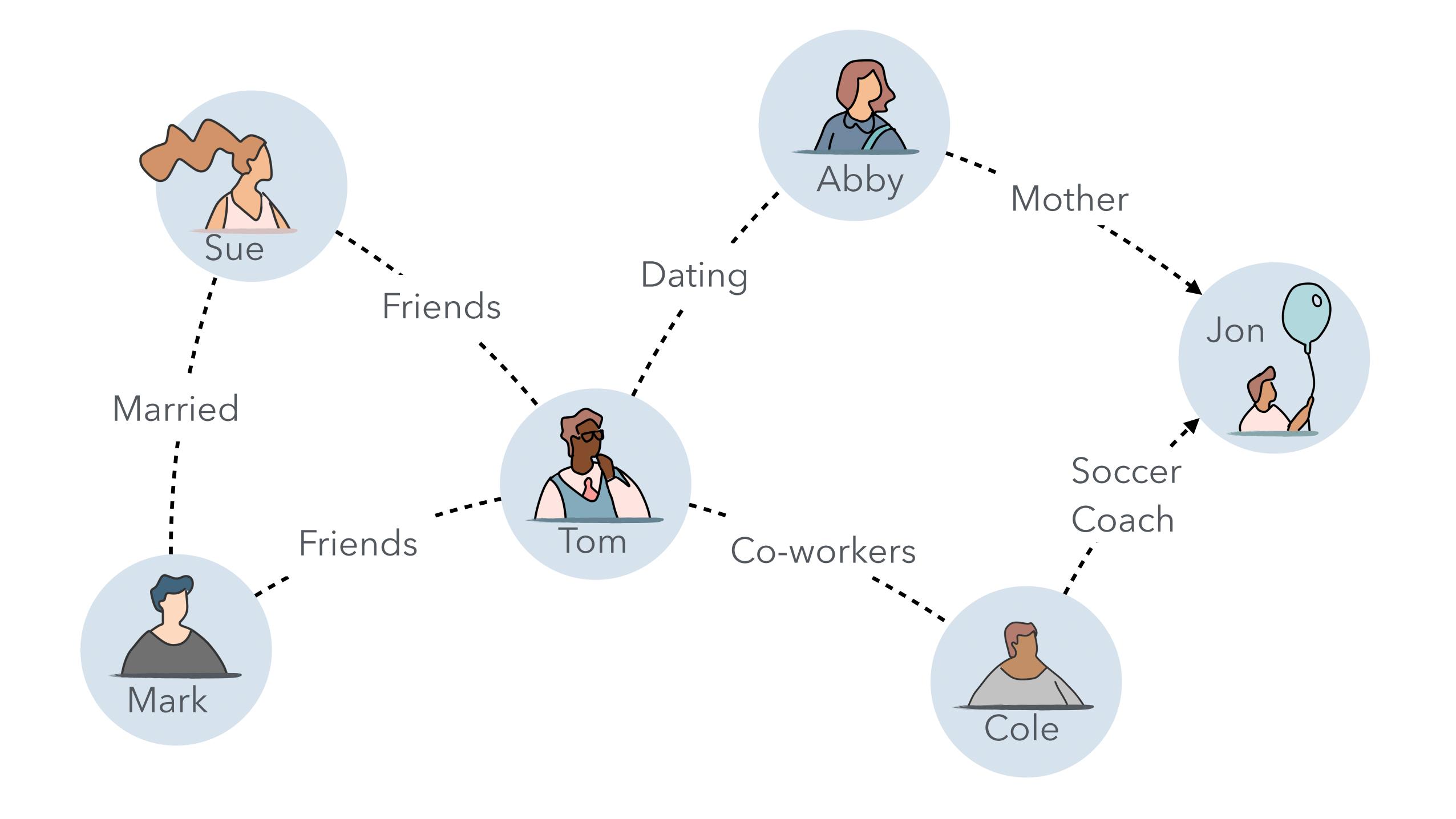
Quilts

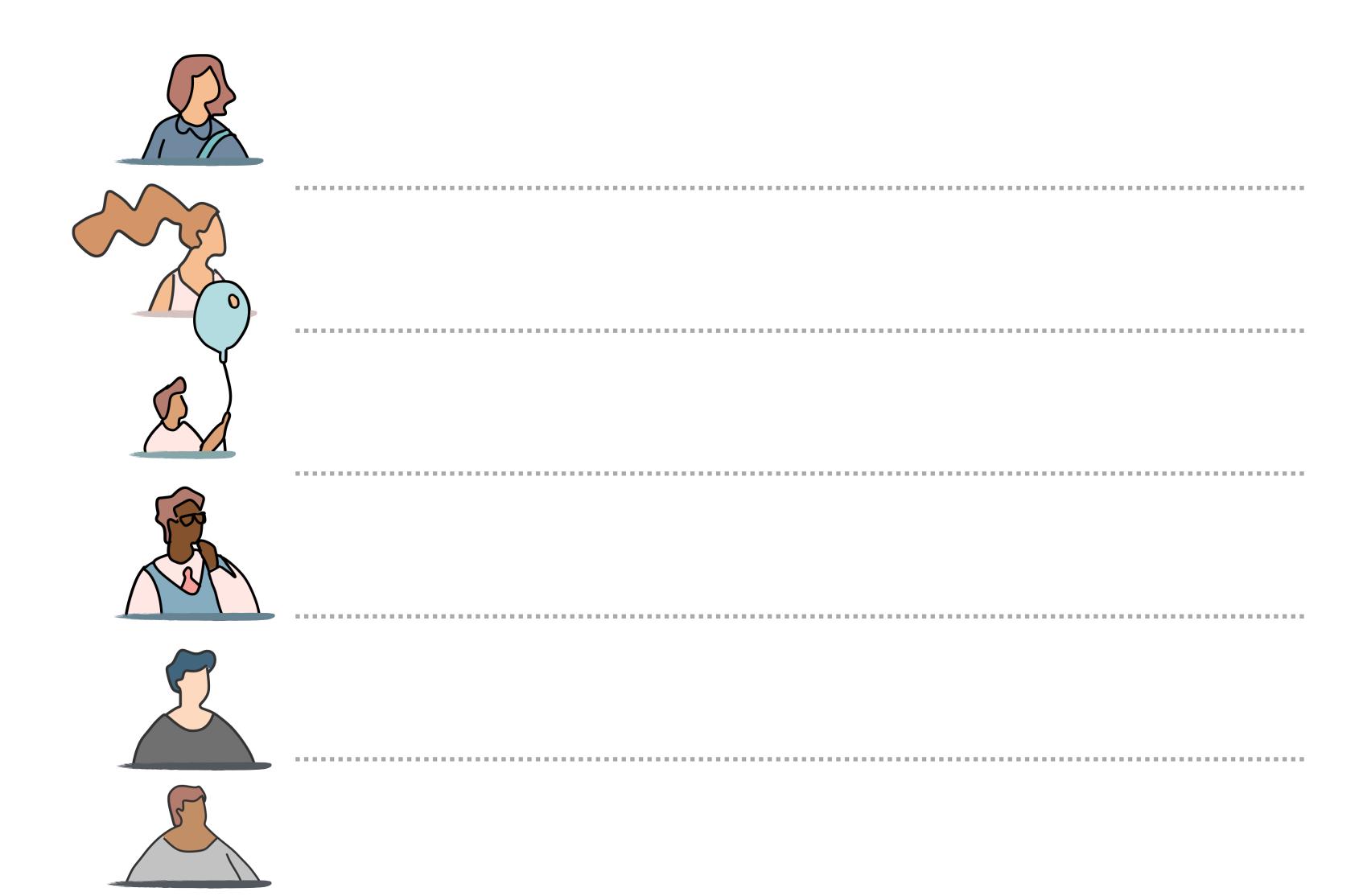


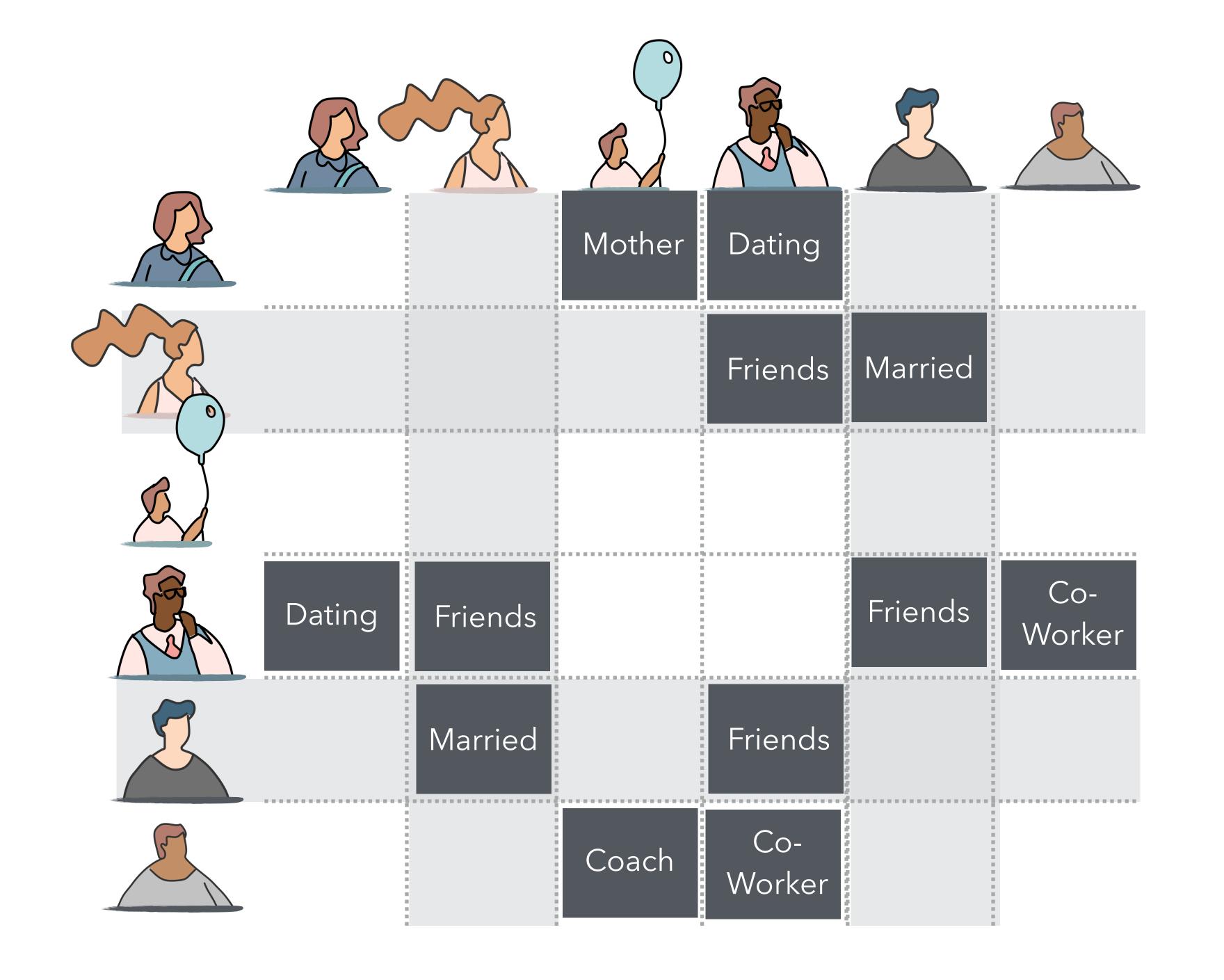
BioFabric

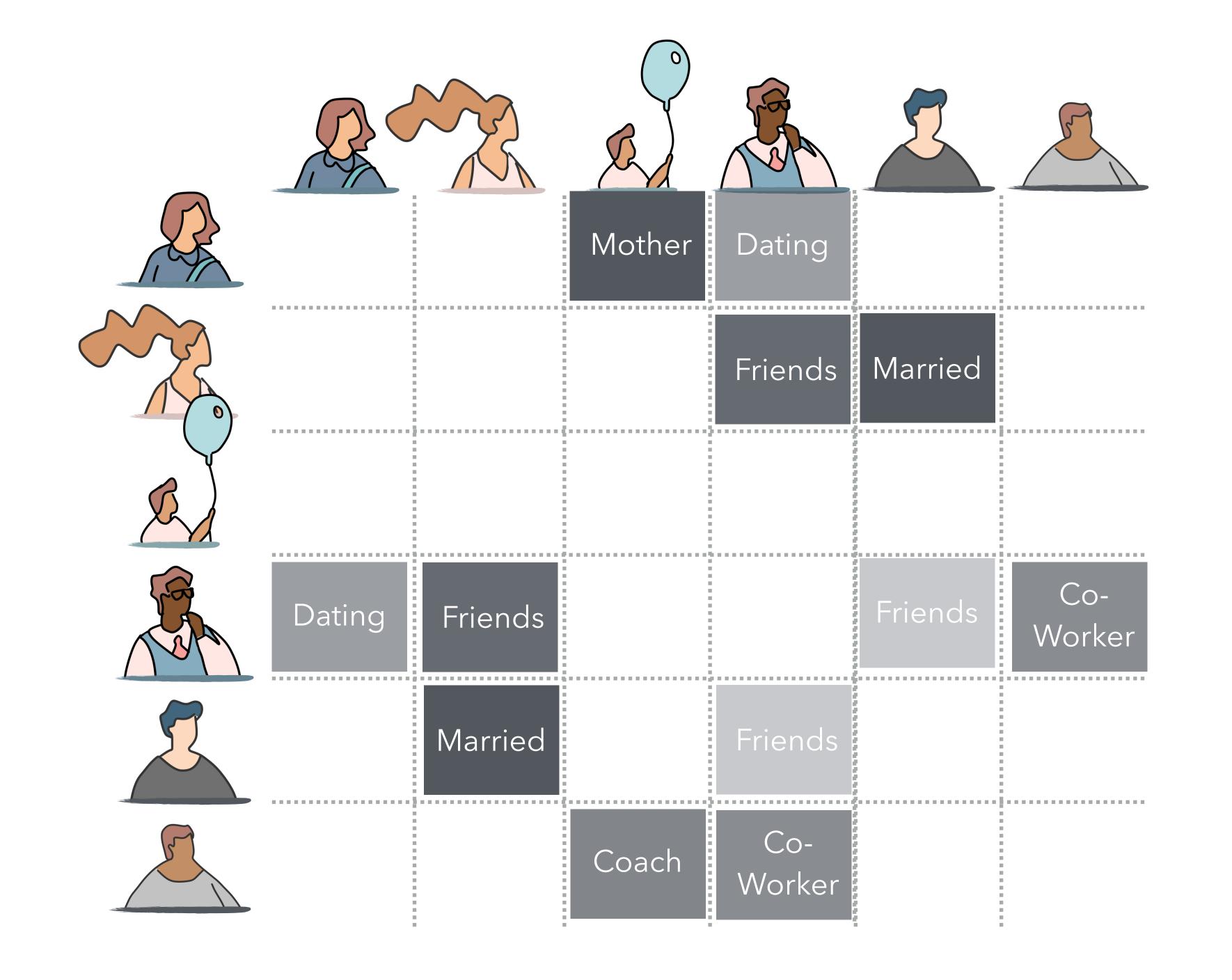
Adjacency Matrix





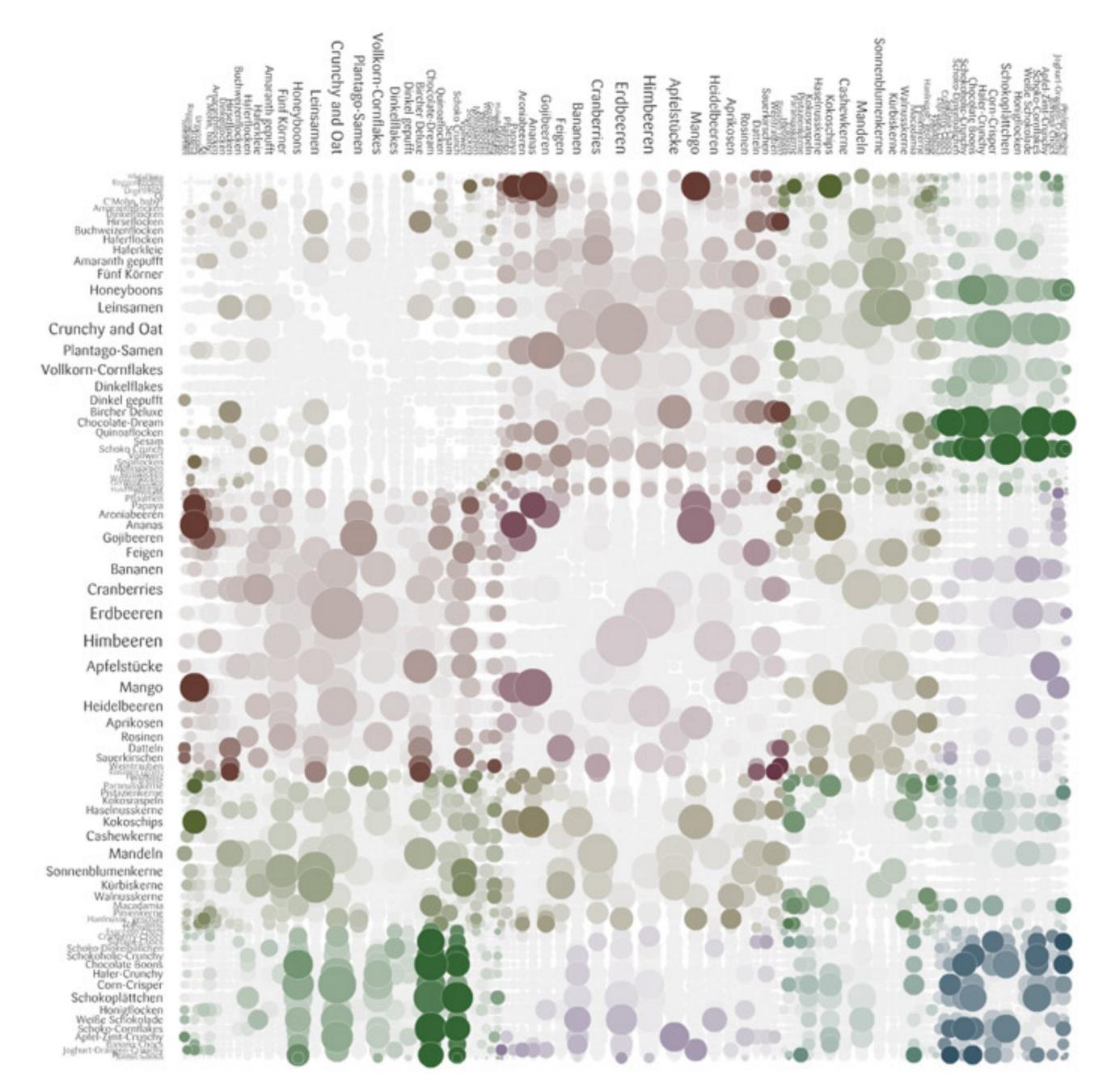


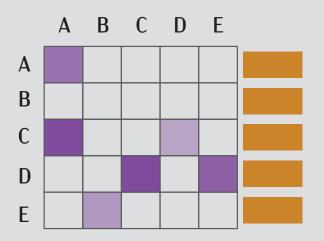




						Name	Beverage	Day 1
		Mother	Dating			Abby	Port	1
			Friends	Married		Sue	Coke	0
						Jon	Coke	4
Dating	Friends			Friends	Worker	Tom	Beer	5
	Married		Friends			Mark	Beer	2
		Coach	Co- Worker			Cole	Port	3

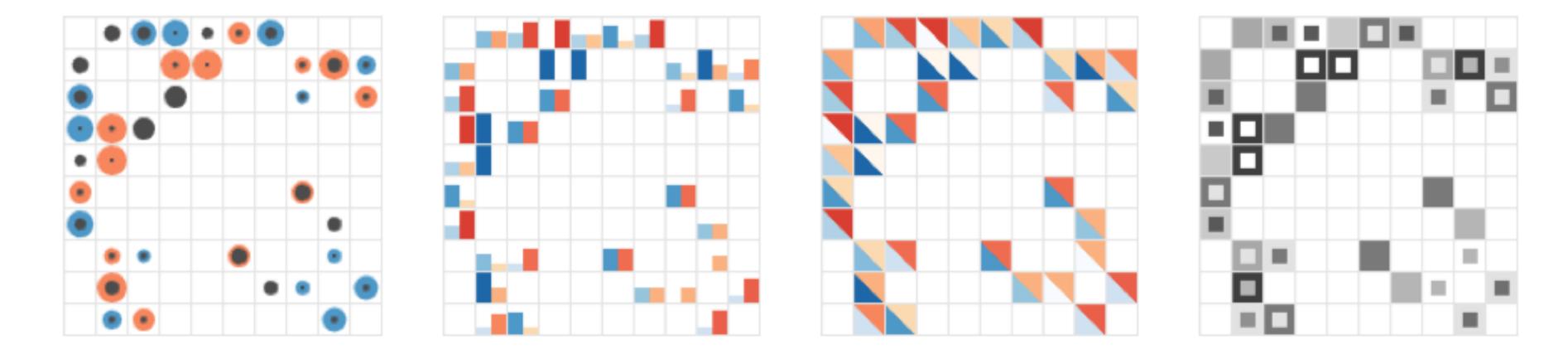
						Name	Beverage	Day 1
		Co- Worker	Friends	Dating	Friends	Tom	Beer	5
						Jon	Coke	4
Co- Worker	Coach					Cole	Port	3
Friends					Married	Mark	Beer	2
Dating	Mother					Abby	Port	1
Friends			Married			Sue	Coke	0



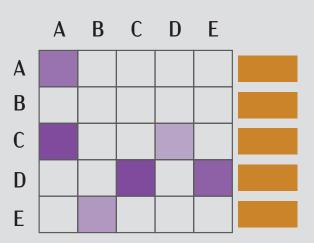


Adjacency Matrix

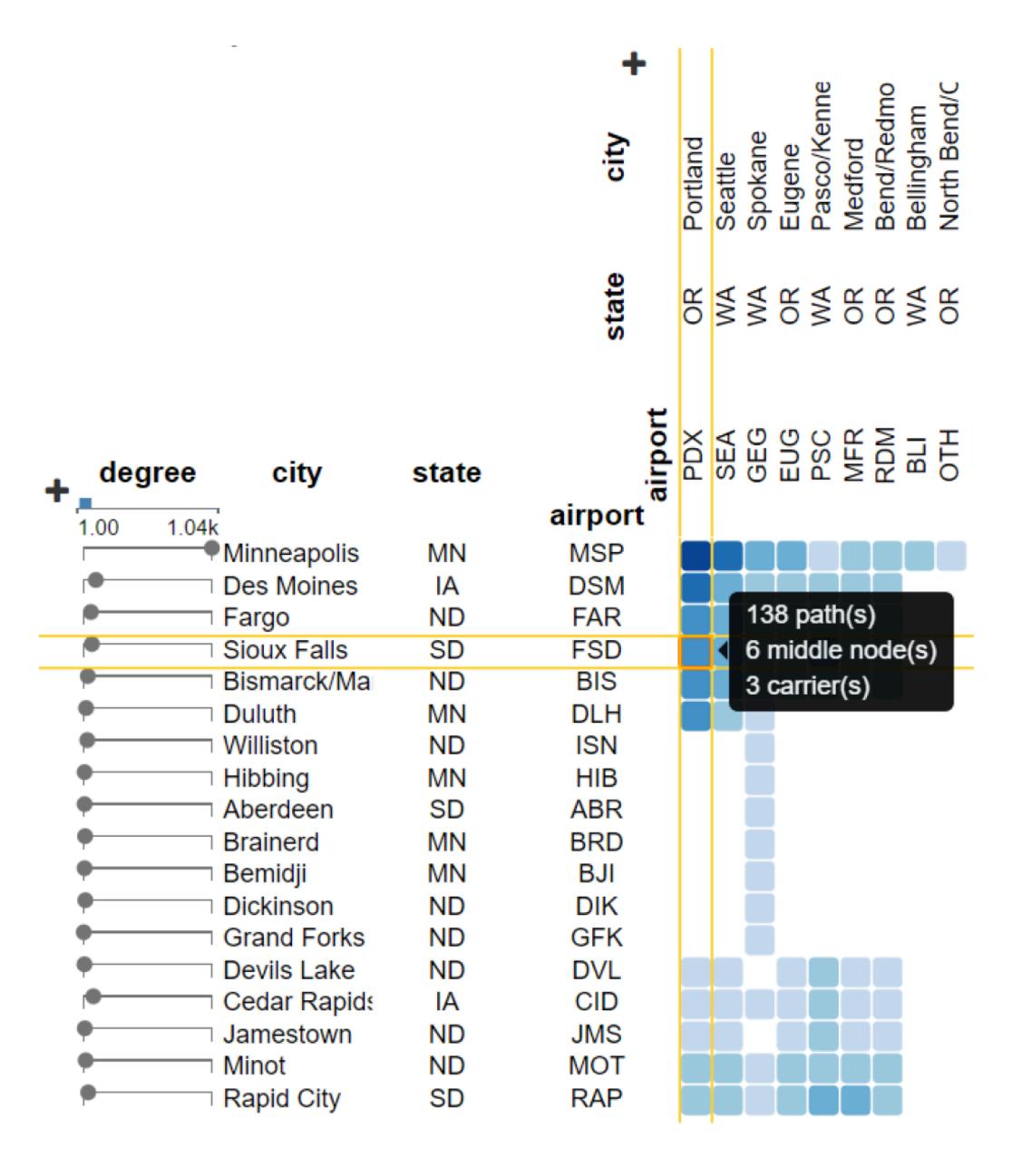
Moritz Stefaner, Musli Ingredient Network. https://truth-and-beauty.net/projects/muesli-ingredient-network

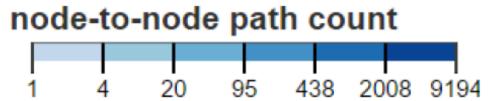


Alper et al, 2013

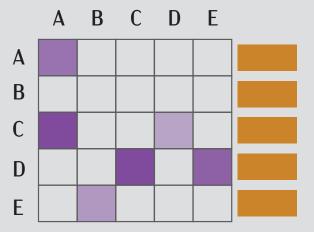


Adjacency Matrix



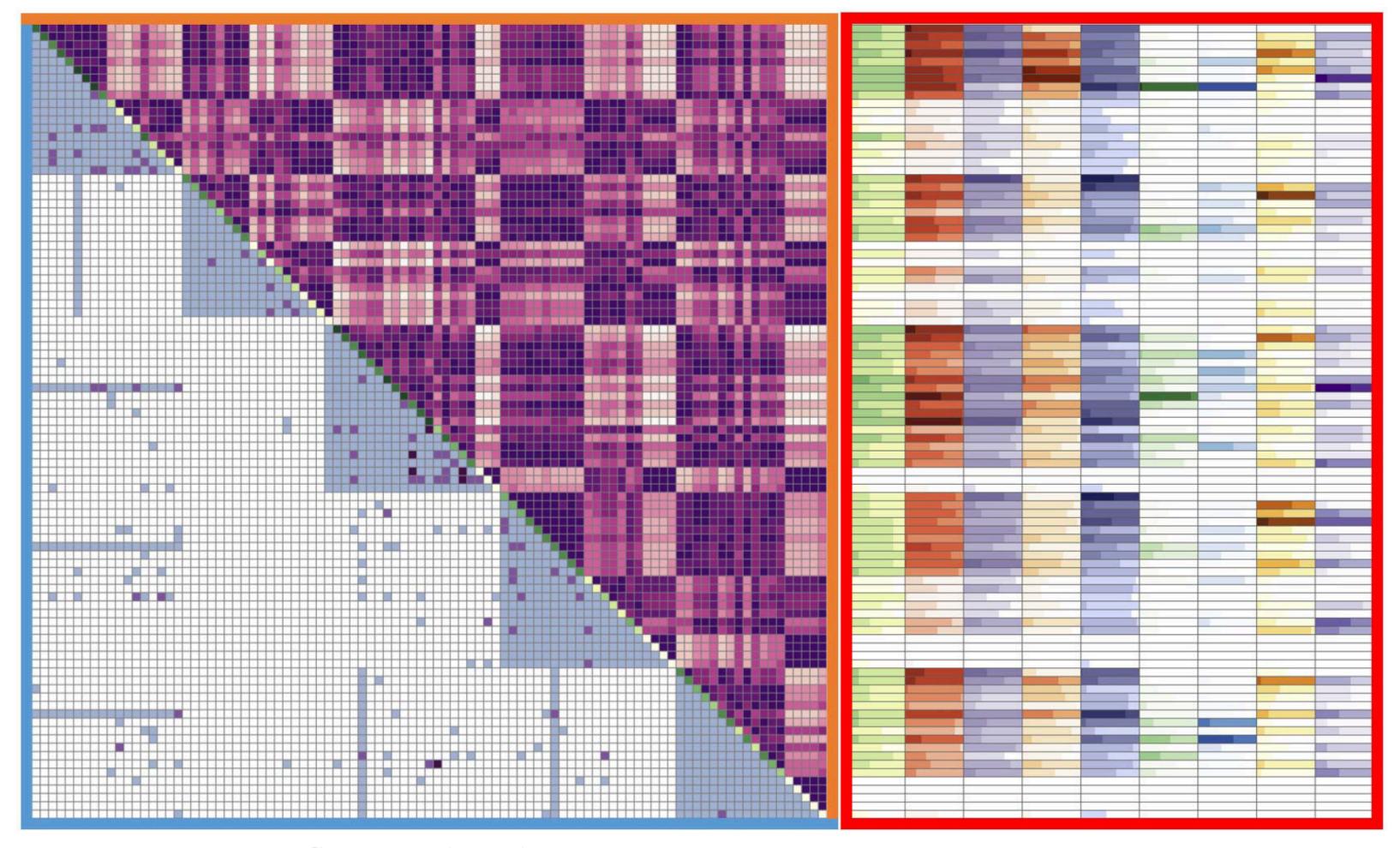


Kerzner et al, 2017

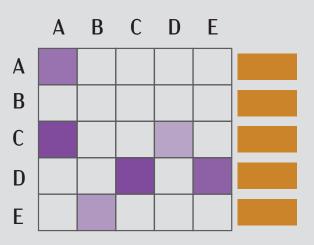


Adjacency Matrix

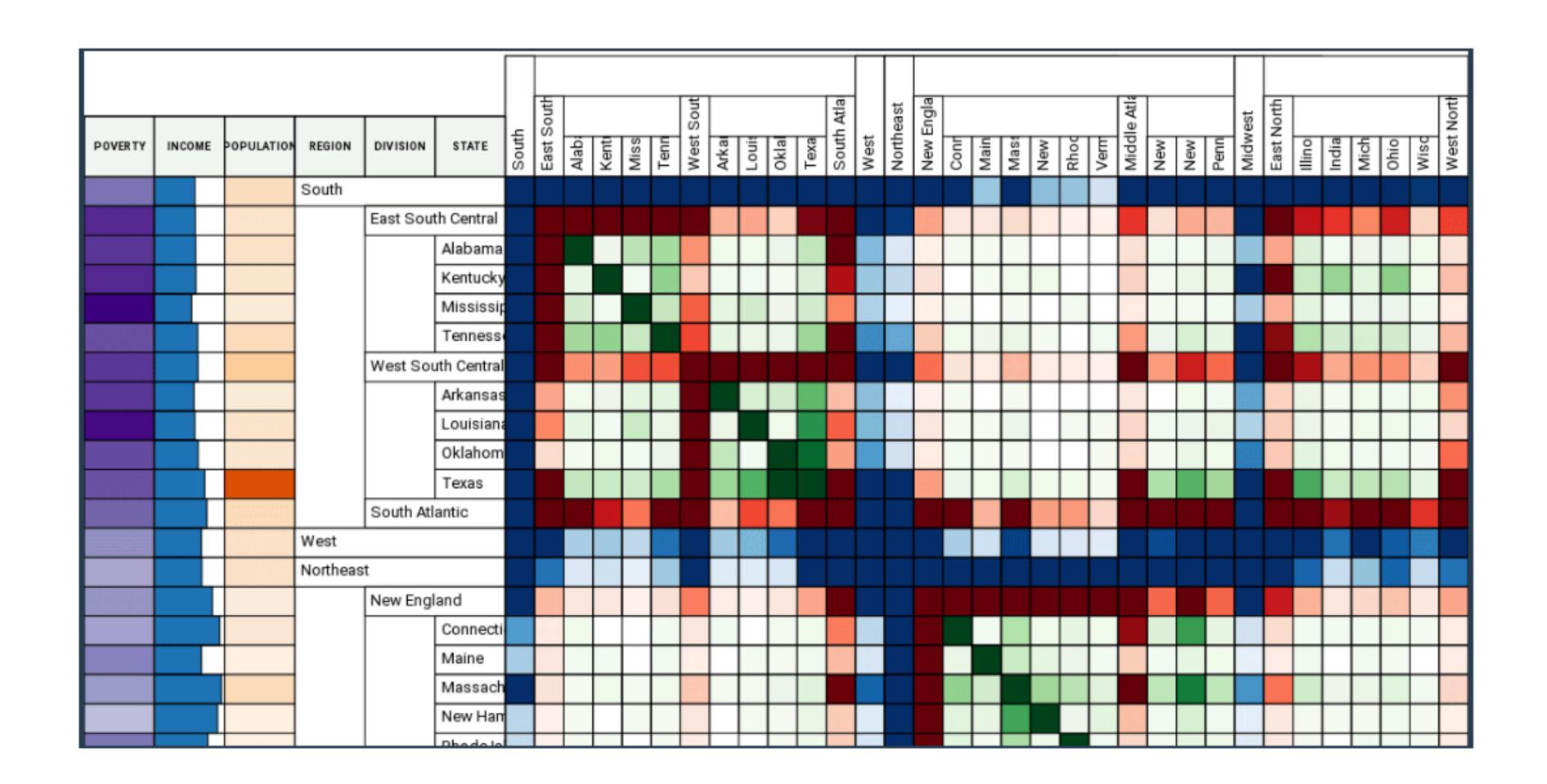
Attribute values (nodes)

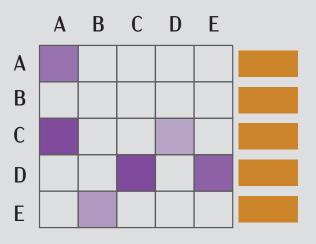


Structure (edges)



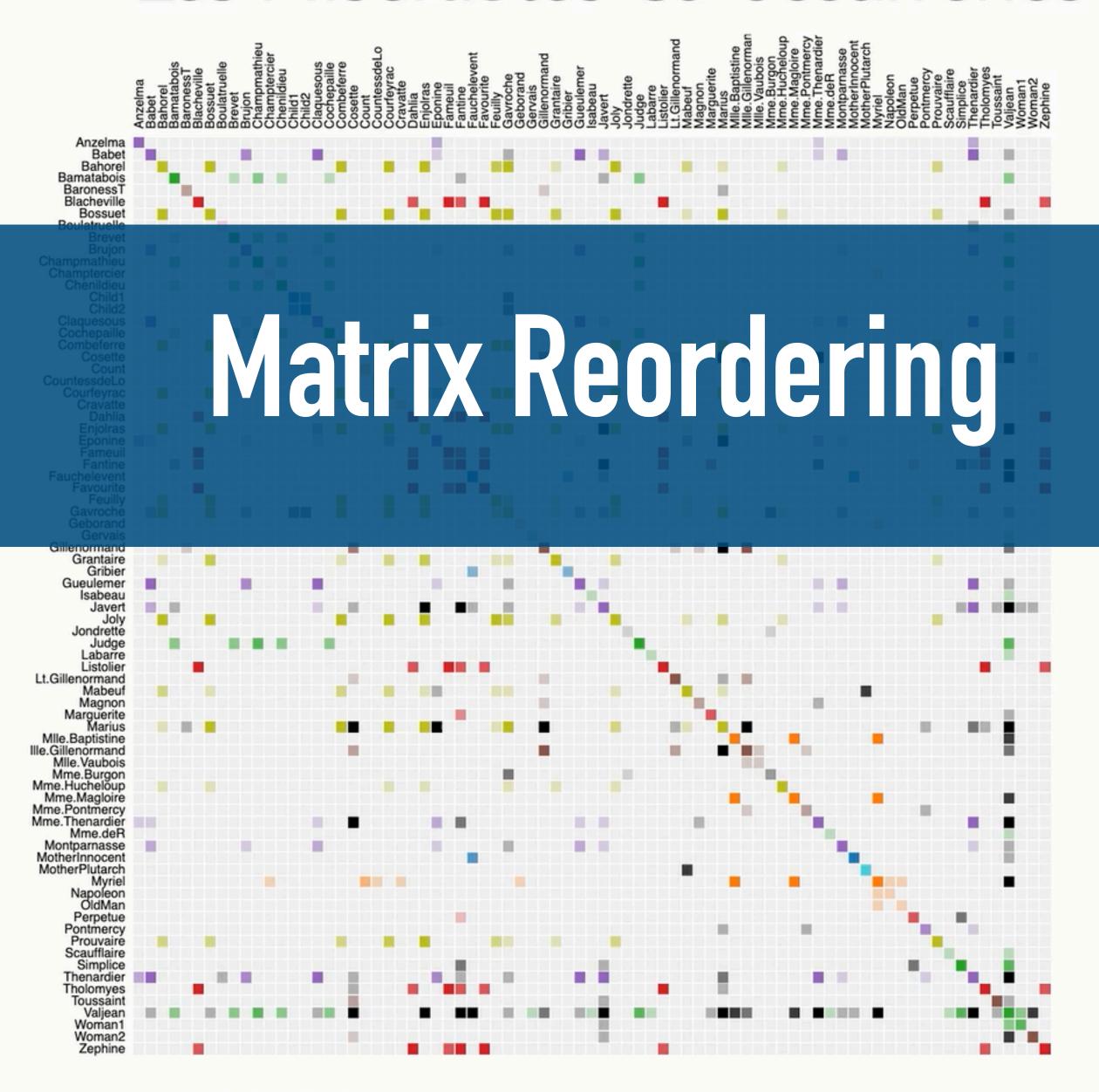
Adjacency Matrix





Adjacency Matrix

Les Misérables Co-occurrence



Order: by Name

This matrix diagram visualizes

Vistar Hugg's Las Misárablas

Each colored cell represents two characters that appeared in the same chapter; darker cells indicate characters that cooccurred more frequently.

Use the drop-down menu to reorder the matrix and explore the data.

Built with d3.j

Source: The Stanford GraphBase.

Home

Jean-Daniel Fekete edited this page on Apr 23, 2015 · 2 revisions

Reorder.js is a library to reorder tables and graph/networks.

Resources

- Introduction
- API Reference

Browser / Platform Support

Reorder.js is mainly developed on Chrome and Node.js. Use npm install reorder.js to install, and require("reorder") to load.

Installing

Download the latest version here

https://github.com/jdfekete/reorder.js/release

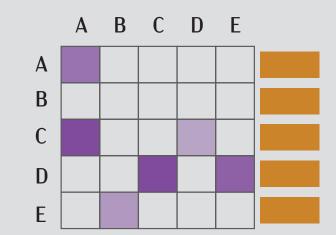
Add a custom footer

▼ Pages 12
Find a Page...
Home
API Reference
Conversion
Core
Gallery
Graph
Introduction
LinearAlgebra

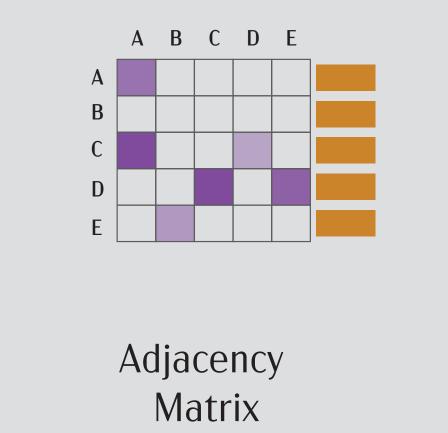
New Page

Edit

+ Add a custom sidebar



Adjacency Matrix



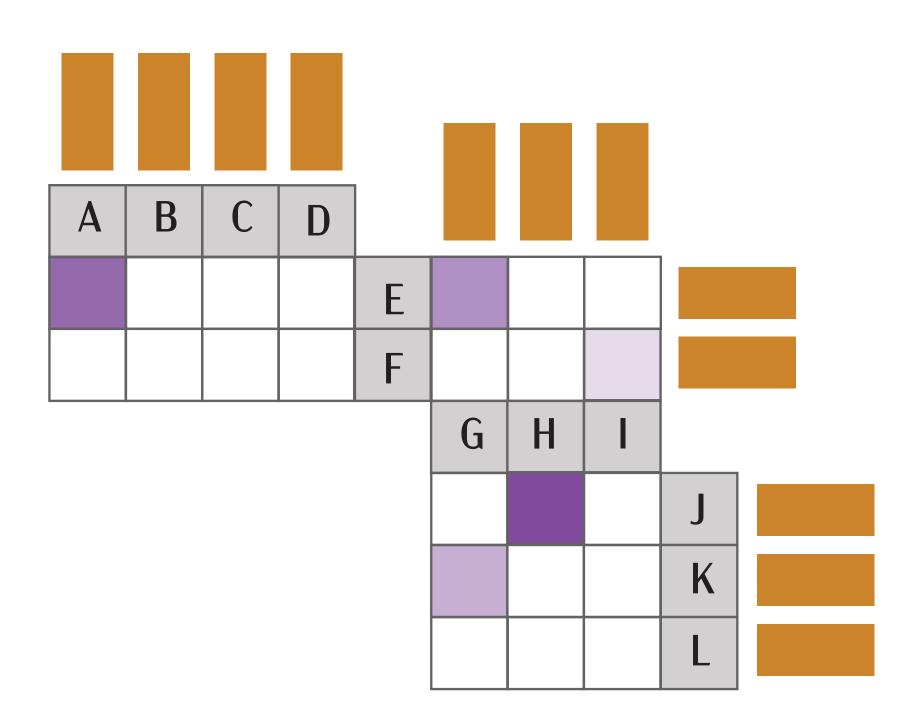
Requires quadratic space with respect to the

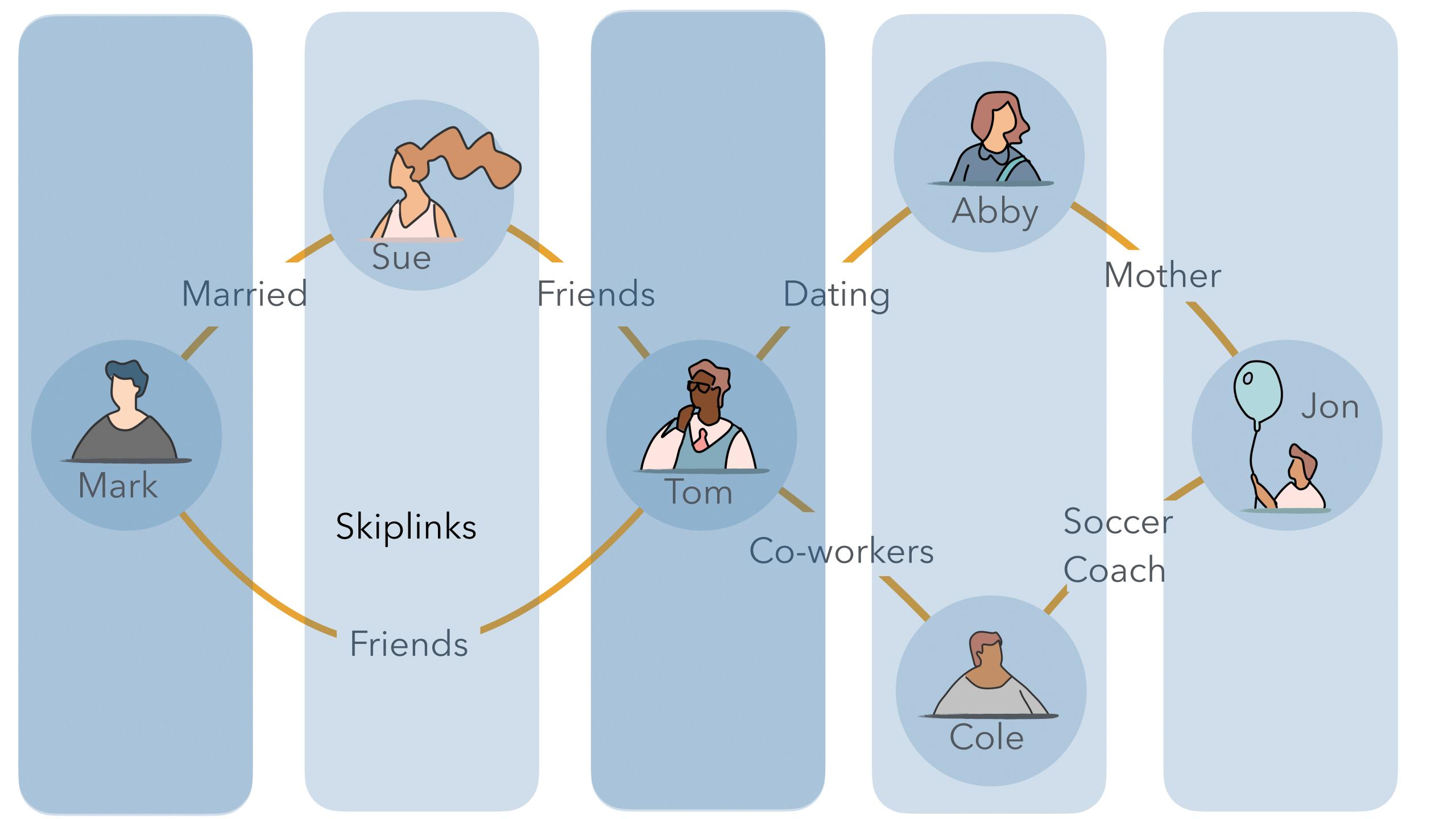
number of nodes.

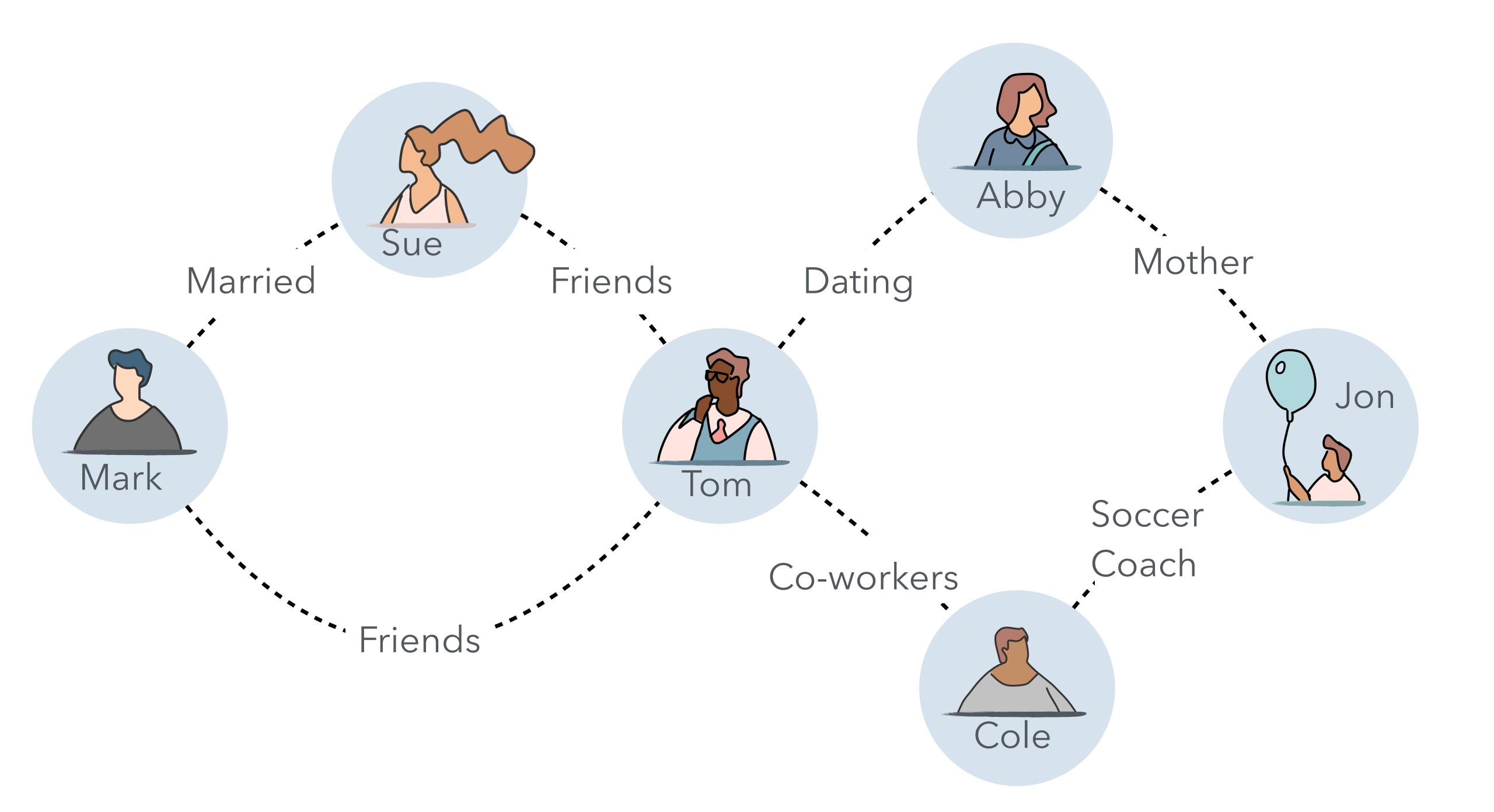
Complexity of choosing the right reordering algorithm

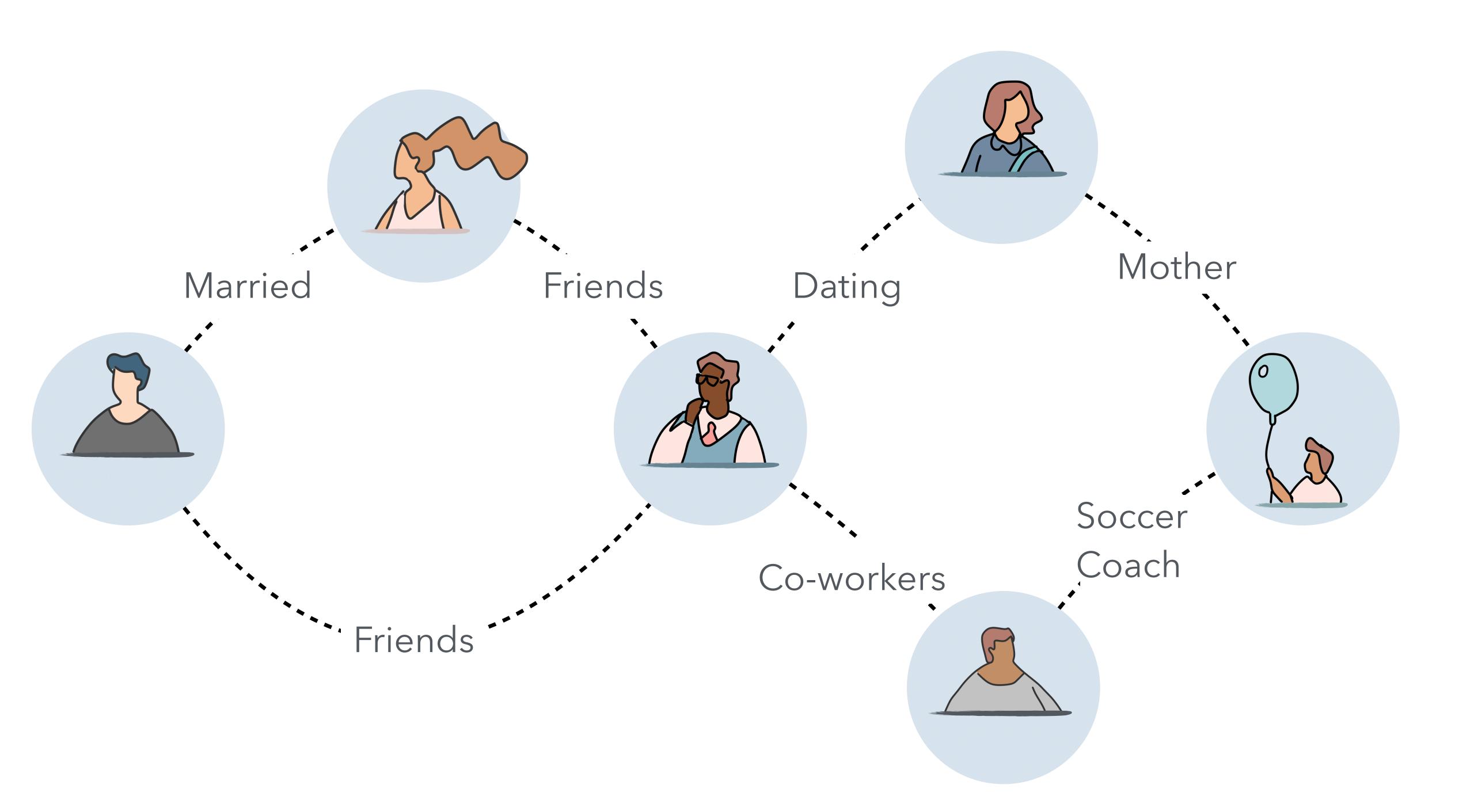
Recommended for smaller, complex and dense networks with rich node and/or edge attributes, for all tasks except for those involving paths

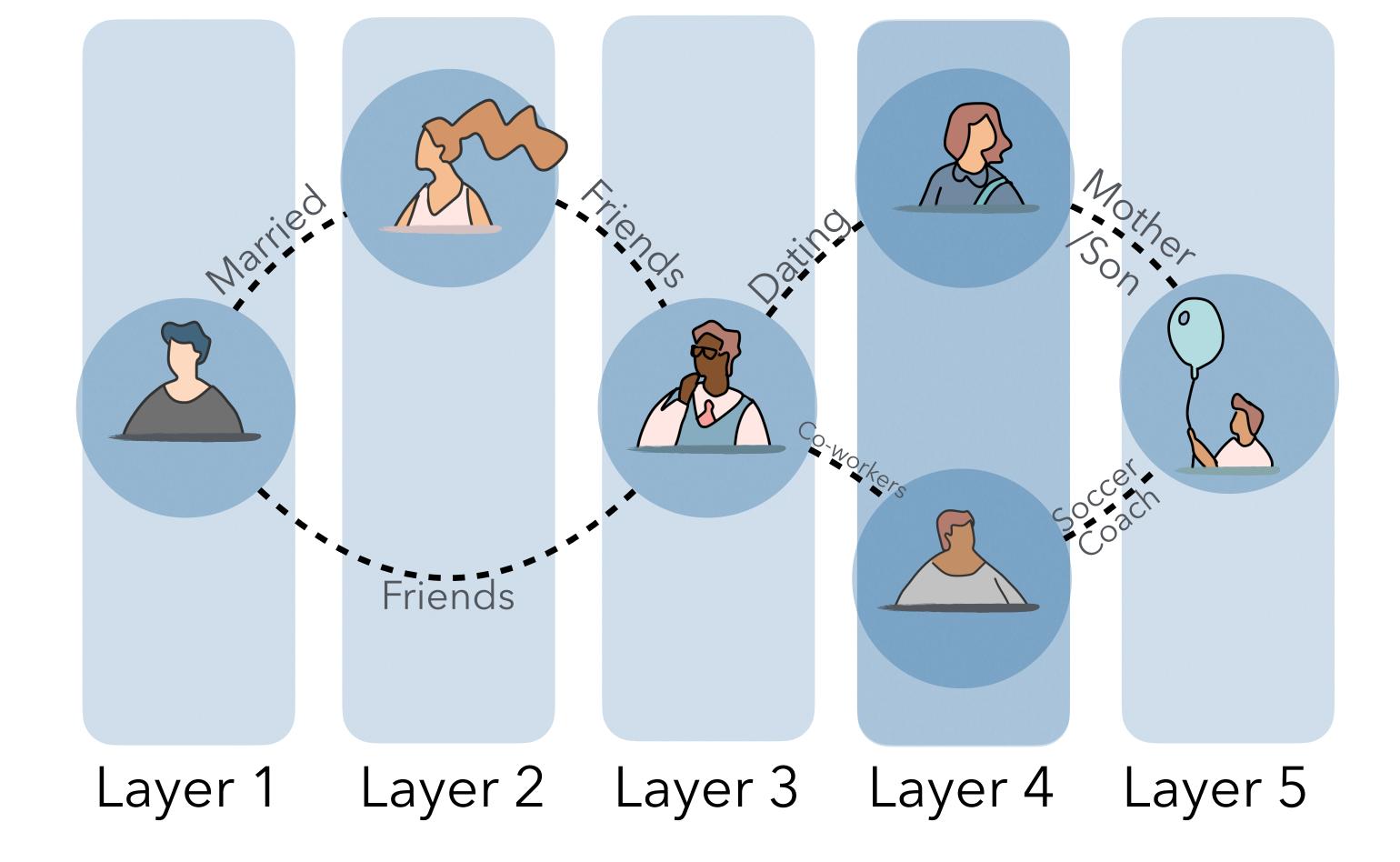
Quilts

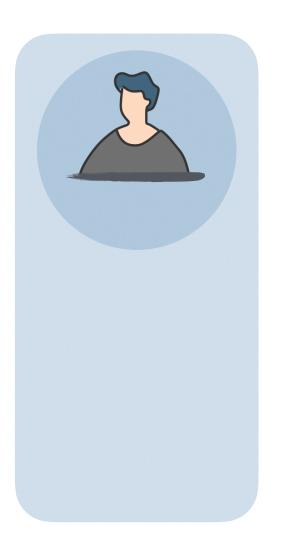


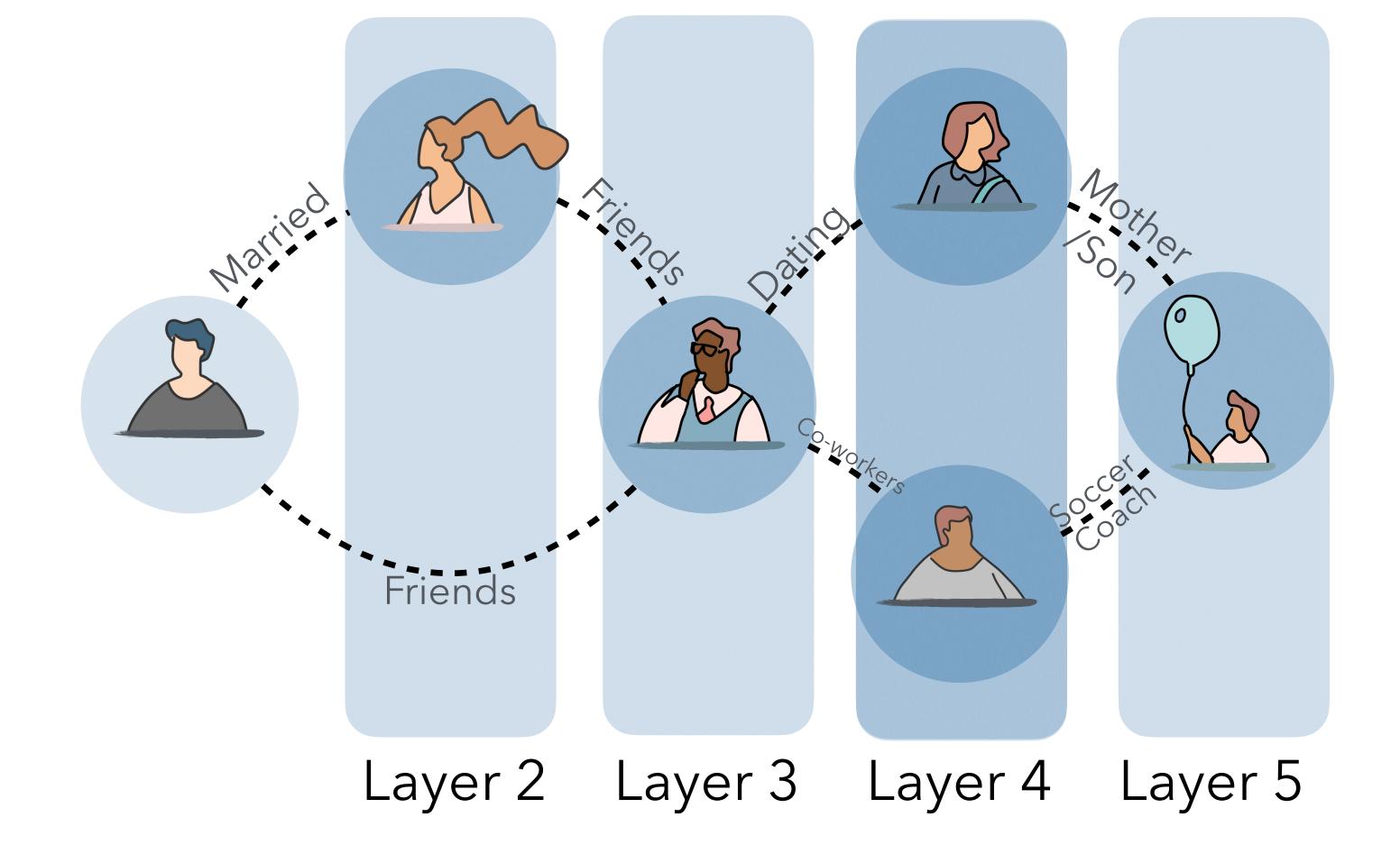


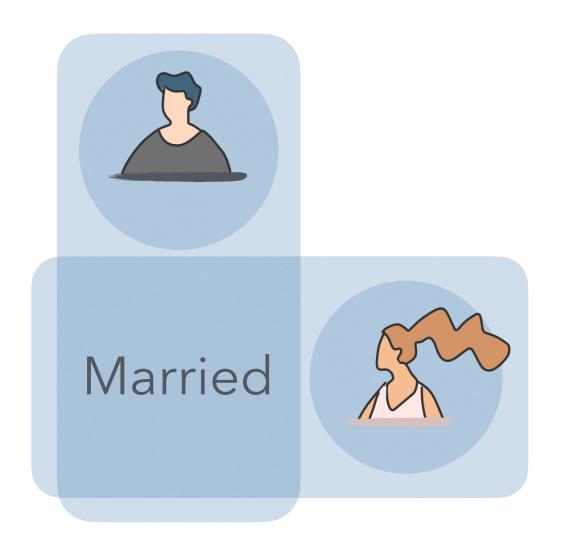


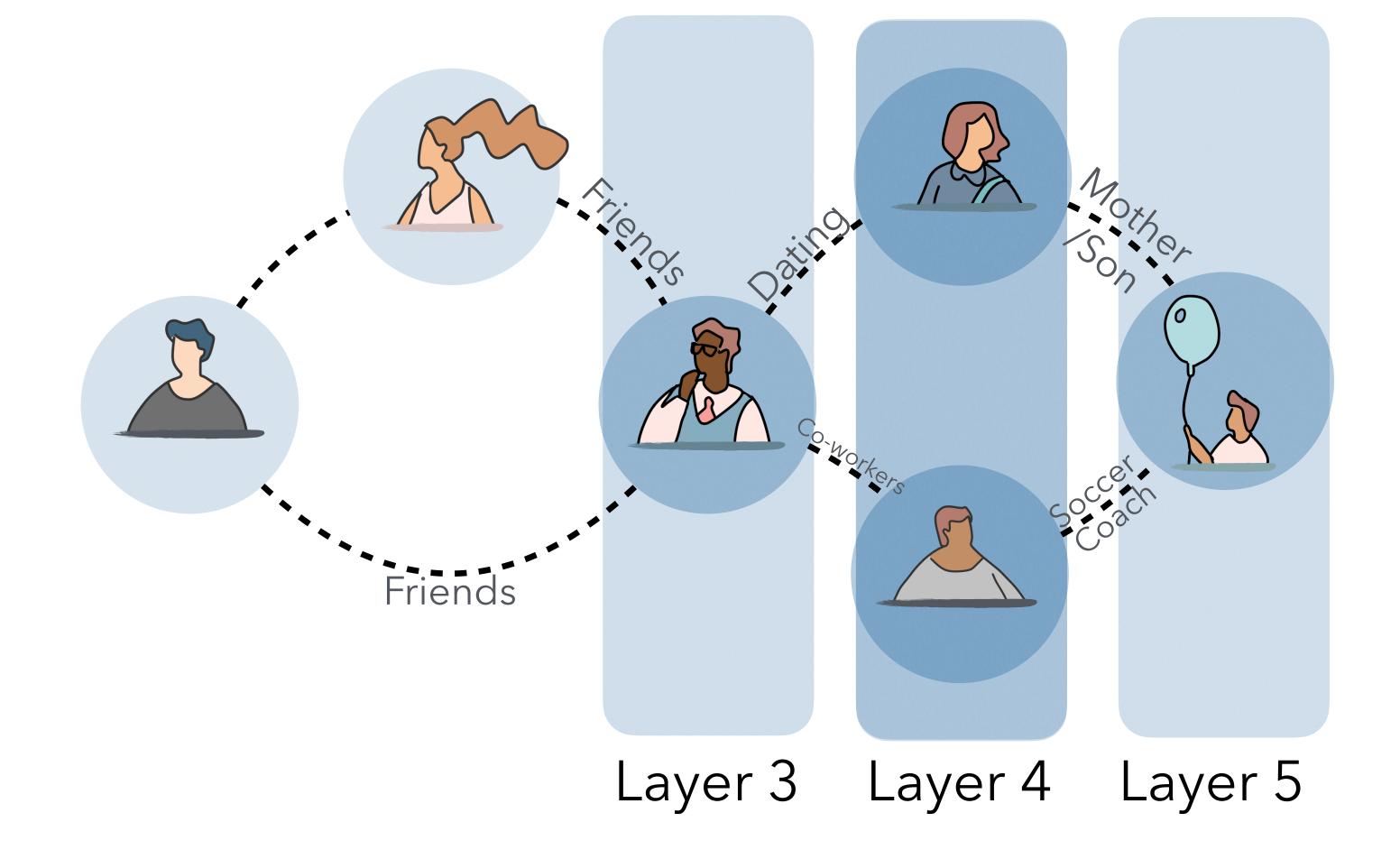


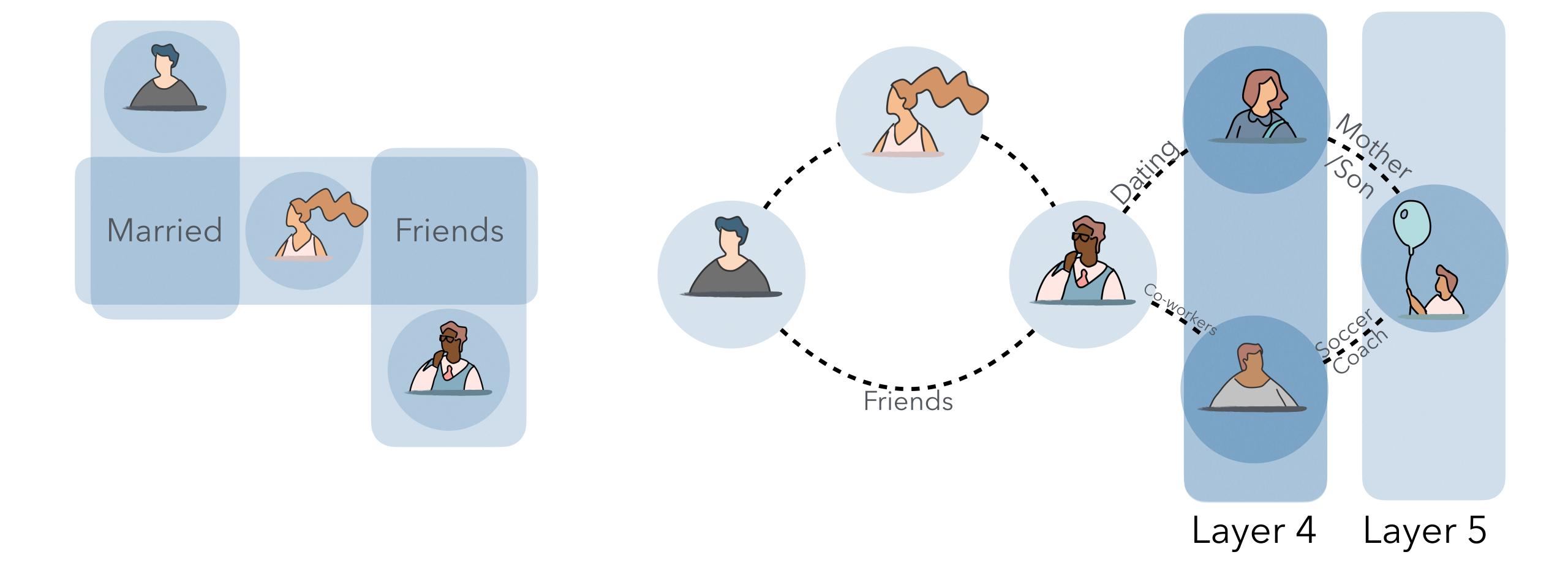


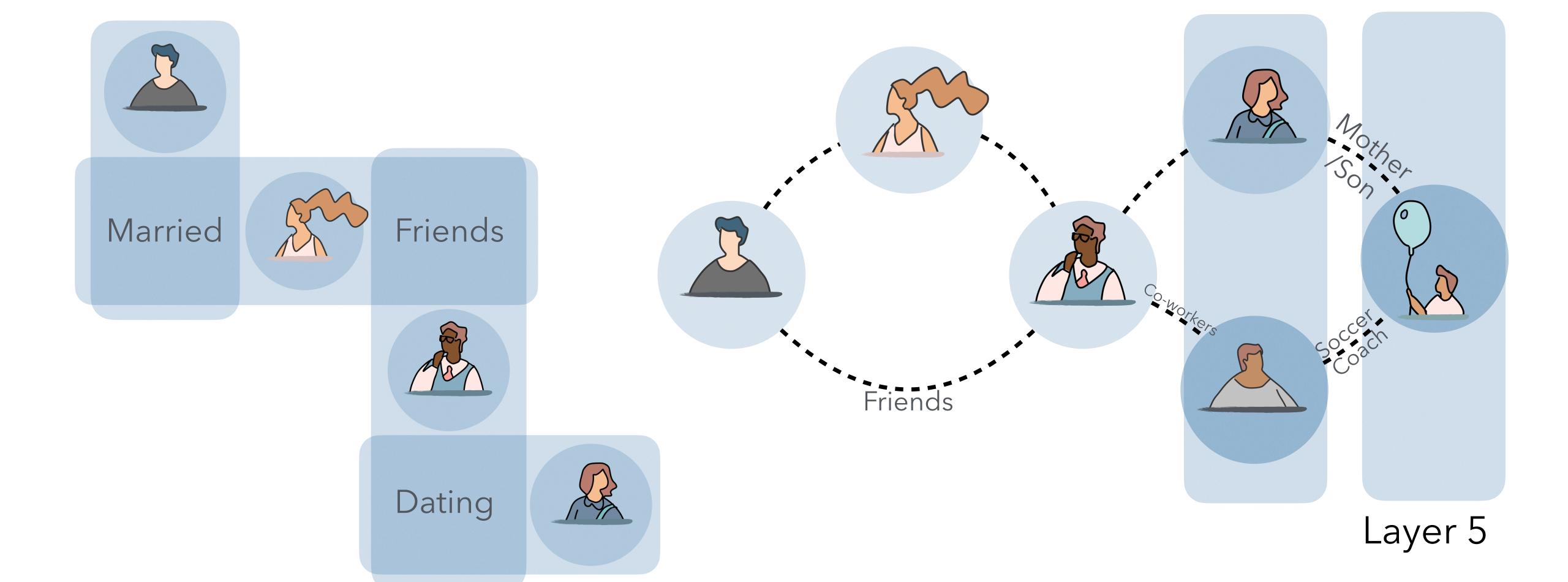


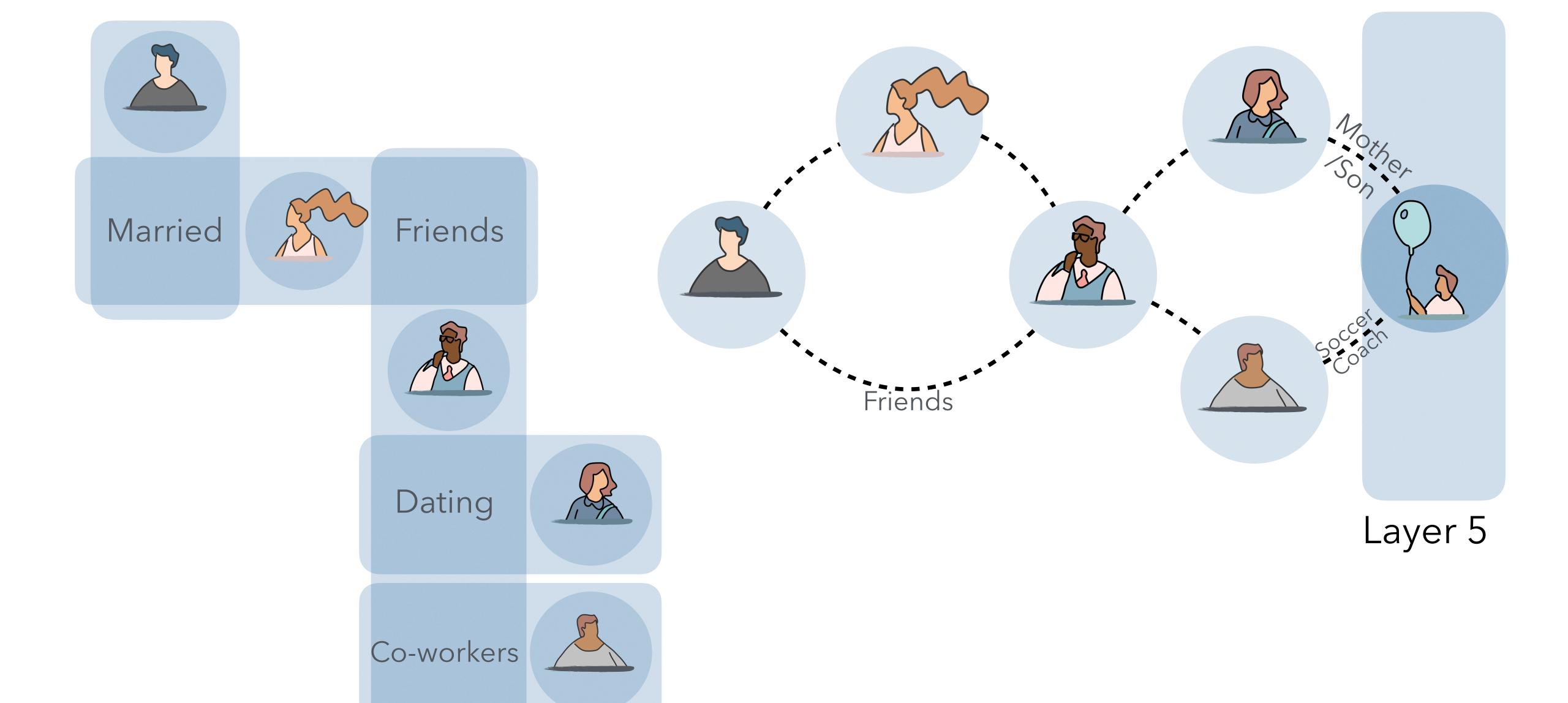


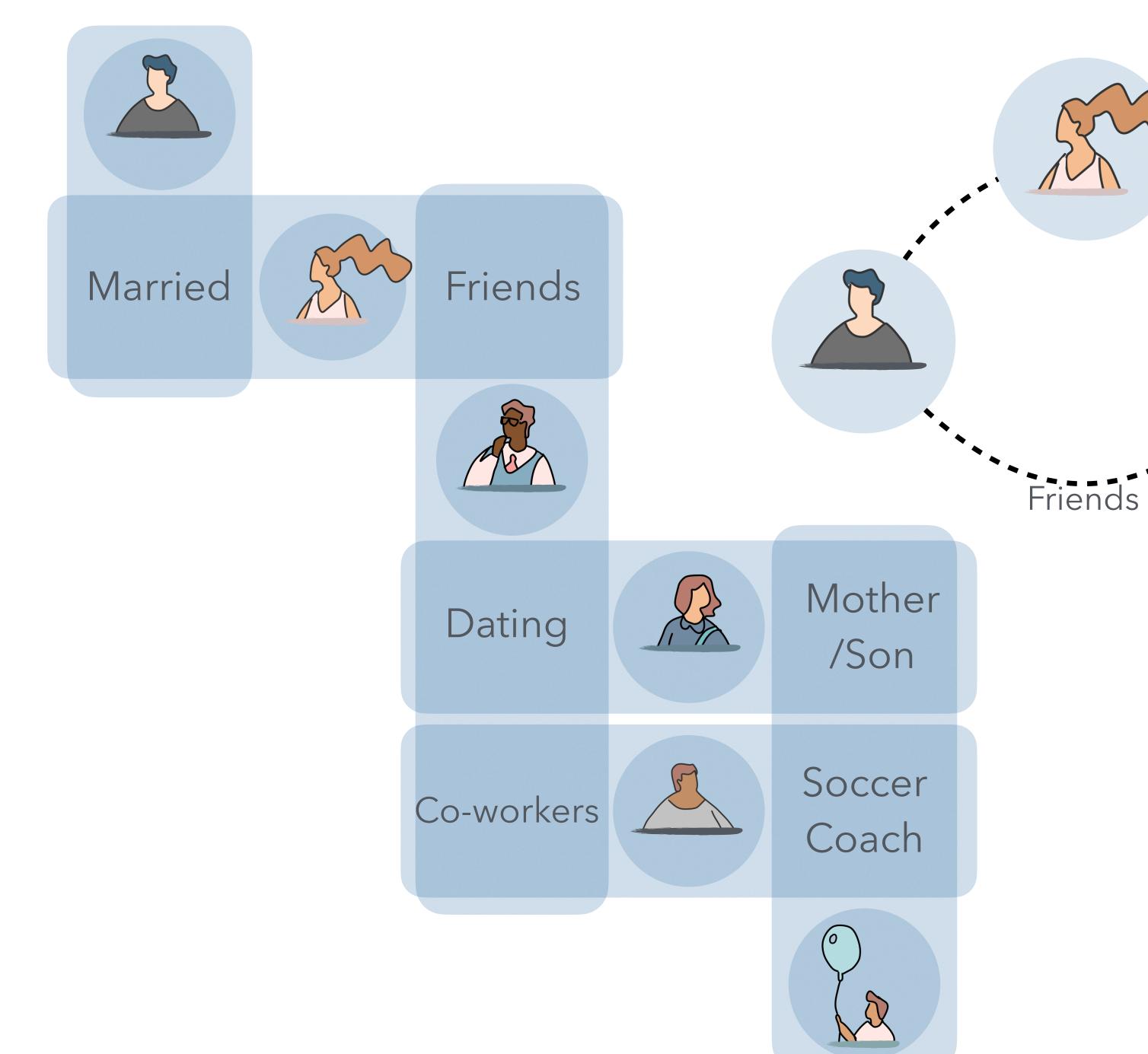












Married

Friends

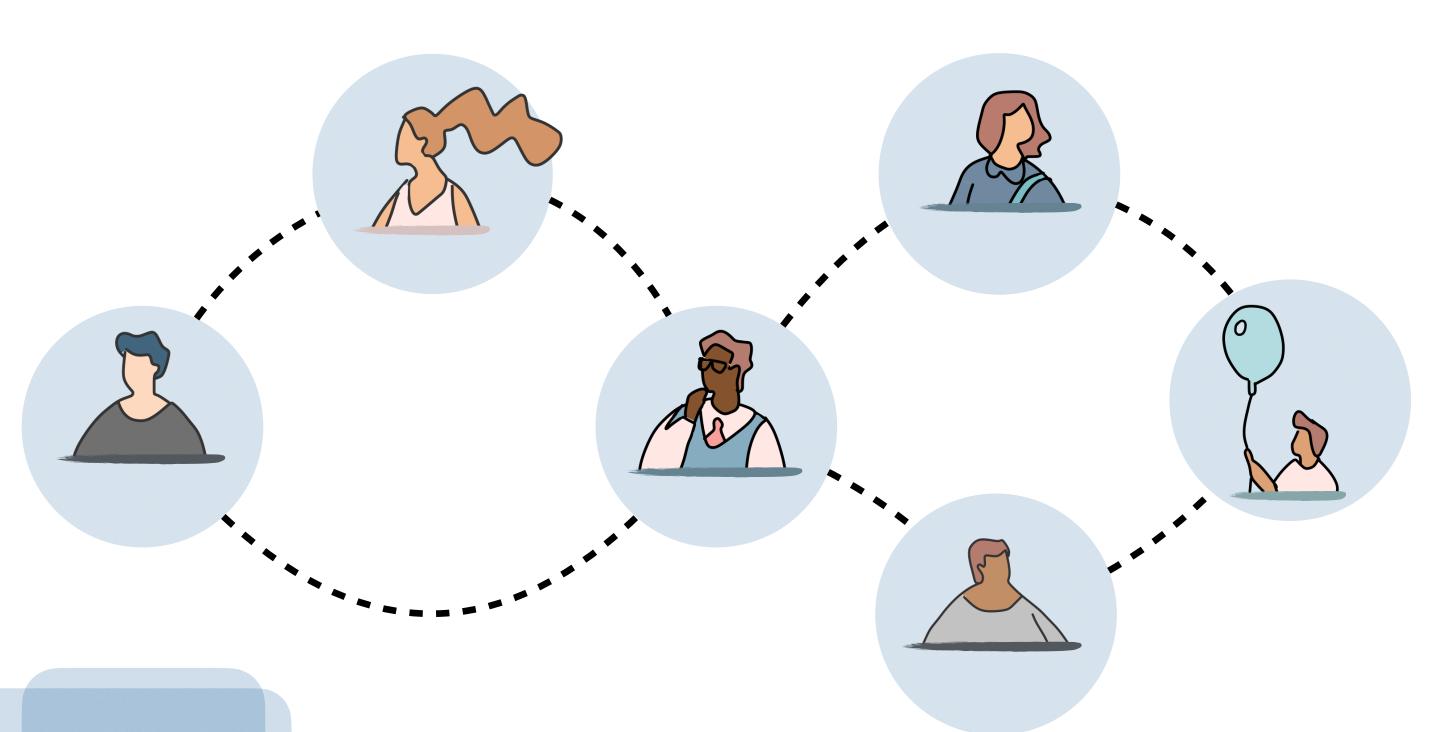
Friends

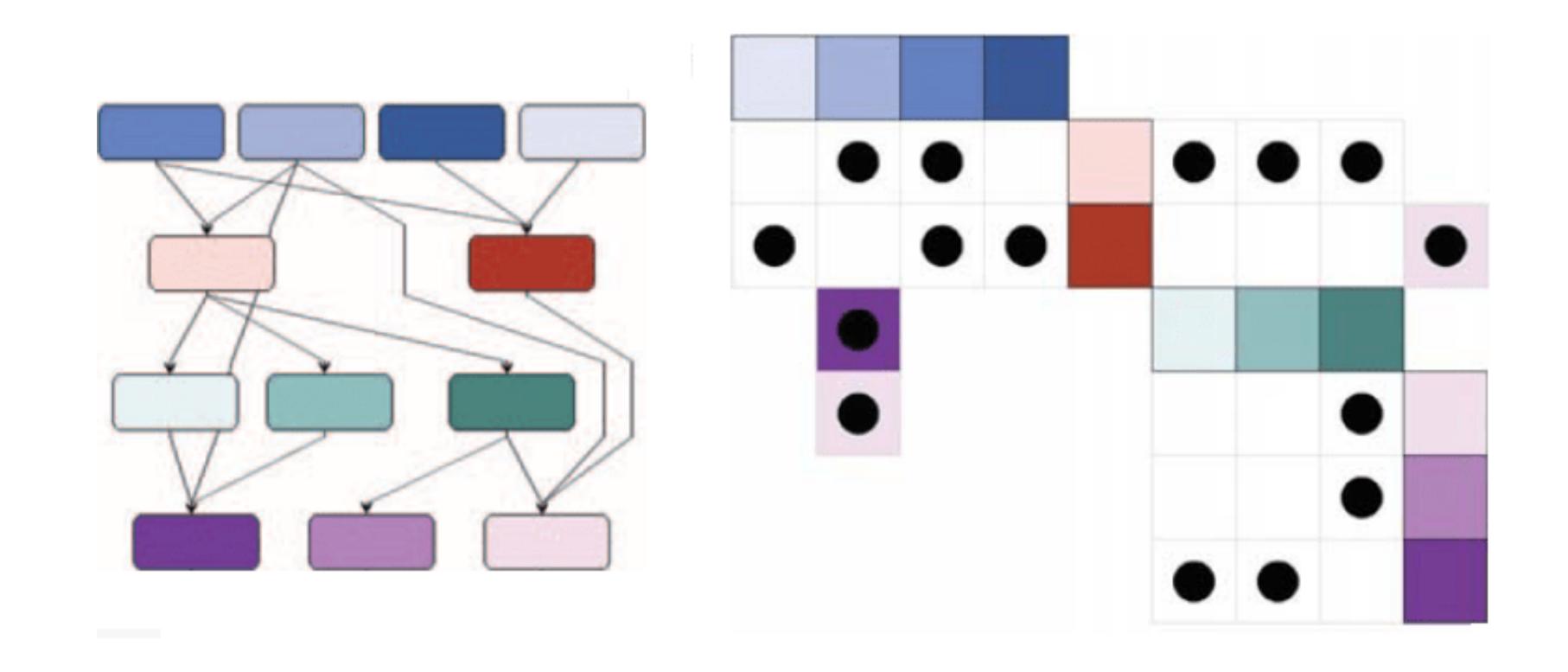
Dating

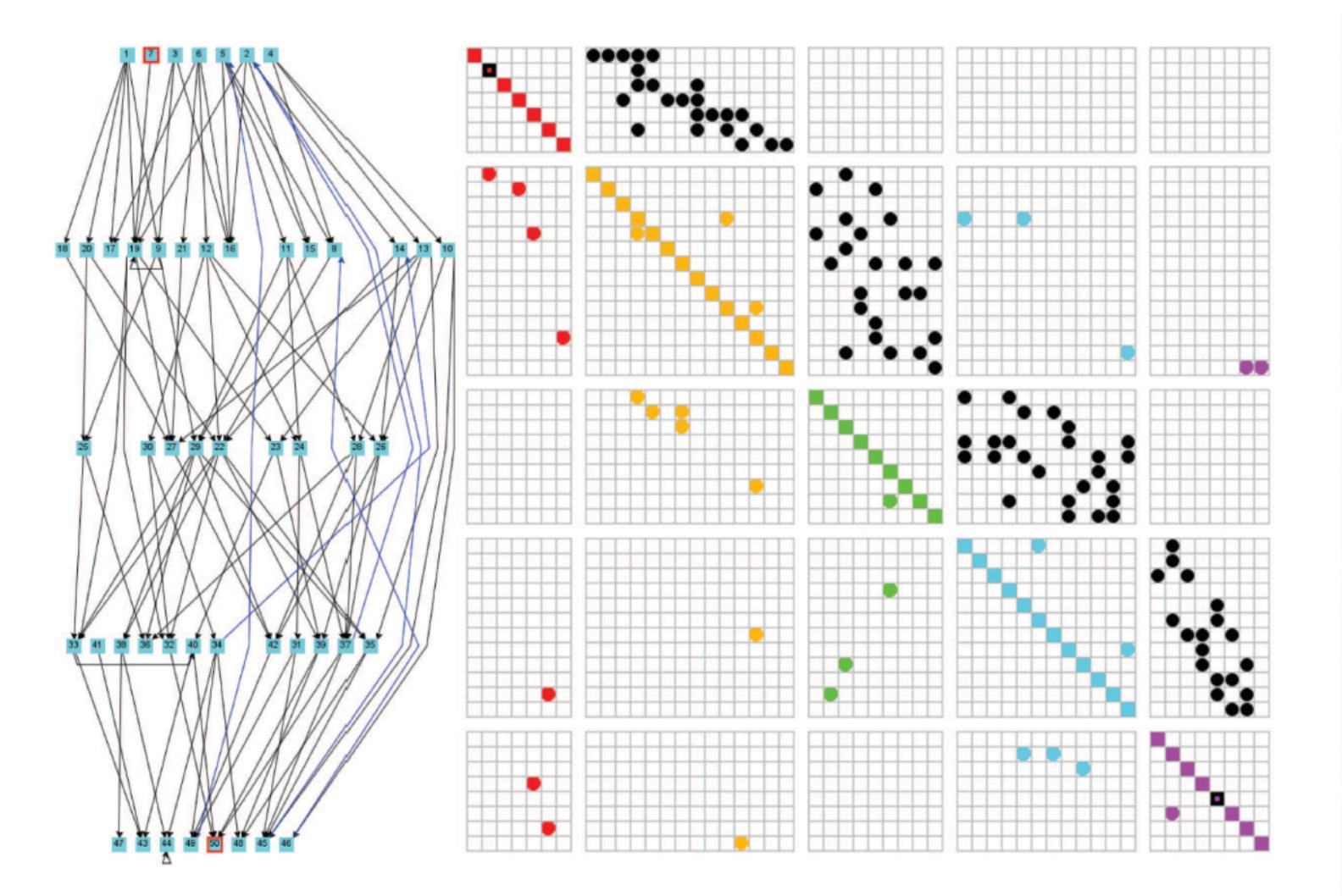
Mother /Son

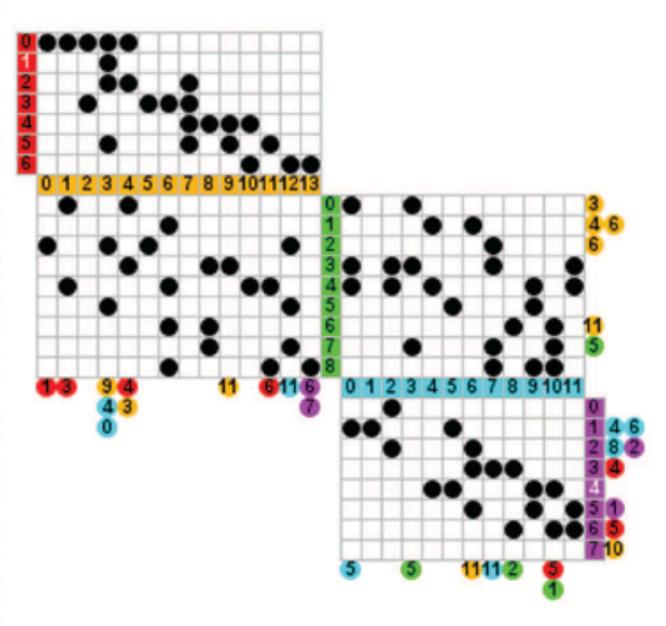
Co-workers

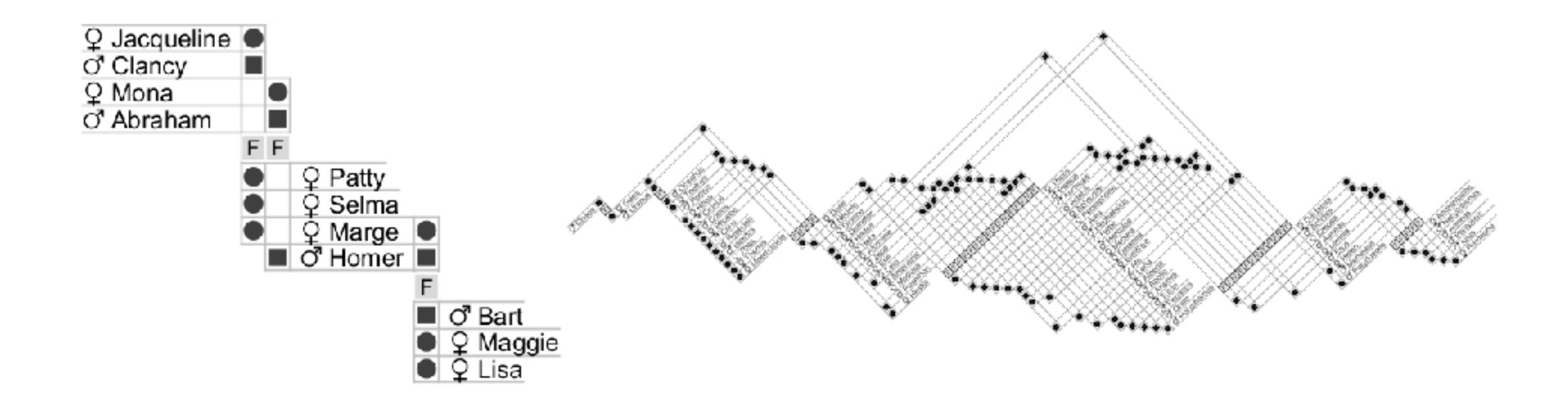
Soccer Coach

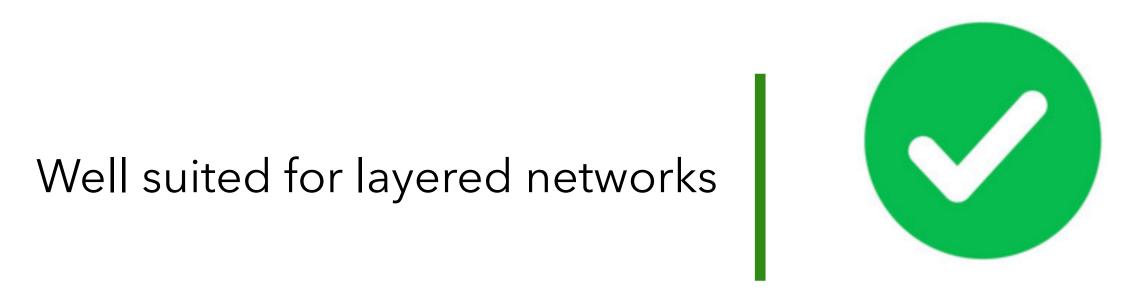








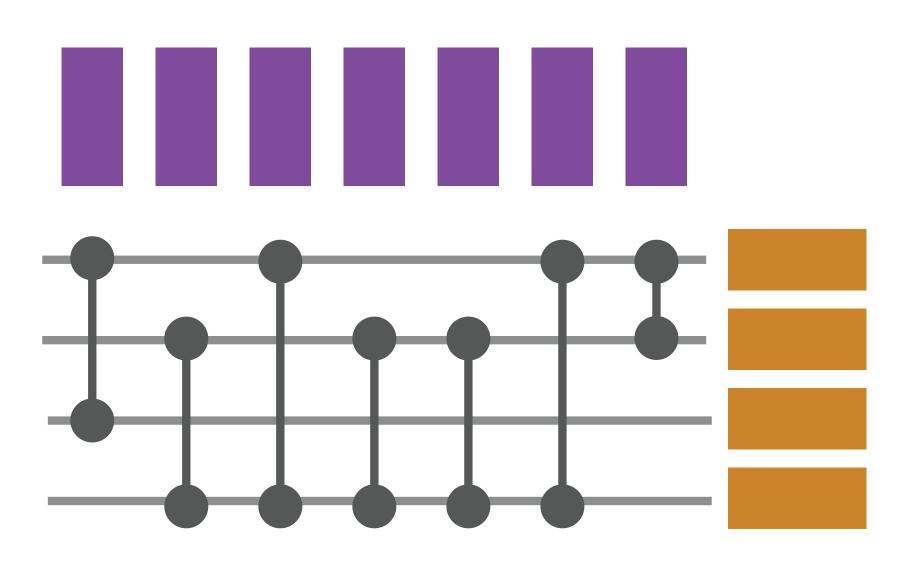


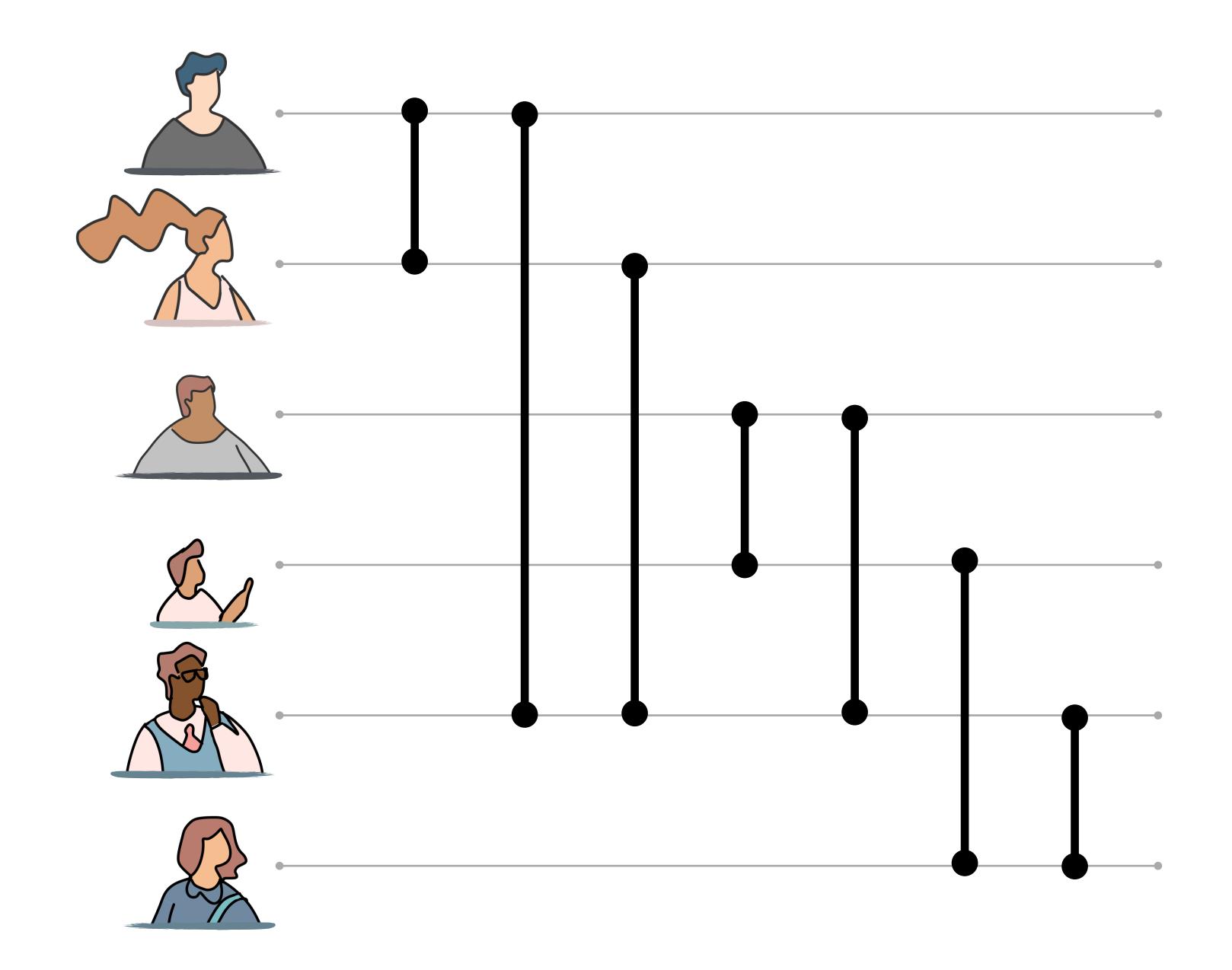


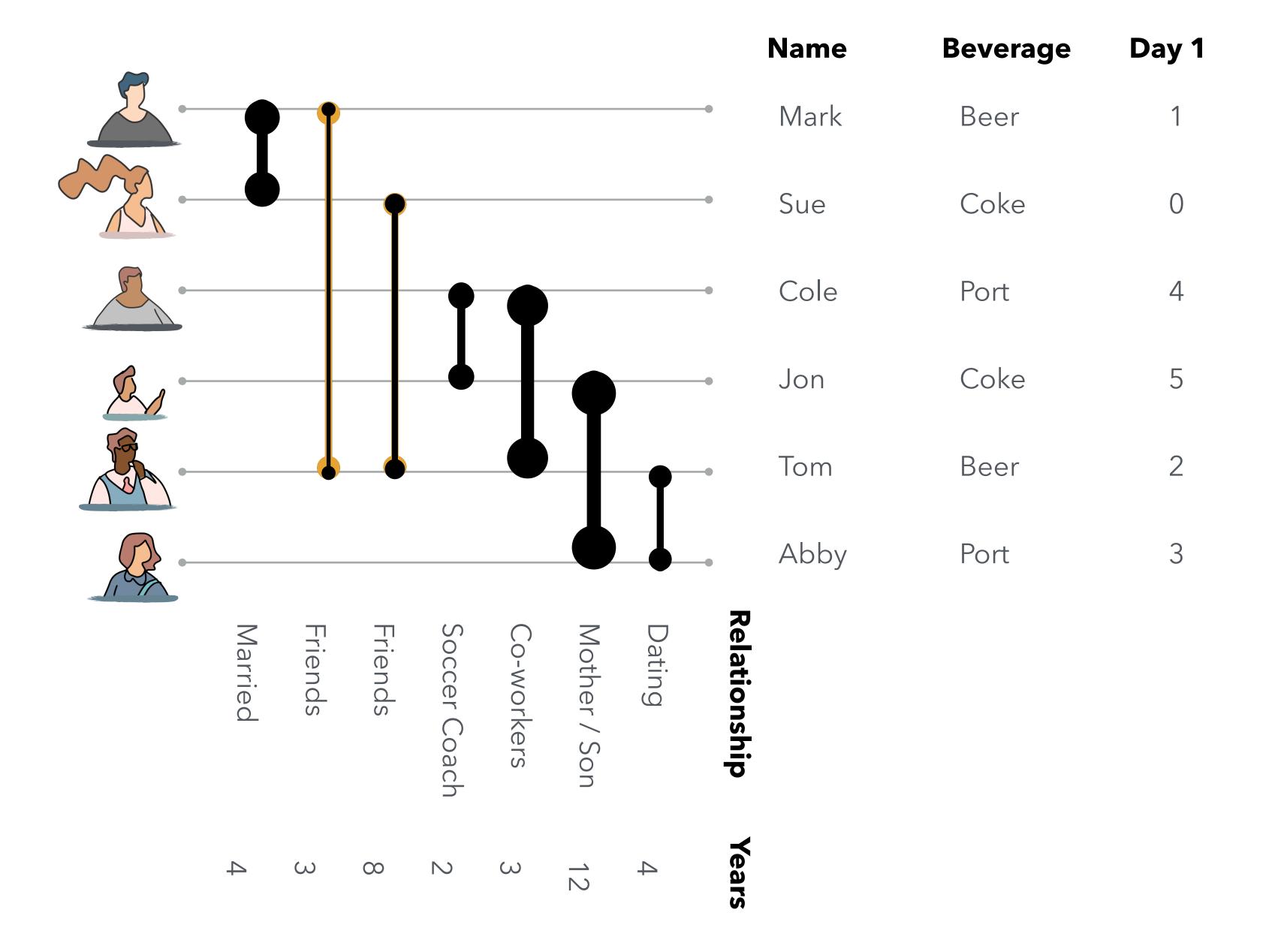
Links between nonconsecutive layers can be problematic to integrate and non-intuitive

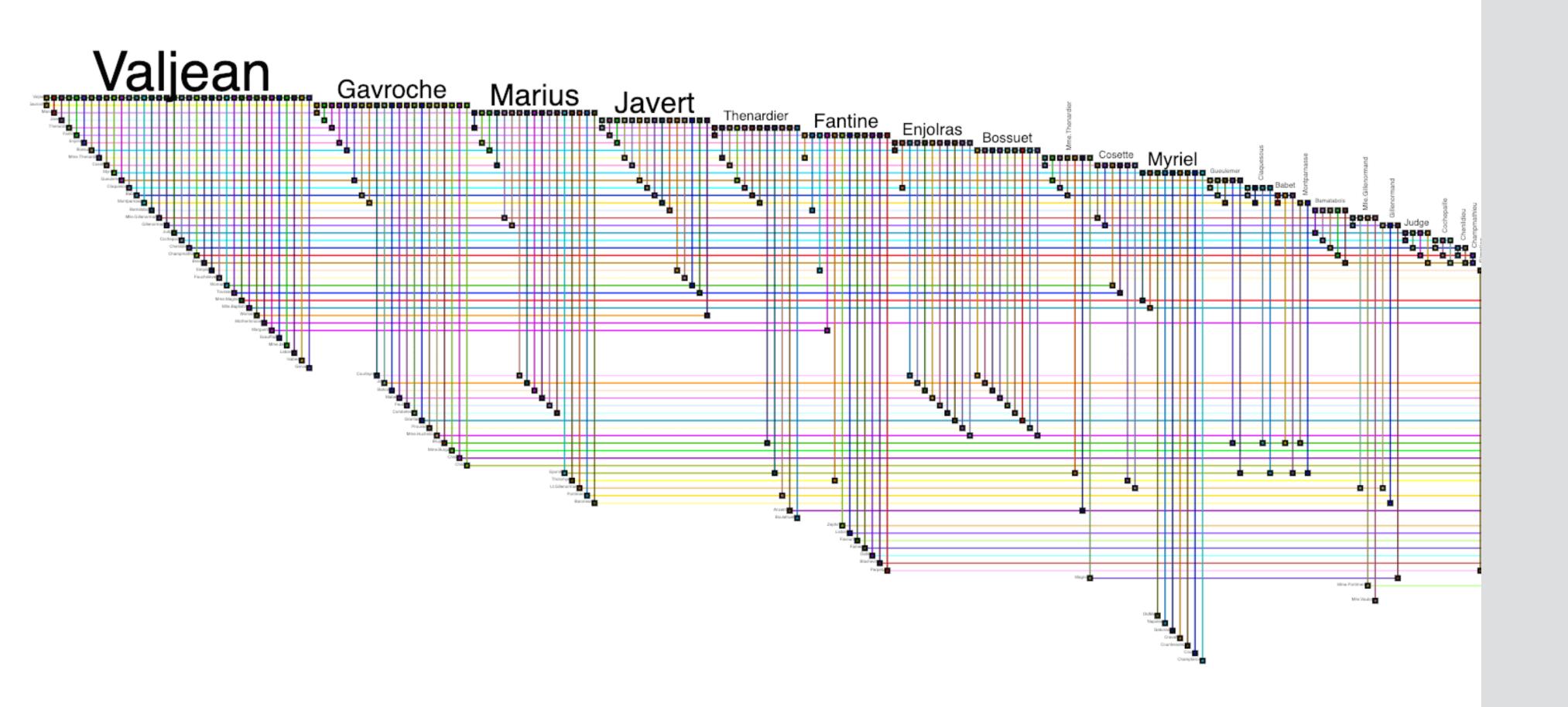
Recommended for layered or k-partite networks with limited skiplinks.

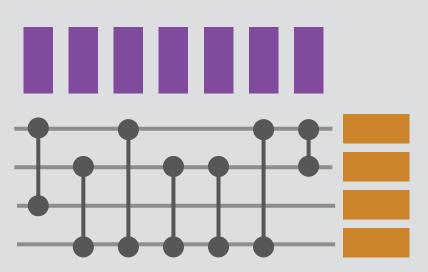
BioFabric



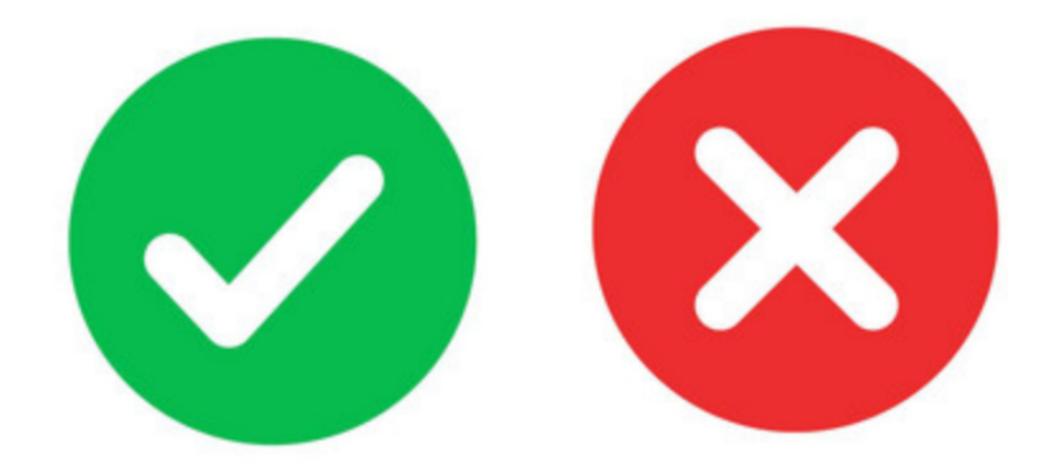


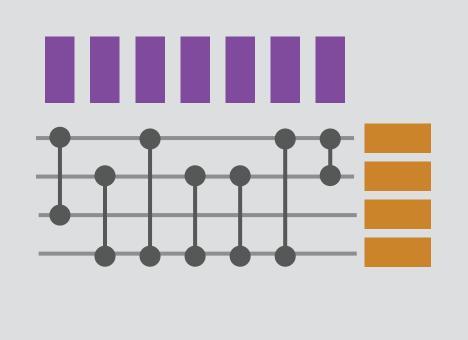






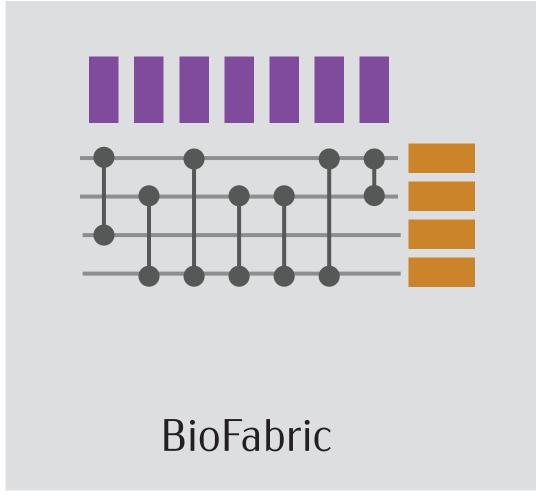
BioFabric





BioFabric

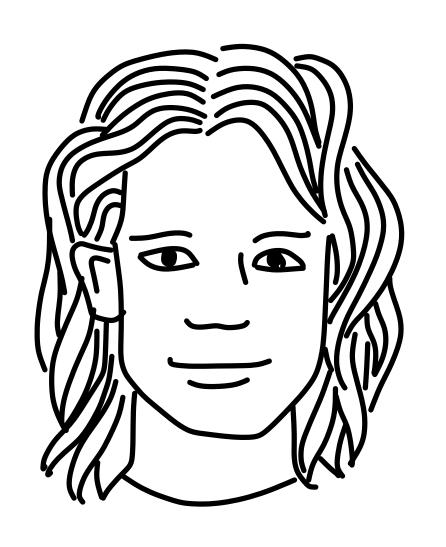
Can be used to visualize rich edge attributes and node attributes at the same time



More difficult to discover neighbors and clusters in Biofabric compared to matrices.

Recommended for small, sparse networks with many nodes and rich edge attributes

Tools and Applications

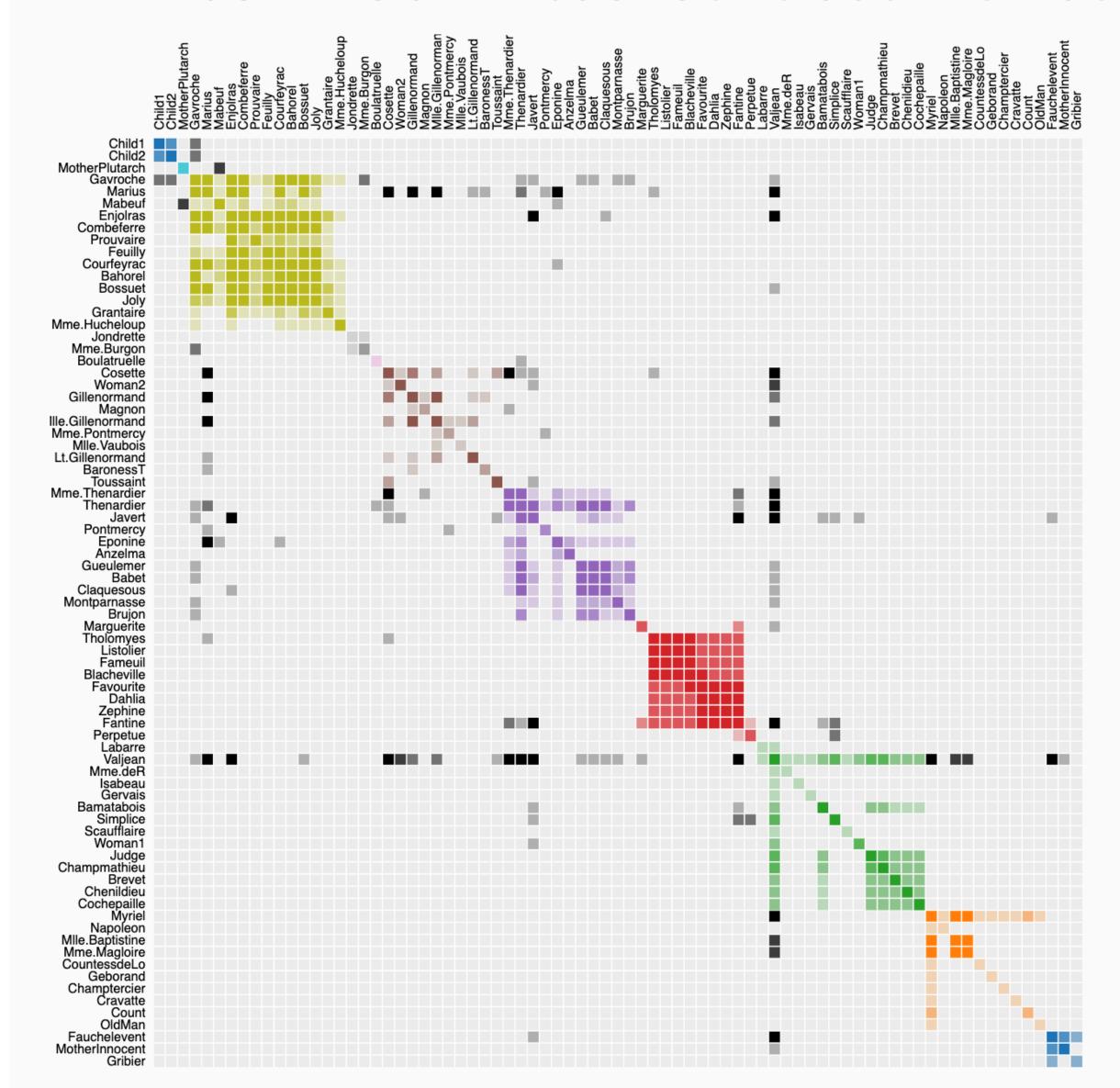


Bradgraphic designer

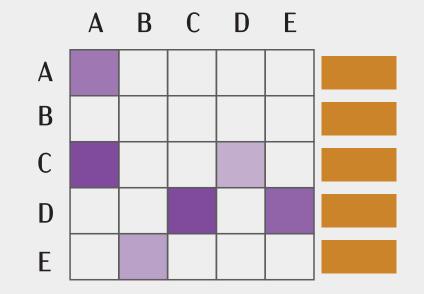
Maya developer

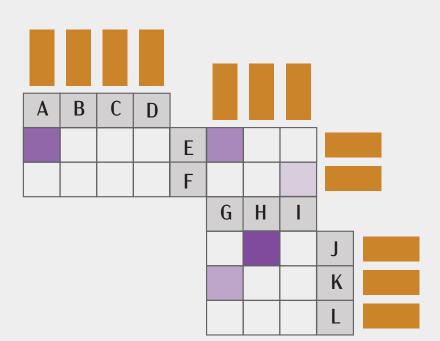
JS

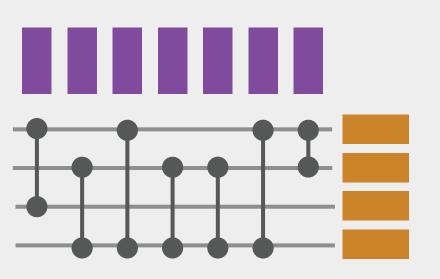
Les Misérables Co-occurrence

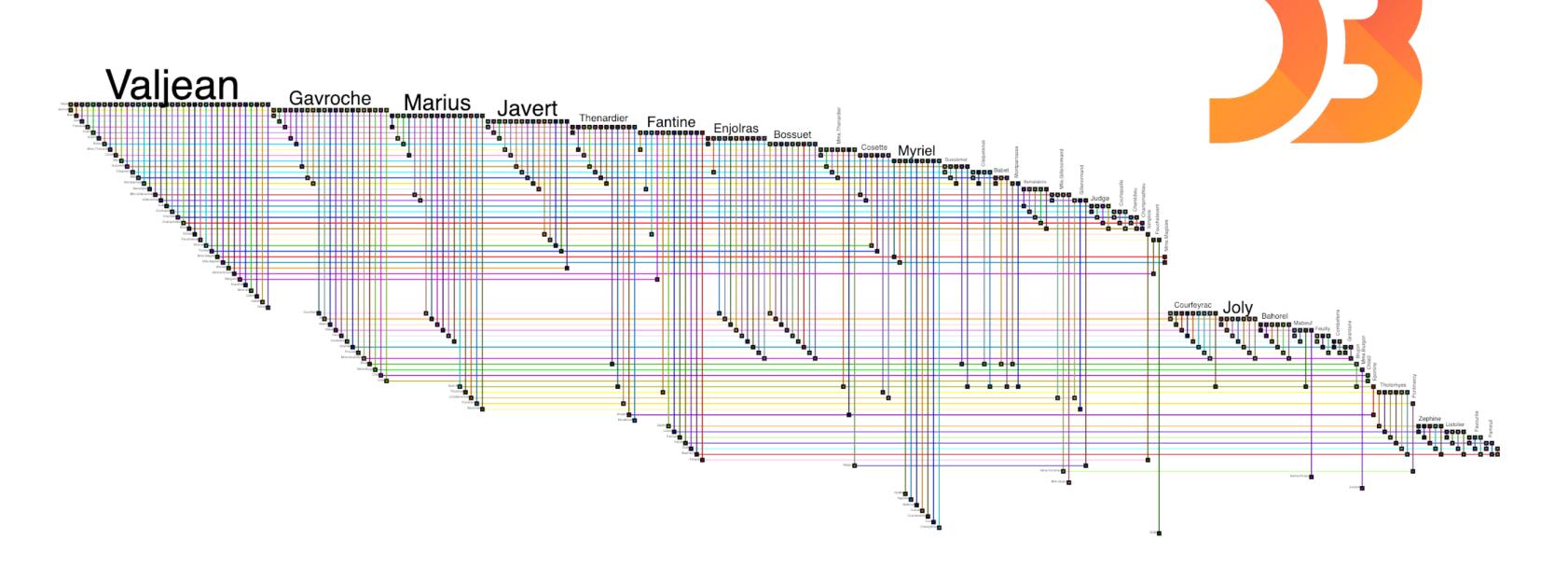


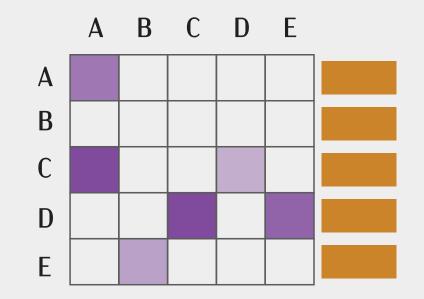
Source: The Stanford GranhRase

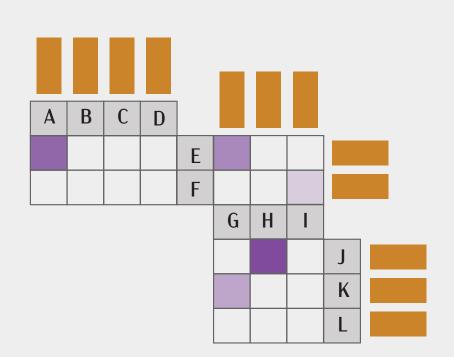


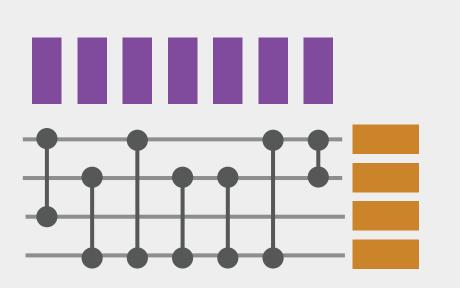


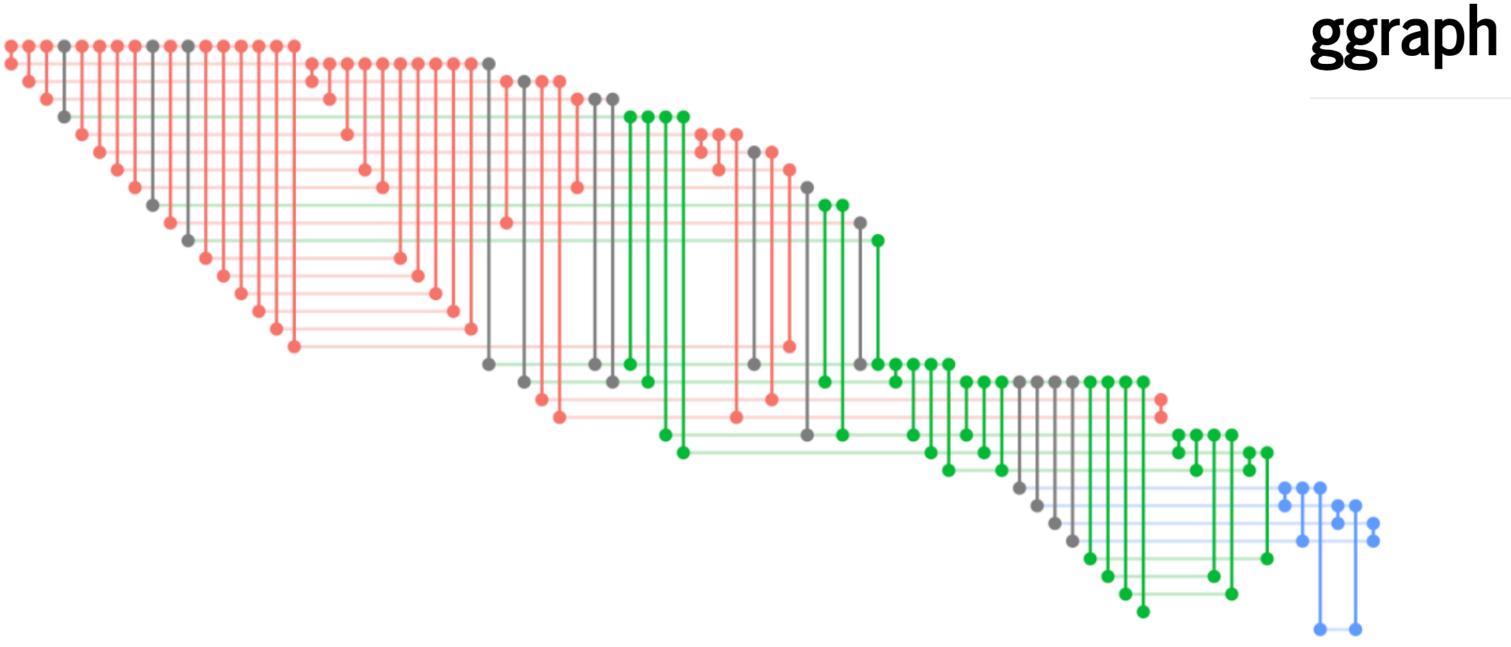


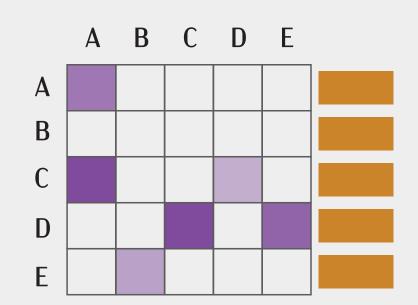


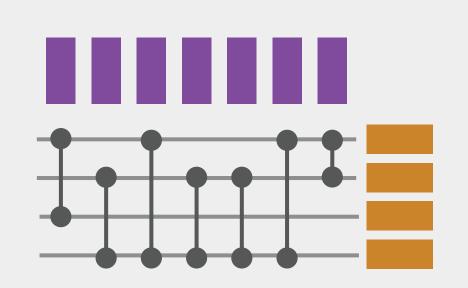


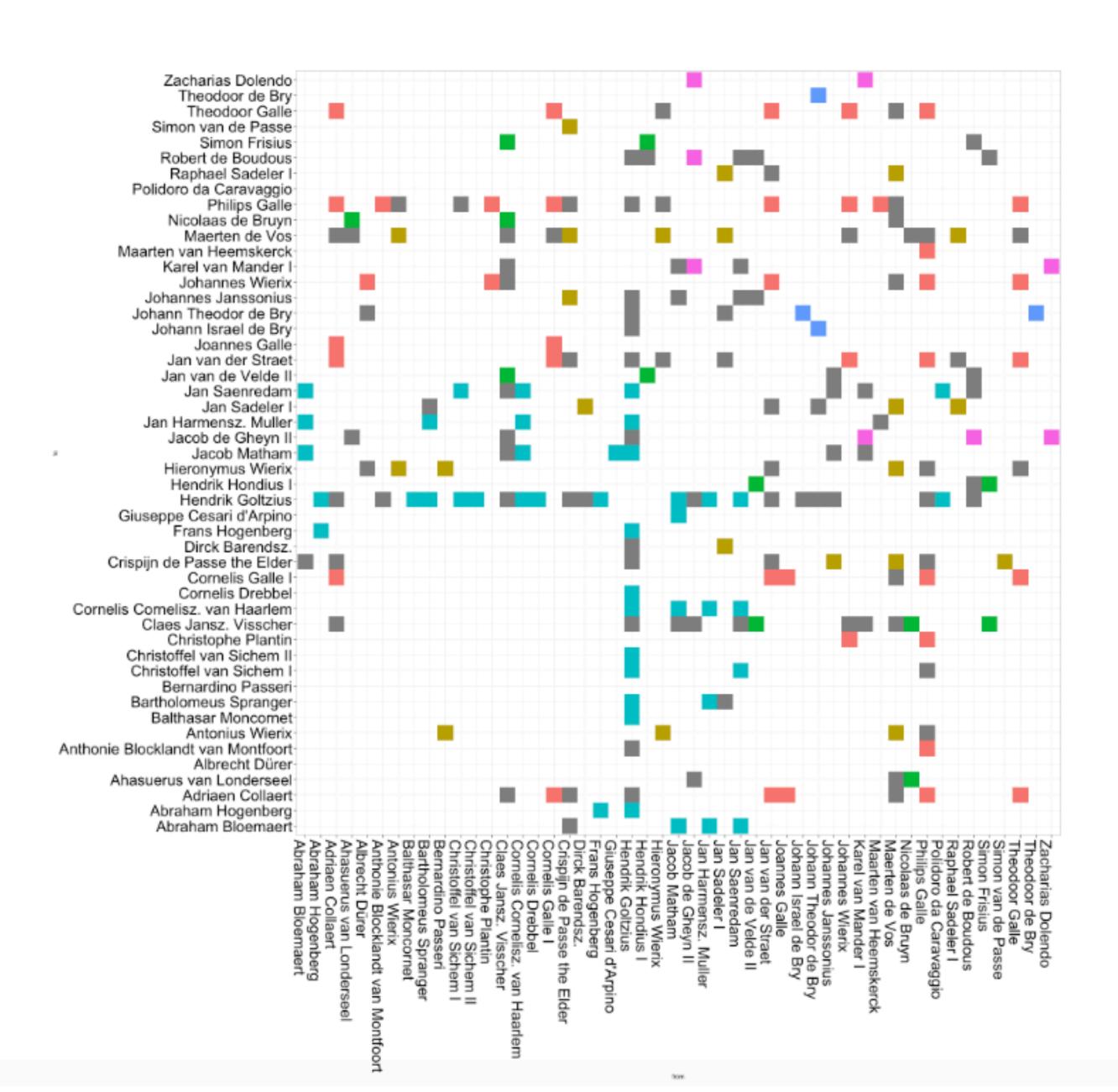


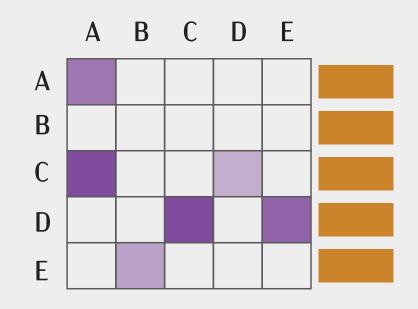


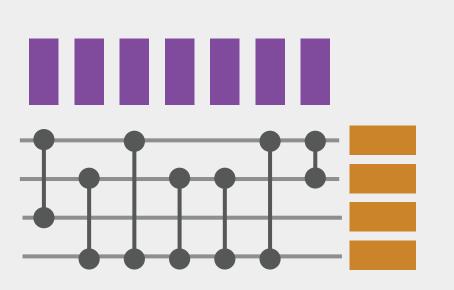


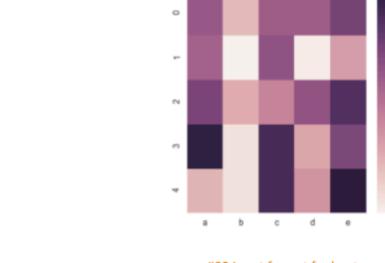


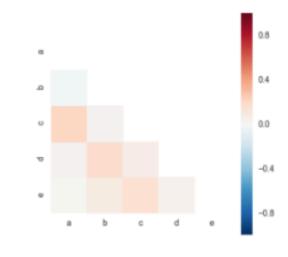


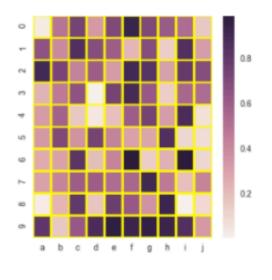








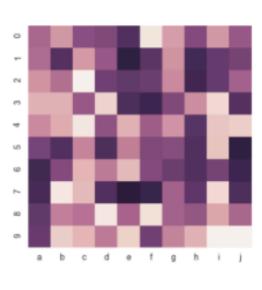


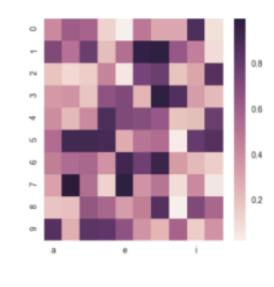


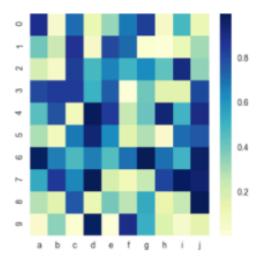
#90 Input format for heatmap #90 Half heatmap

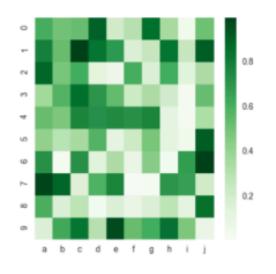
#91 Custom seaborn heatmap

#91 Custom seaborn heatmap







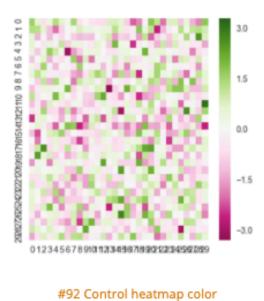


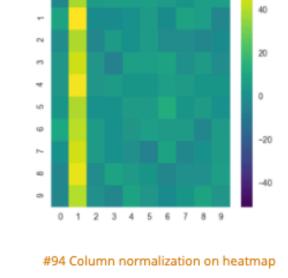
#91 Custom seaborn heatmap

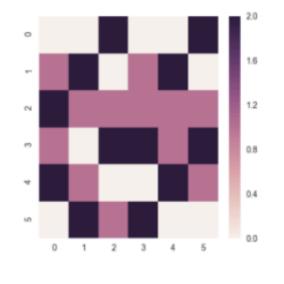
#91 Custom seaborn heatmap

#92 Control heatmap color

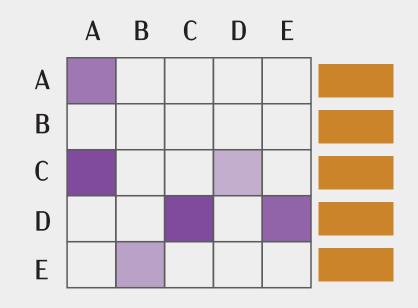
#92 Control heatmap color

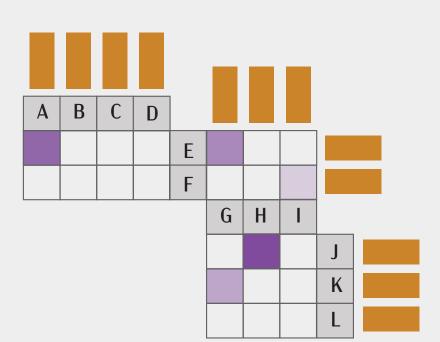


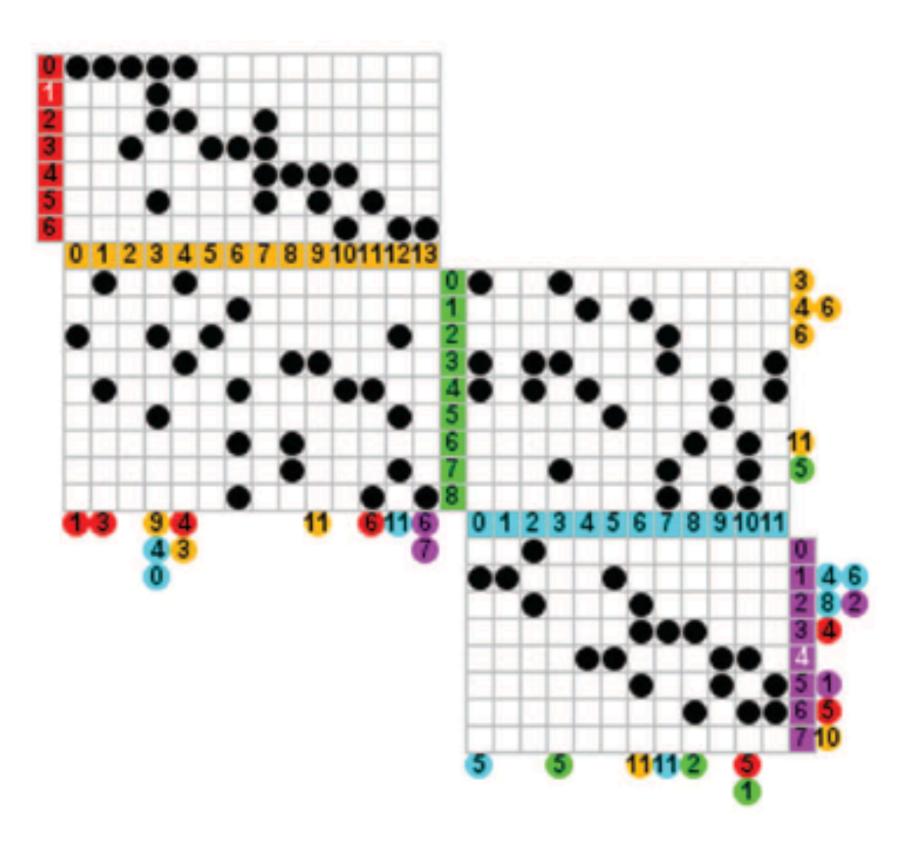


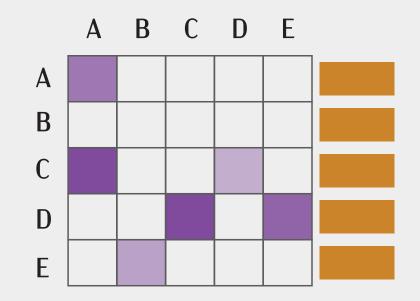


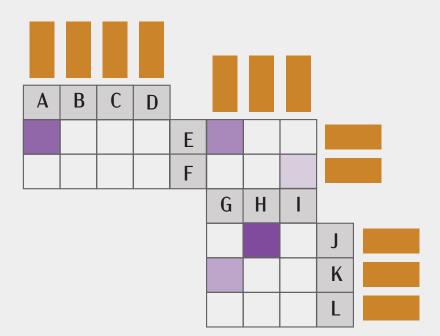
#92 Turn your data categorical for heatmap

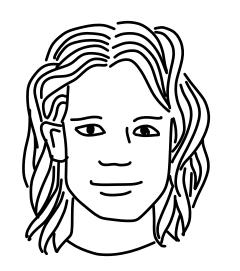






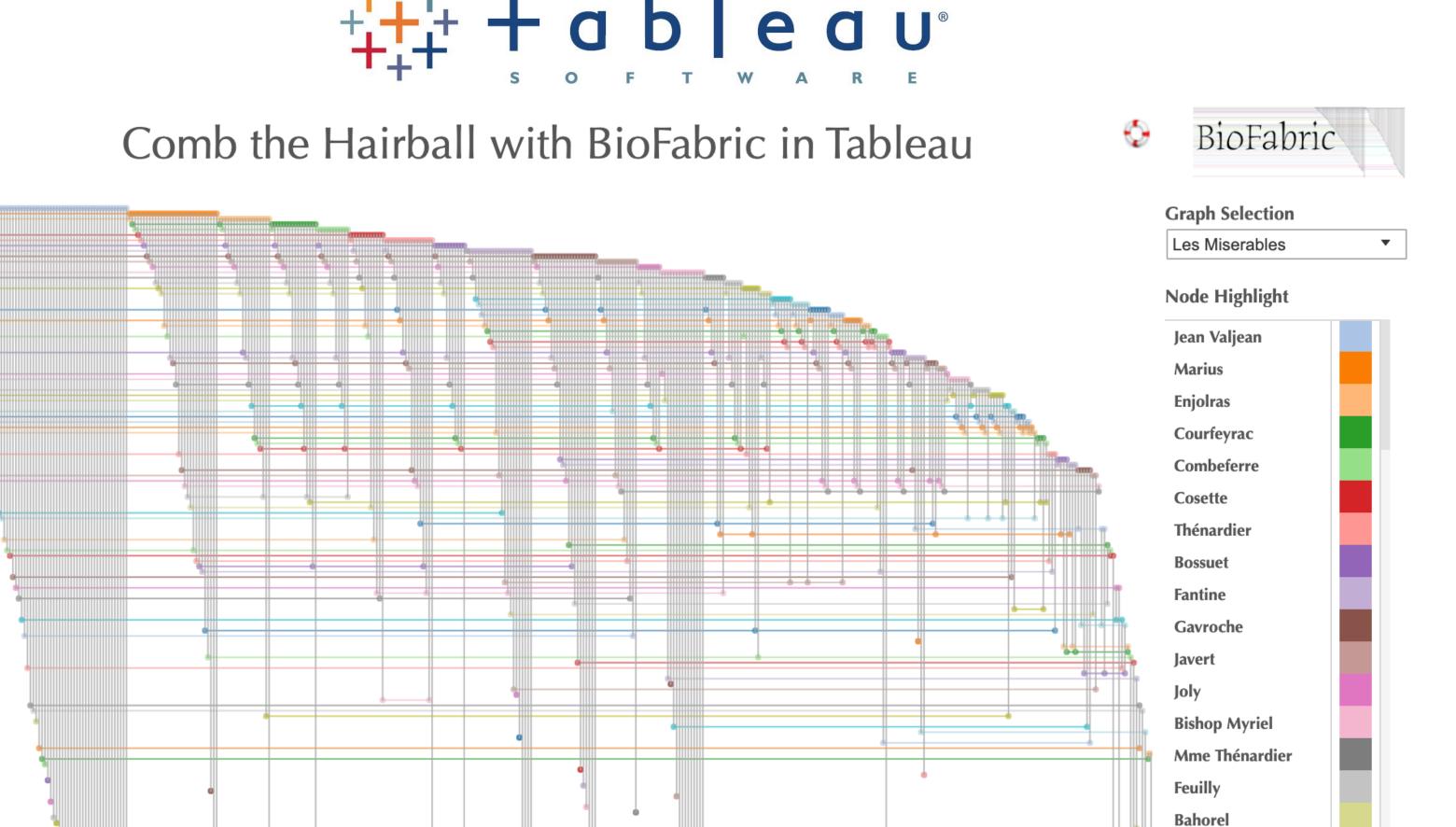


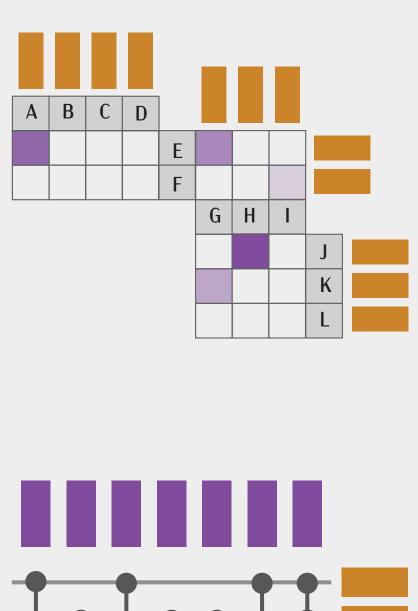


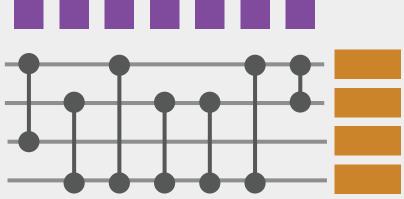


graphic designer

∰ +ab|eau







M. Gillenormand

Favourite

Babet

Dahlia

Zephine

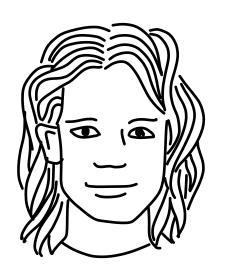
Gueulemer

Tholomyès,

Blachevelle

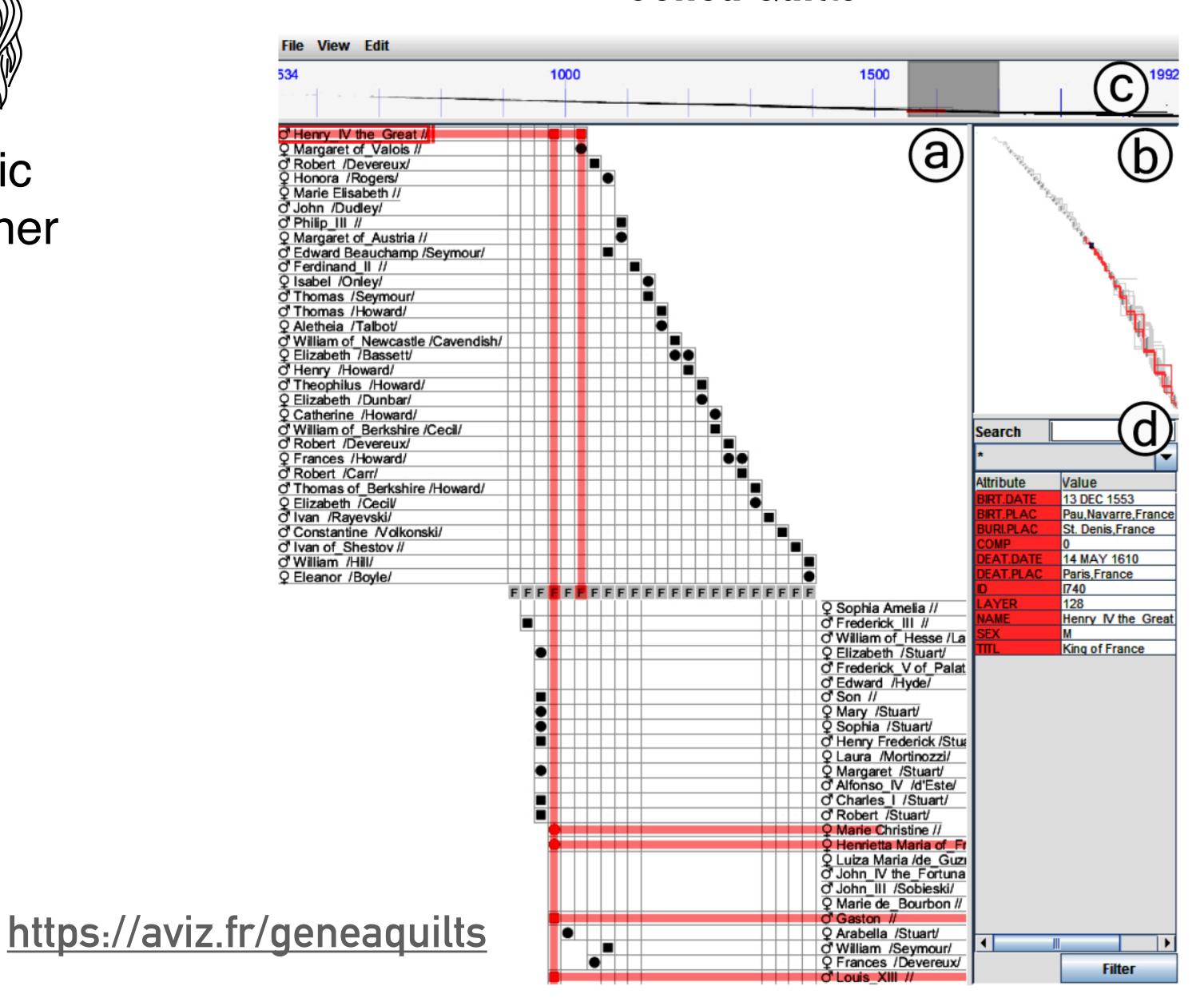
Fameuil

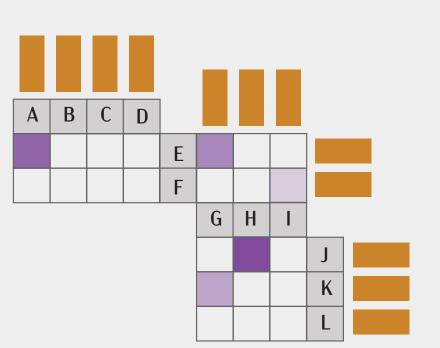
Mlle Gillenorm..

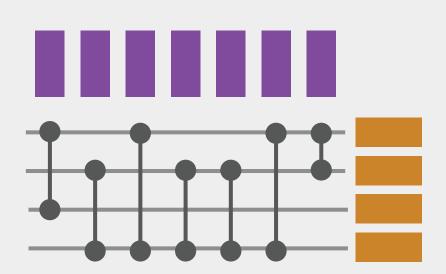


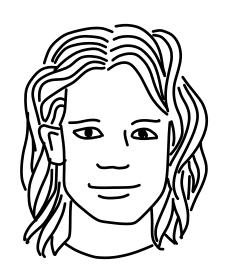
graphic designer

Genea Quilts

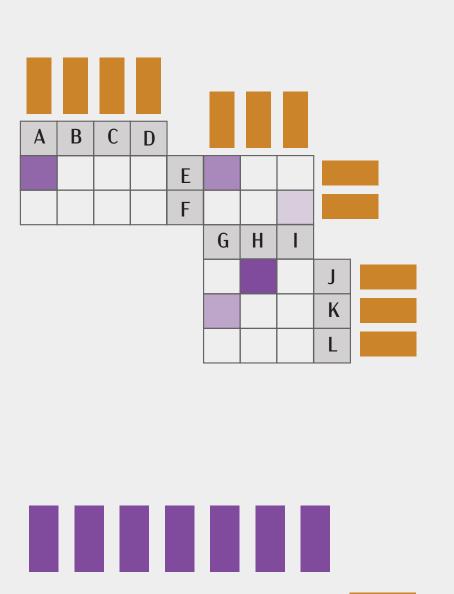








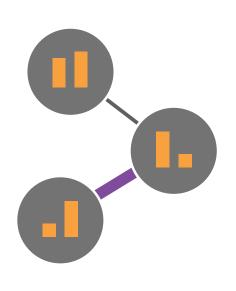
graphic designer



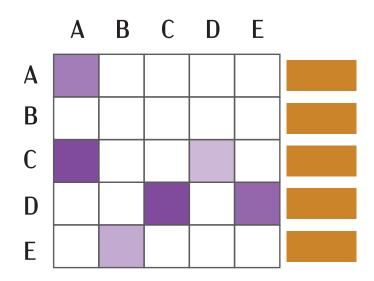
Activity

get your own twitter network @ bit.ly/twitter-network

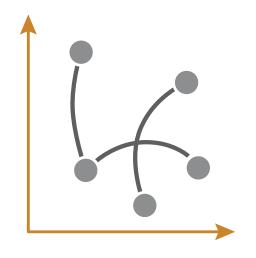
Choose a representation



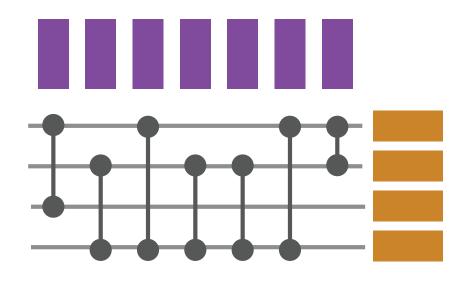
On-Node / On-Edge Encoding



Attribute-Driven Faceting



Attribute-Driven Positioning



Adjacency Matrix

BioFabric

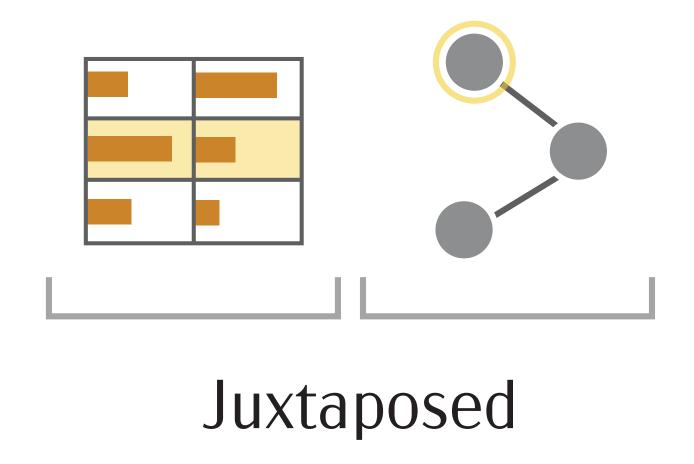
15 minutes

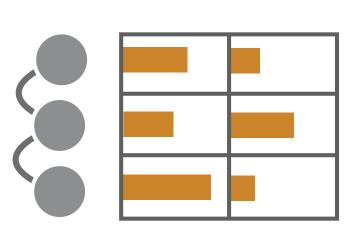
Exchange visualizations with your neighbor and explain your encodings.

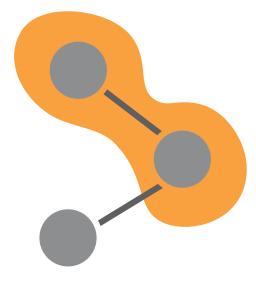
How many tweets does the person who has the most connections in this graph have?

Does the person with the least tweets have more interactions of type retweet or mention?

View Operations

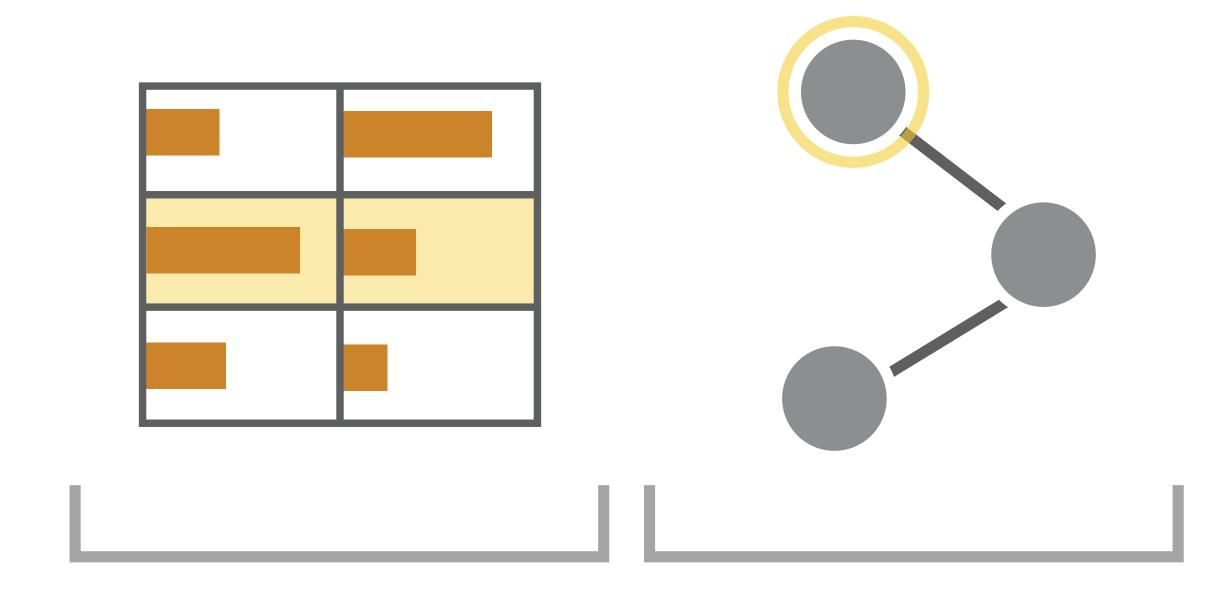


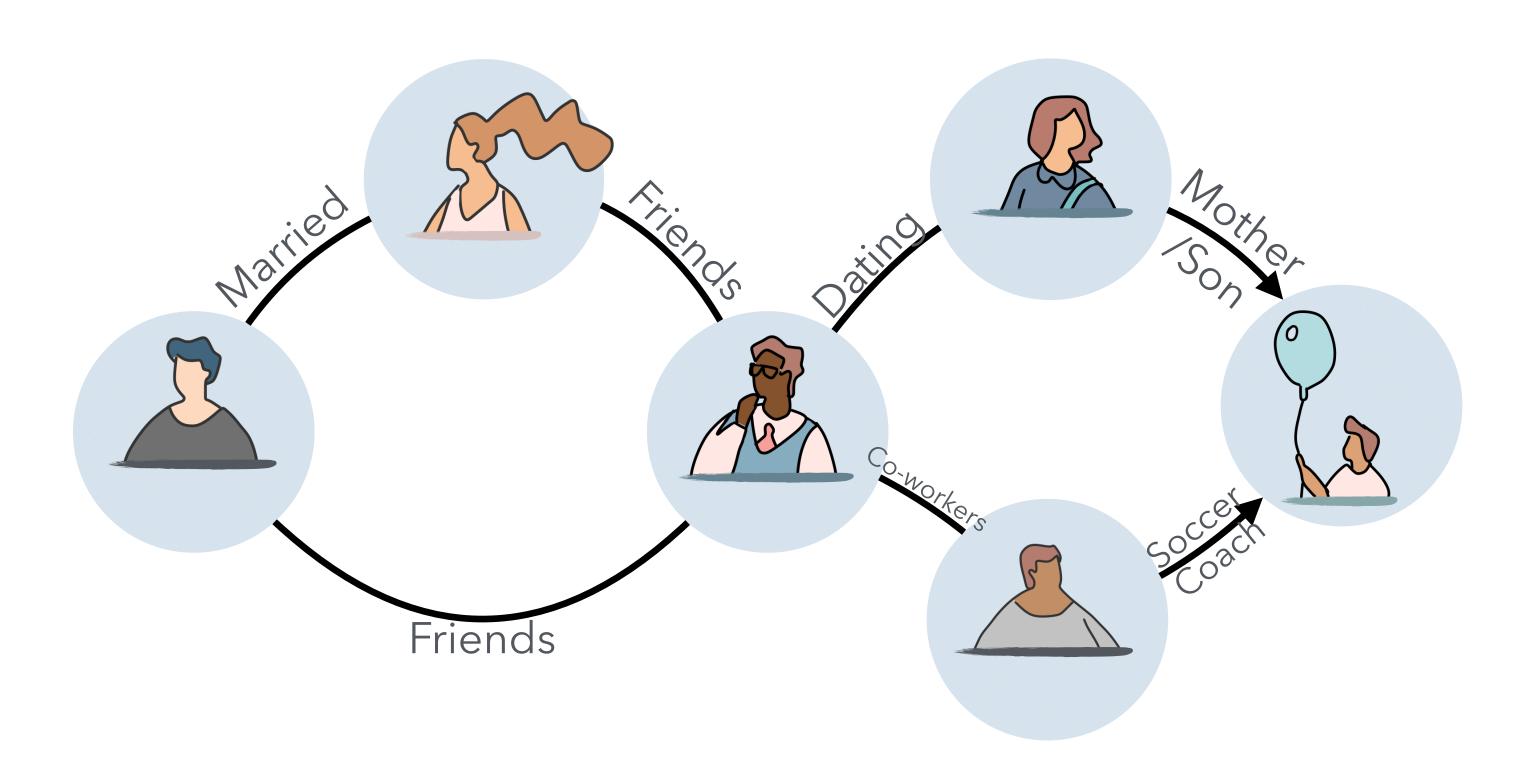


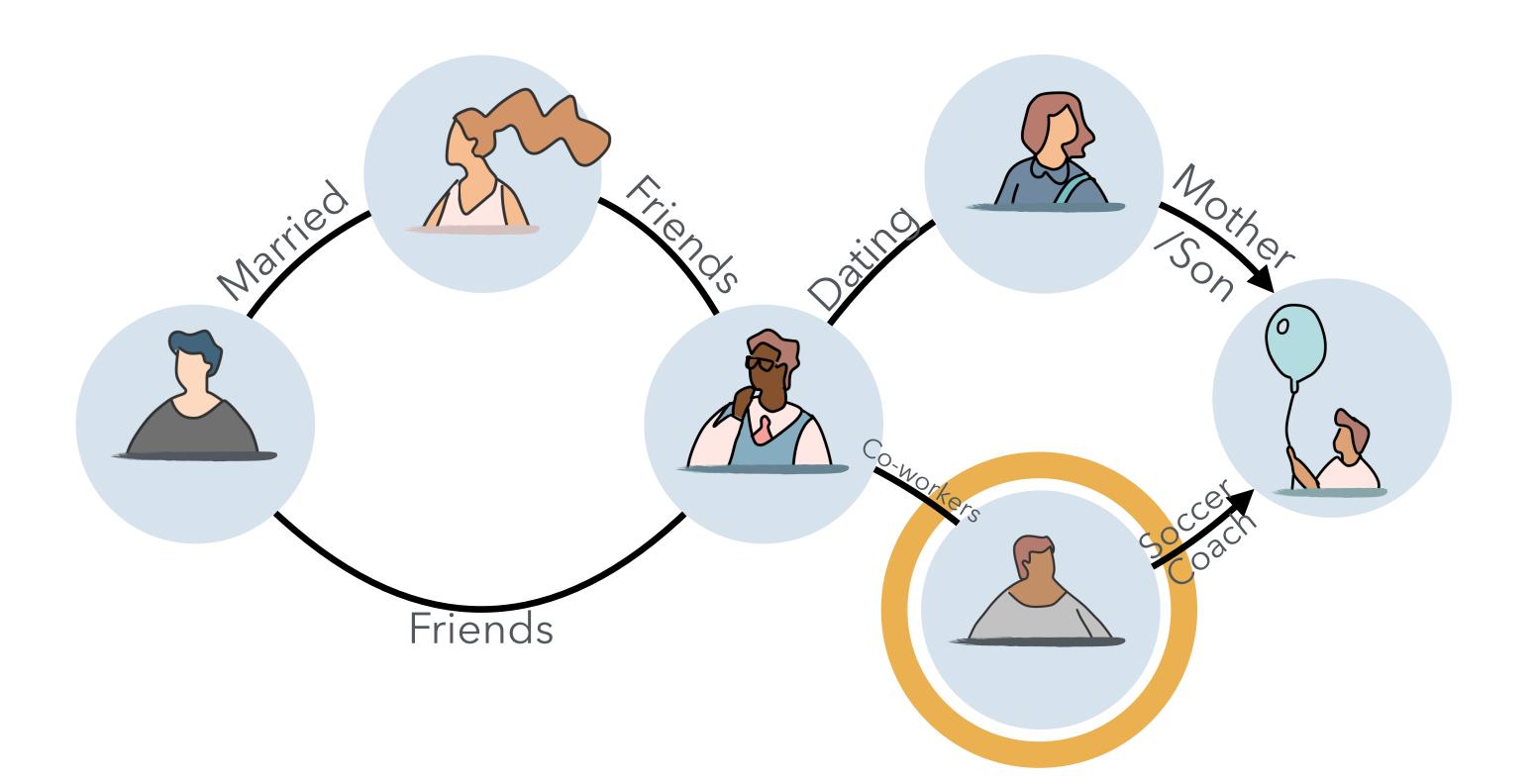


Overloaded

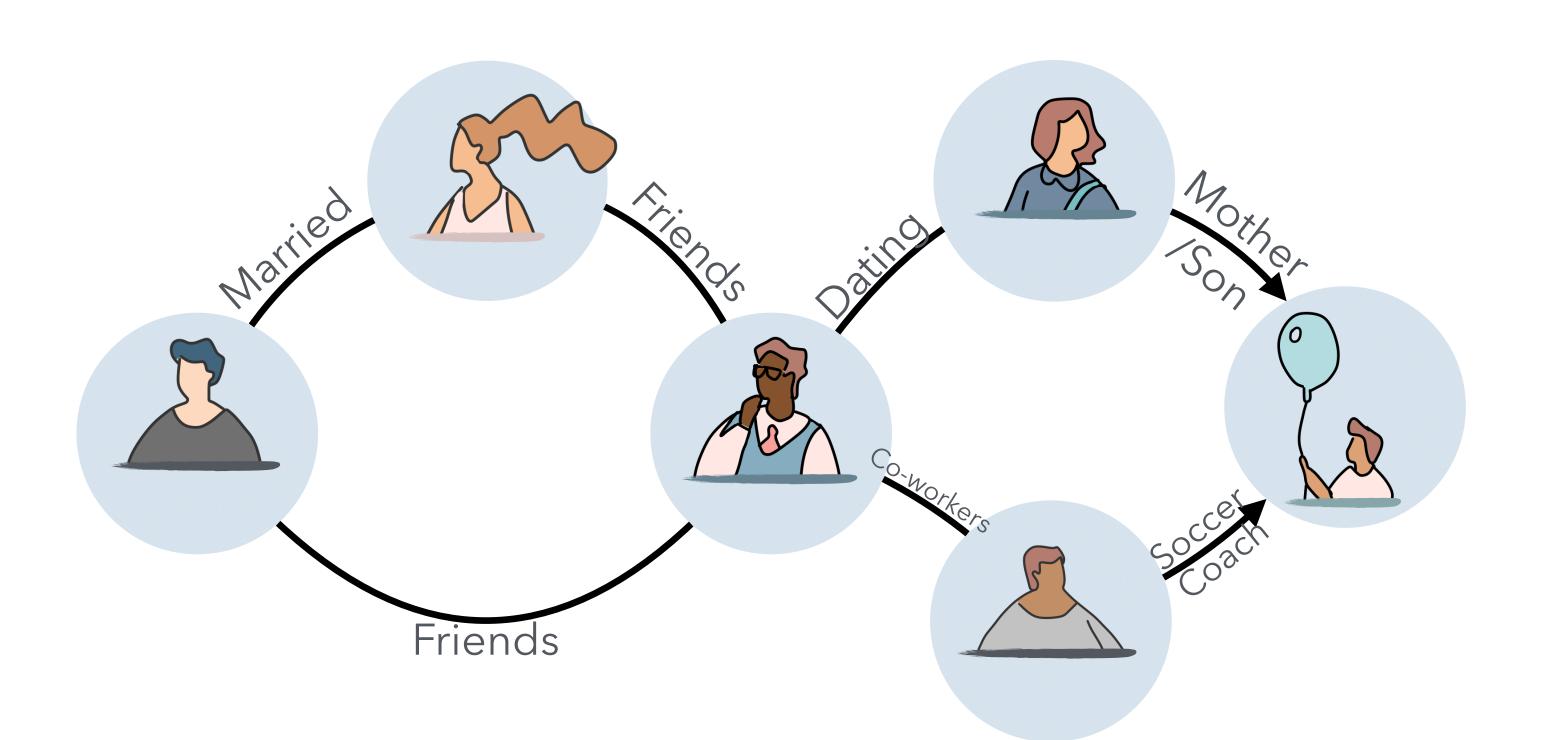
Juxtaposed





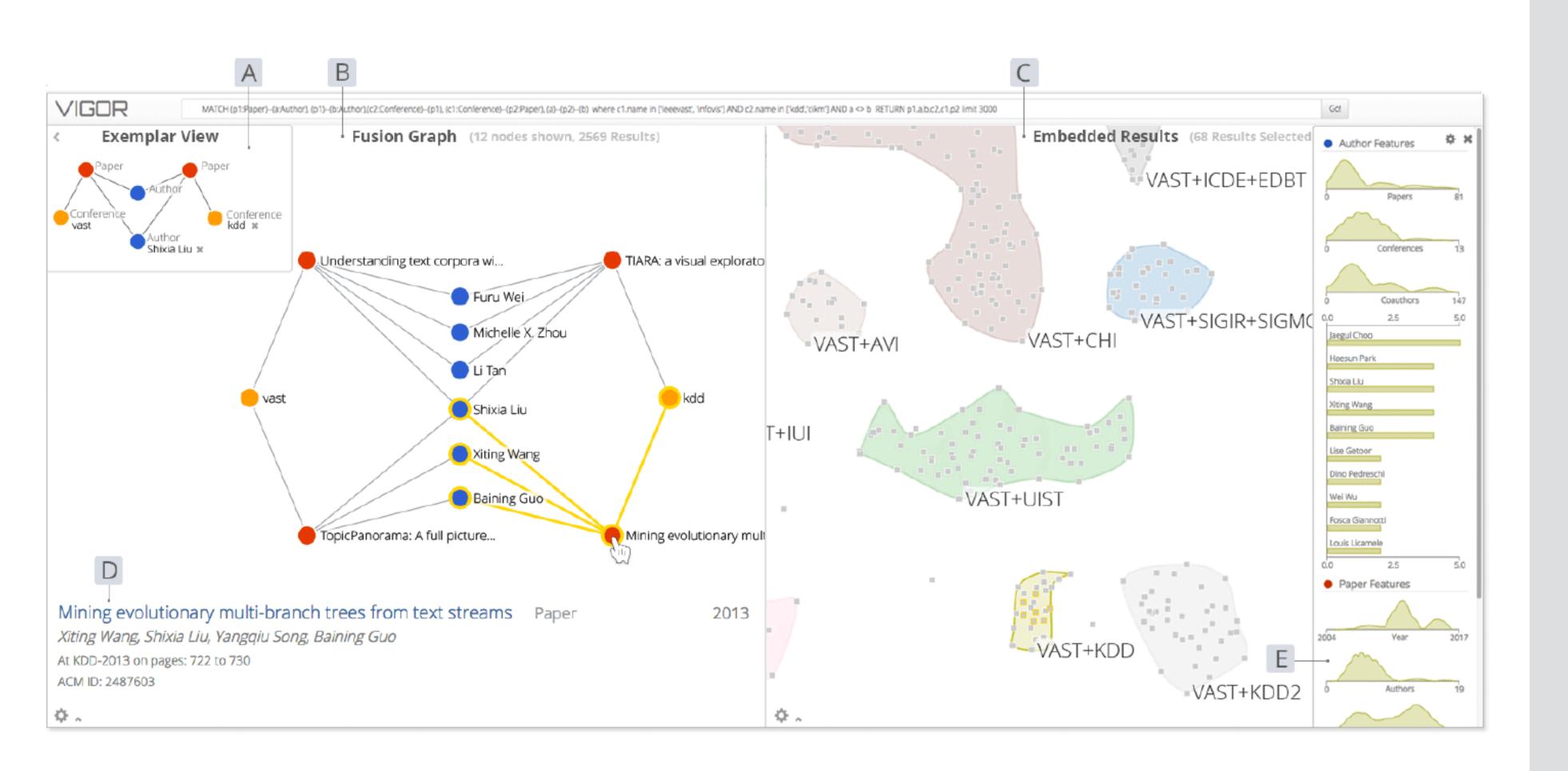


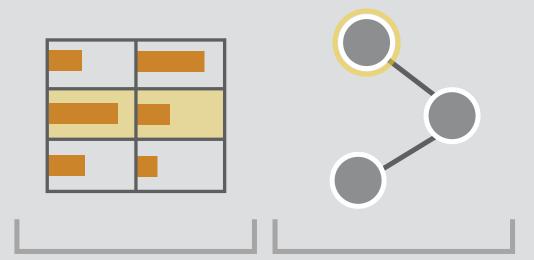
Name	Beverage	Day 1	
Mark	Beer	1	
Sue	Coke	0	
Cole	Port	4	
Jon	Coke	5	
Tom	Beer	2	
Abby	Port	3	



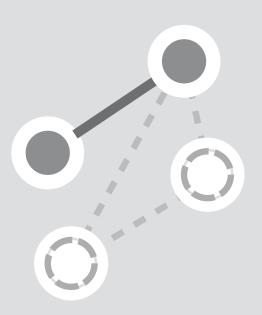
Name	Beverage	Day 1
Mark	Beer	1
Sue	Coke	0
Cole	Port	4
Jon	Coke	5
Tom	Beer	2
Abby	Port	3

Relationship	Years	
Dating	4	
Mother / Son	12	
Co-workers	3	
Soccer Coach	2	
Friends	8	
Friends	3	
Married	4	

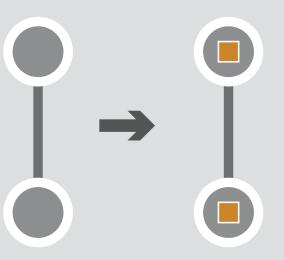




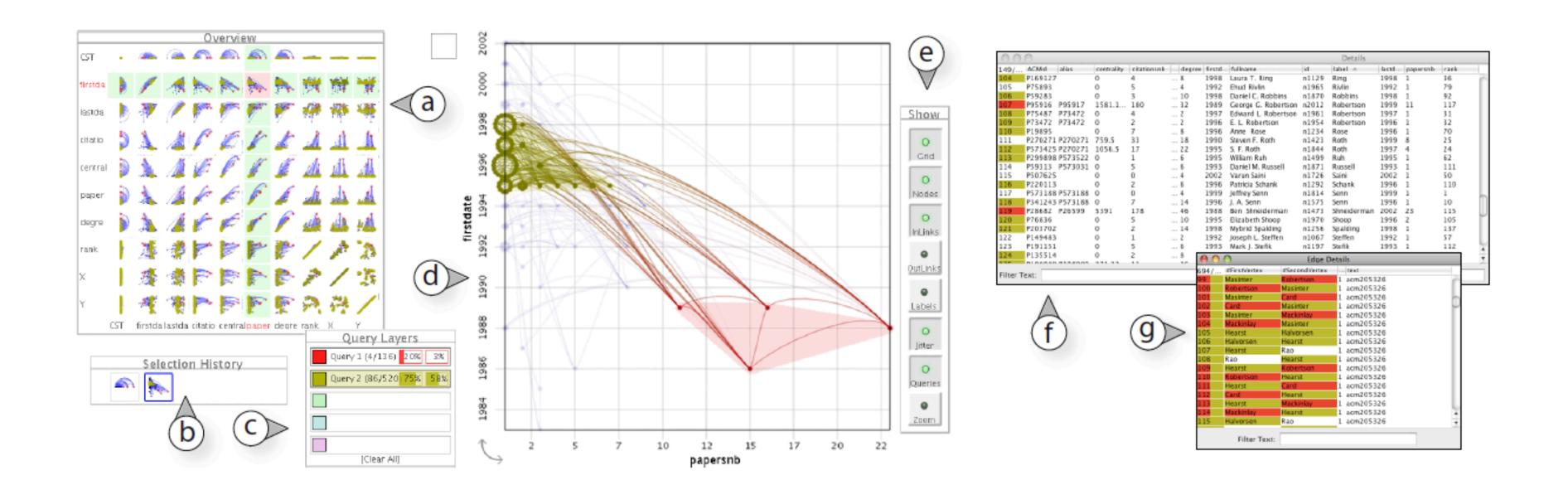
Juxtaposed

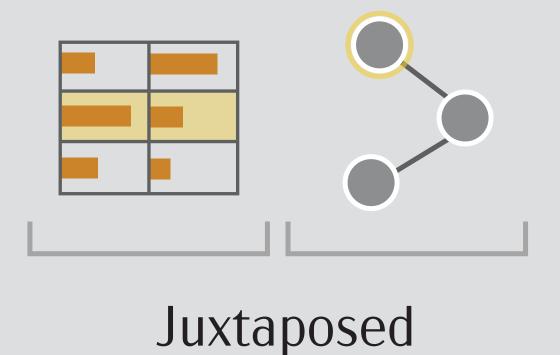


Querying and Filtering



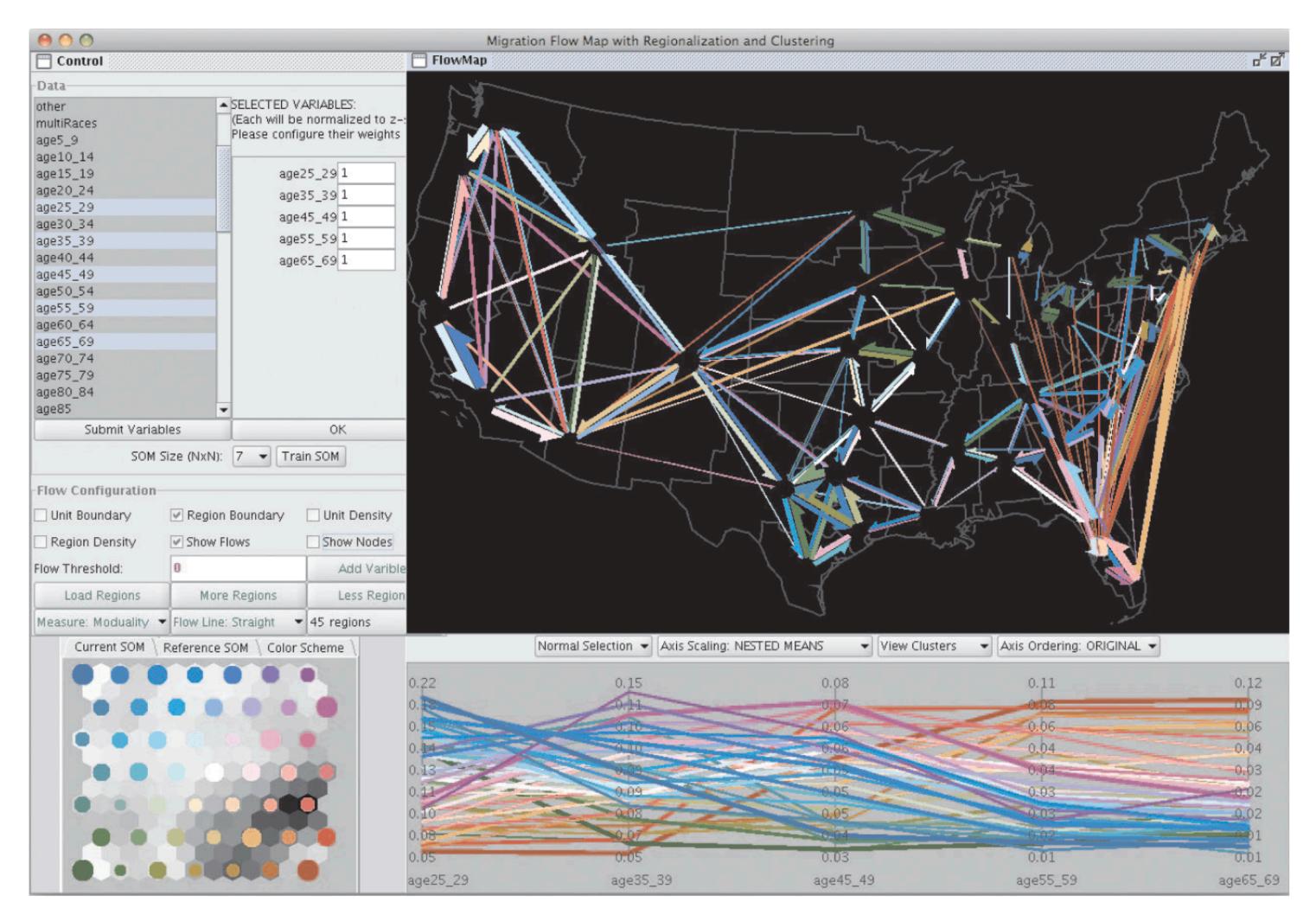
Deriving New Attributes

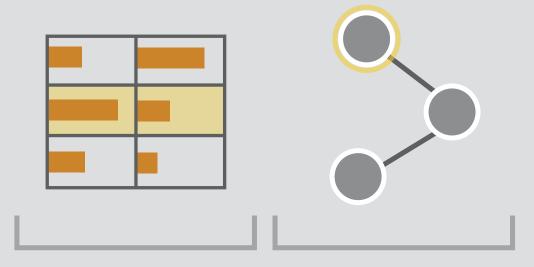




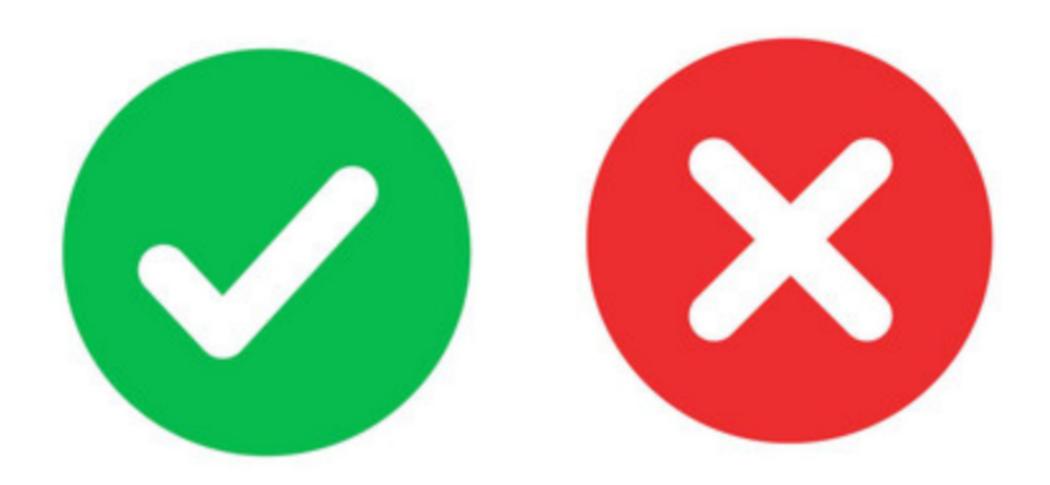
Graph Dice Bezerianos et al. 2010

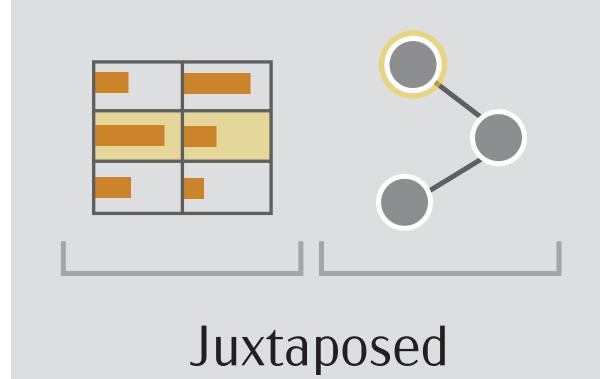
Guo, 2009



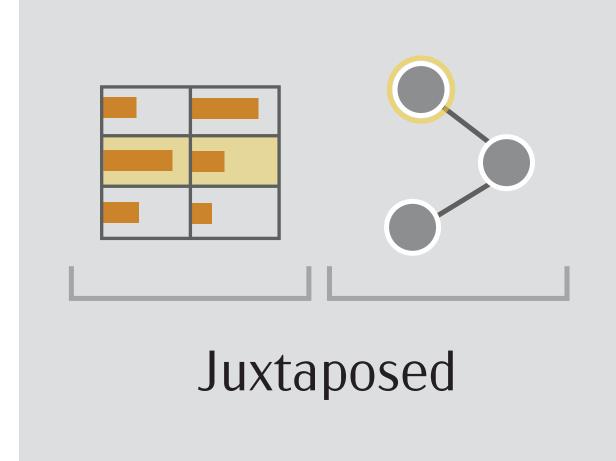


Juxtaposed



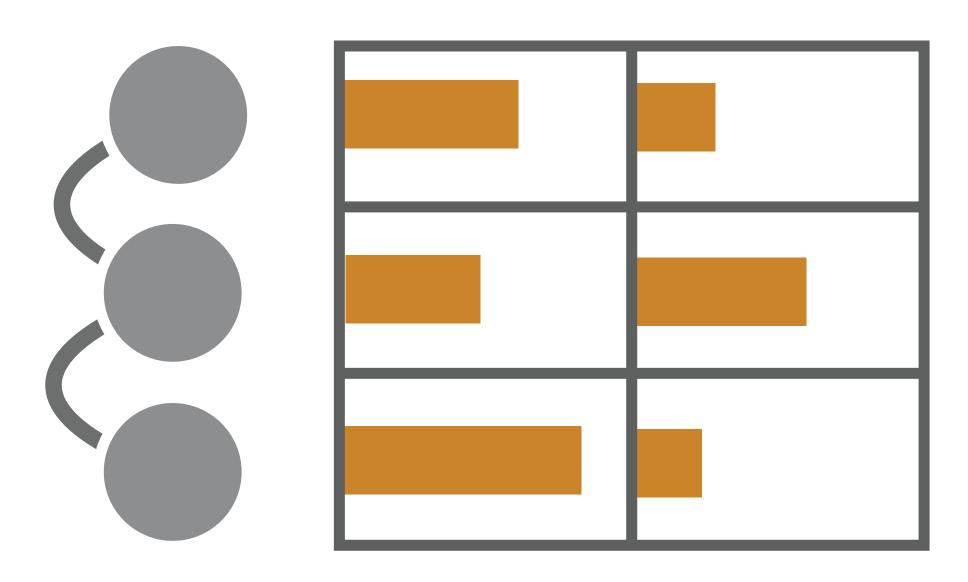


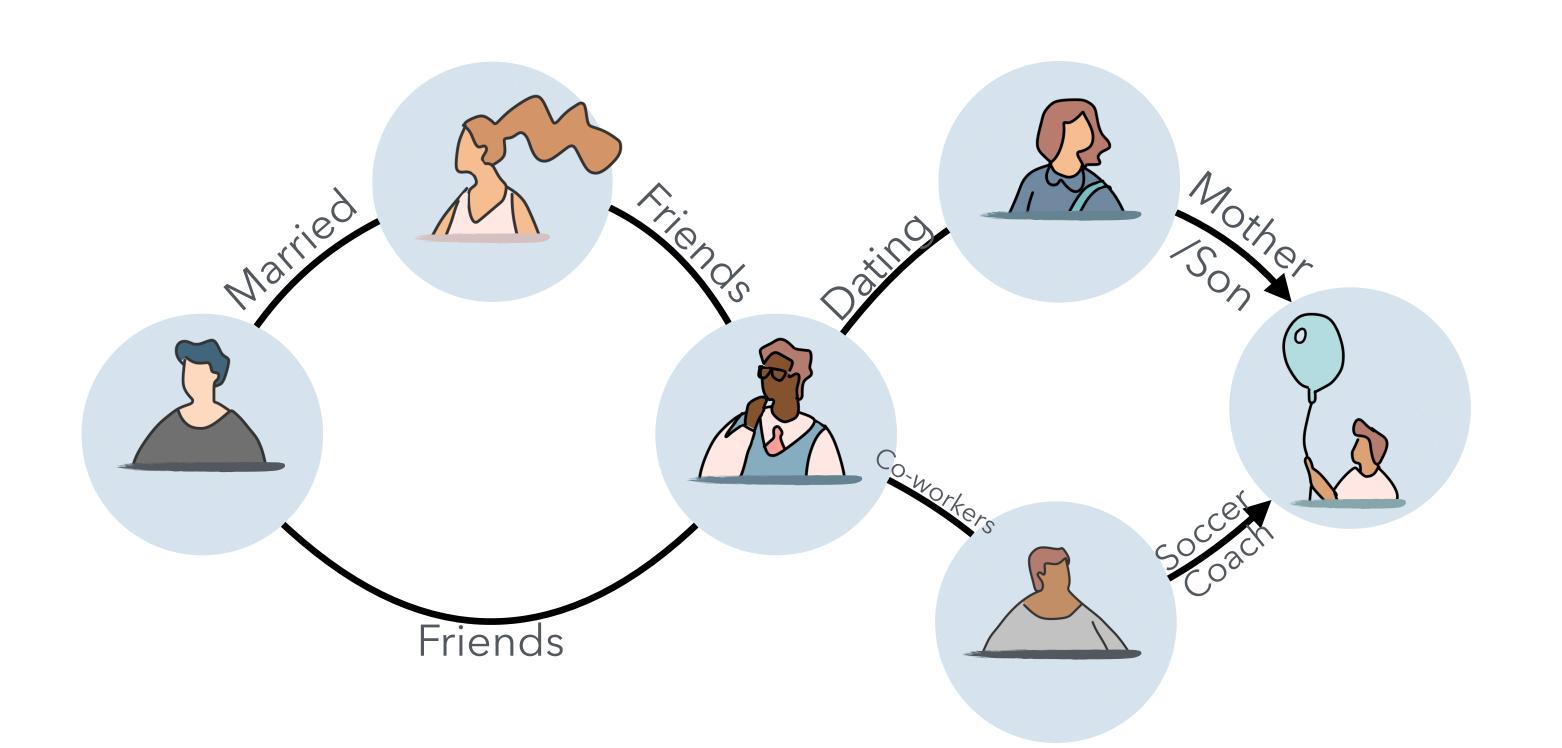
Independent views can optimize for topology and attribute independently.



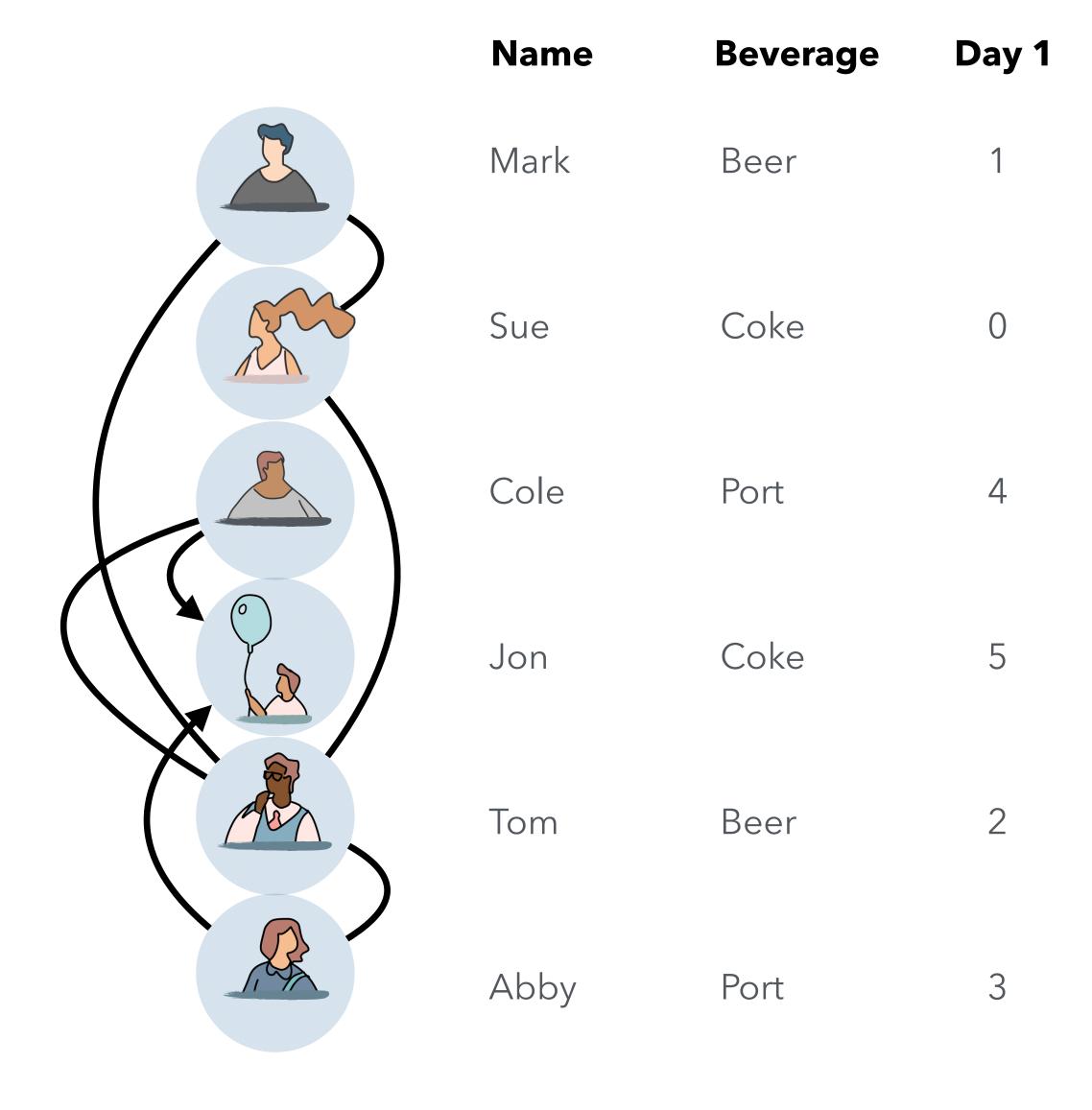
Not great for tasks on topological structures beyond a single node or edge.

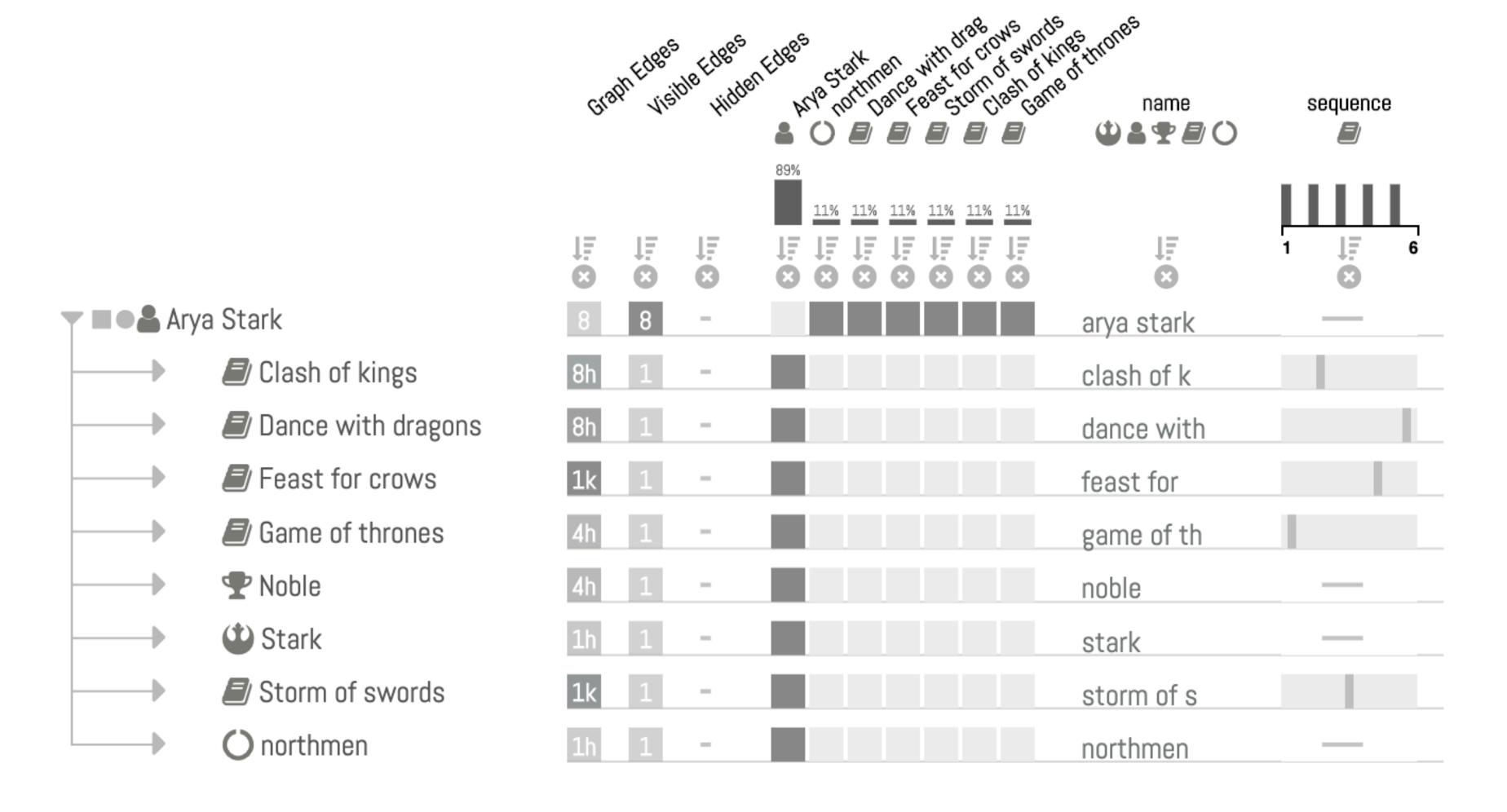
Recommended for large networks and/or very large numbers or heterogeneous types of node and link attributes

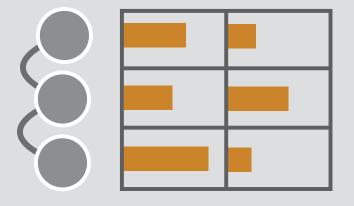




Name	Beverage	Day 1
Mark	Beer	1
Sue	Coke	0
Cole	Port	4
Jon	Coke	5
Tom	Beer	2
Abby	Port	3

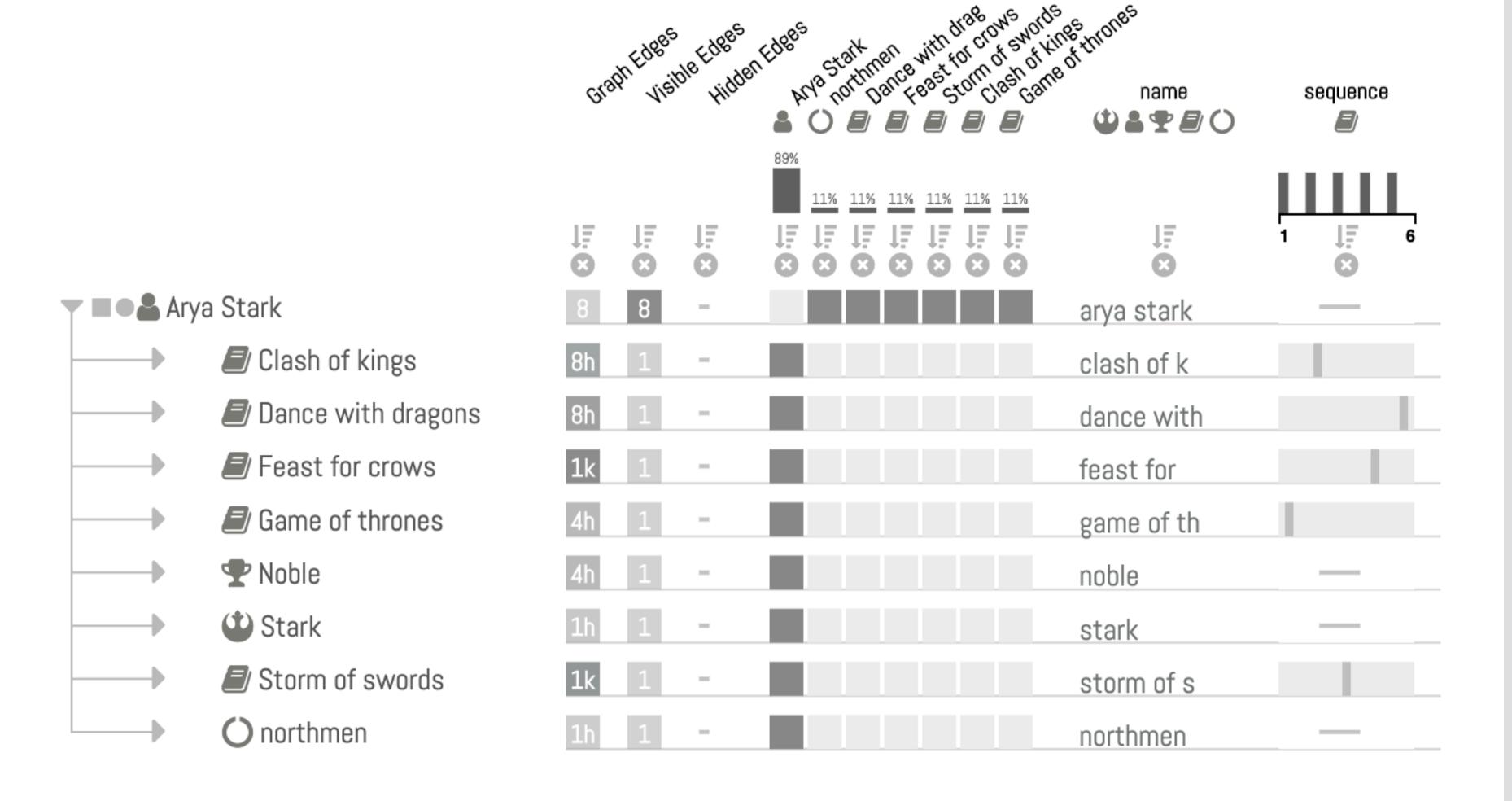


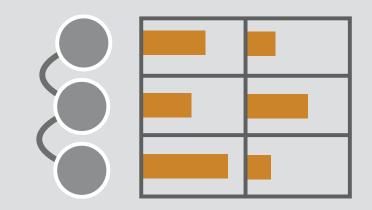


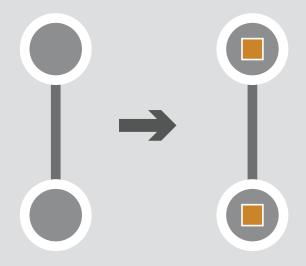


Integrated

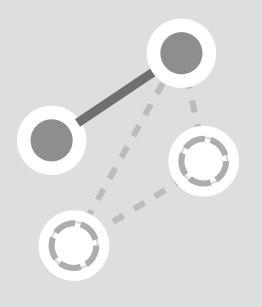
Juniper Nobre et al. 2018



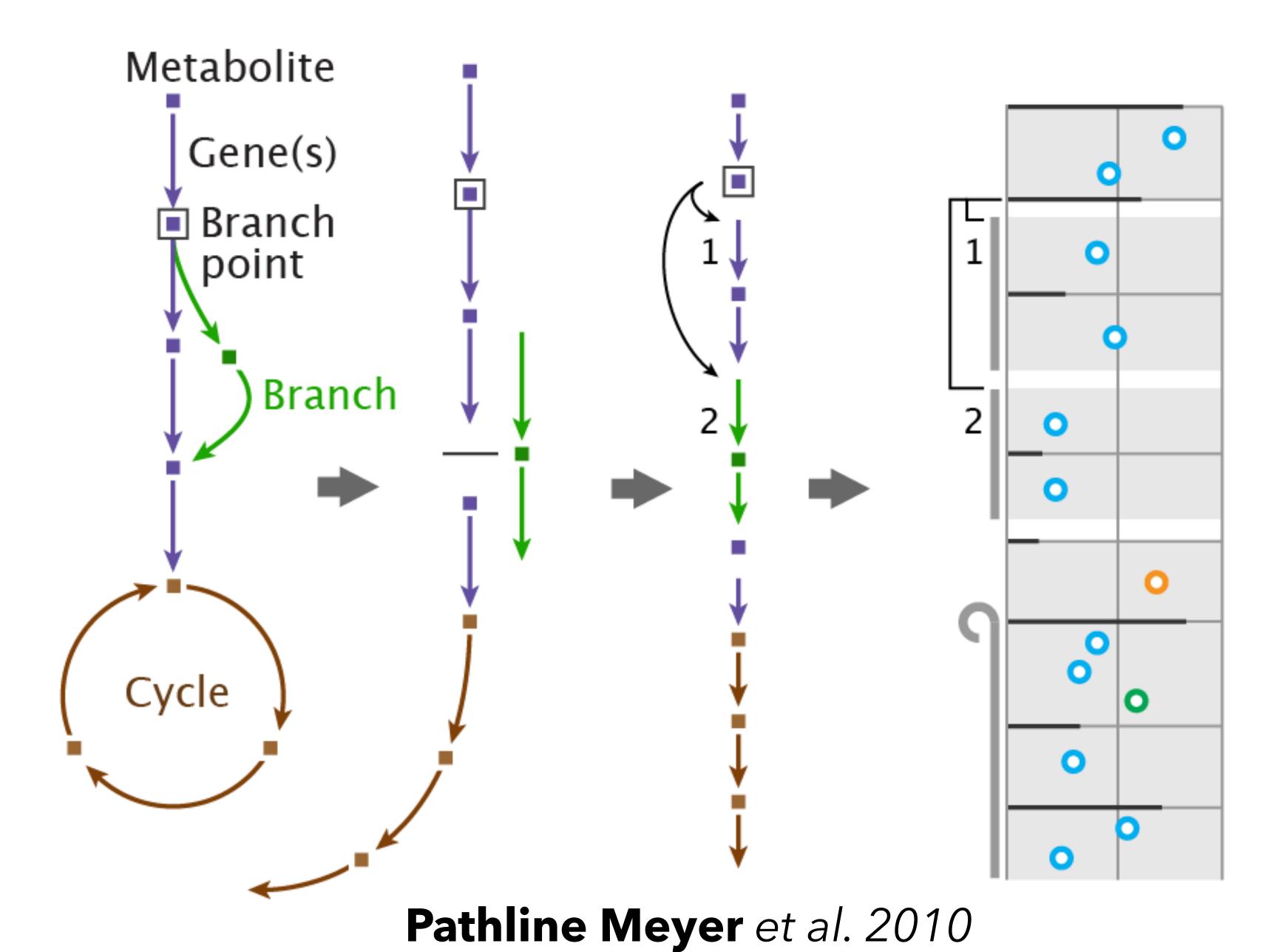


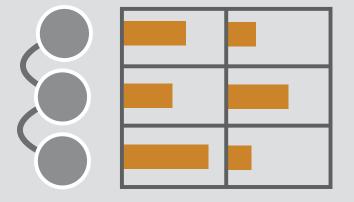


Deriving New Attributes

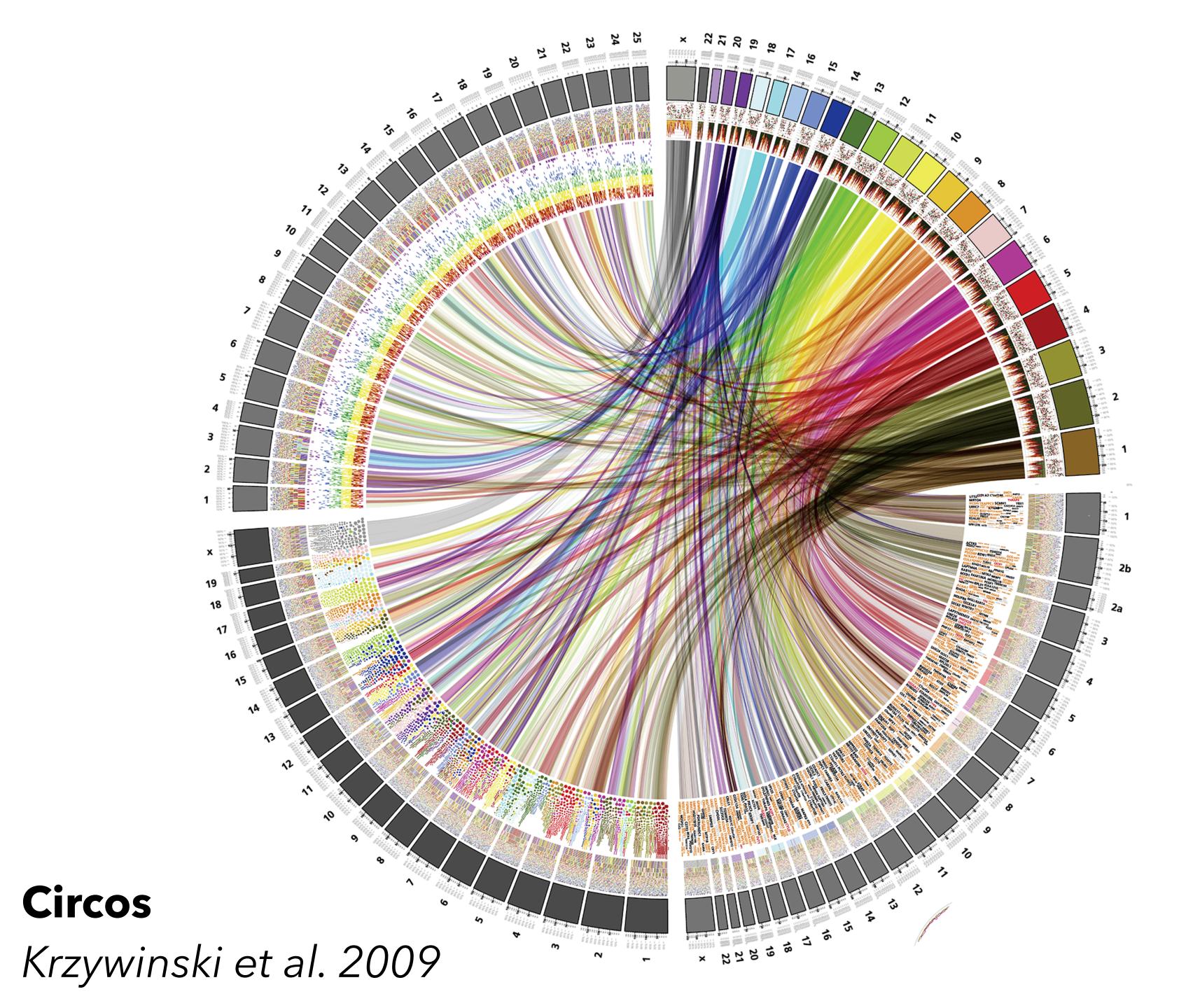


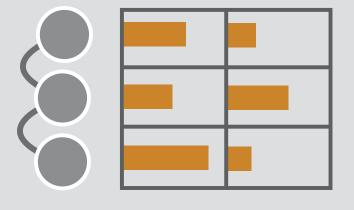
Querying and Filtering

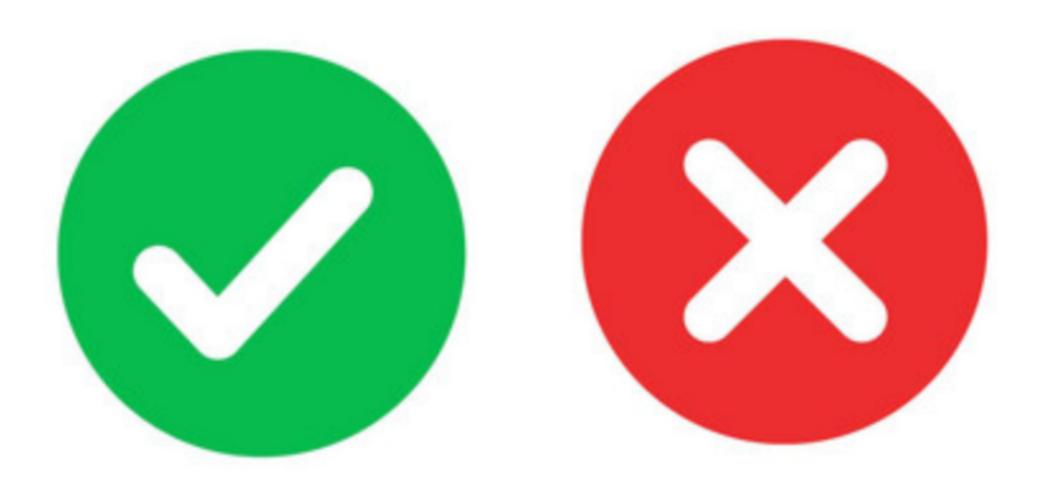


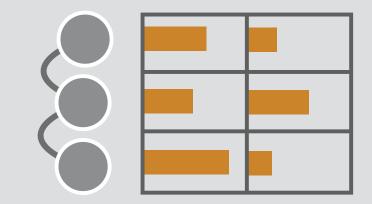


Integrated

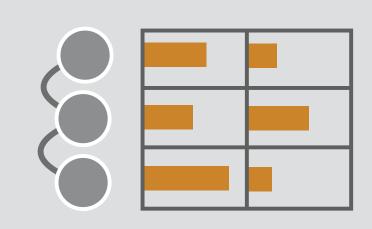








good at integrating attributes with topology, if the topology can be represented in a linear layout.

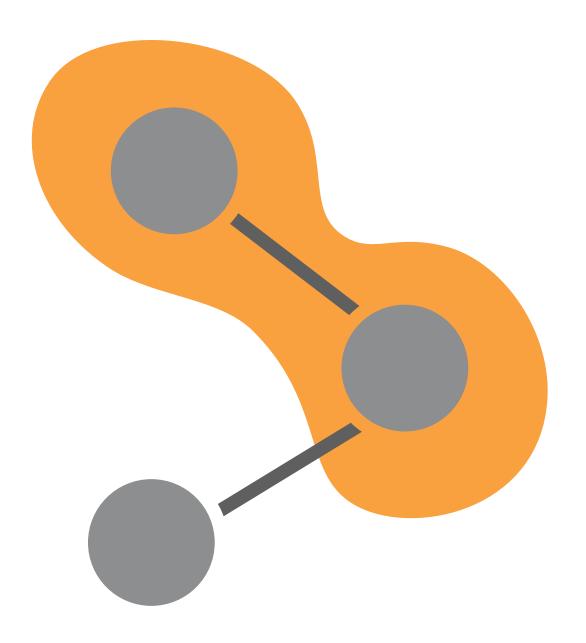


Integrated

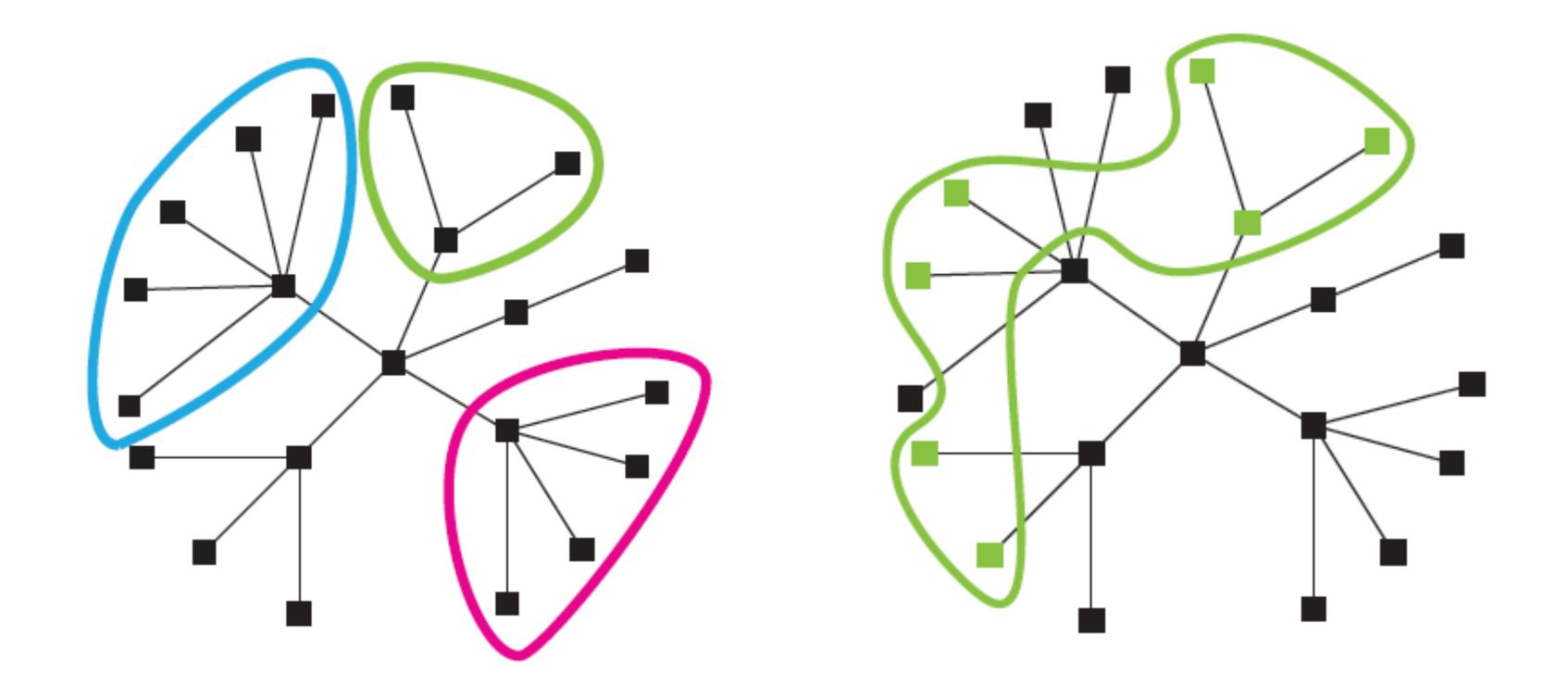
Not suitable for networks that can not be sensibly linearized.

Recommended for networks with several, heterogenous, node attributes and well suited for tasks on single nodes, neighbors, and paths

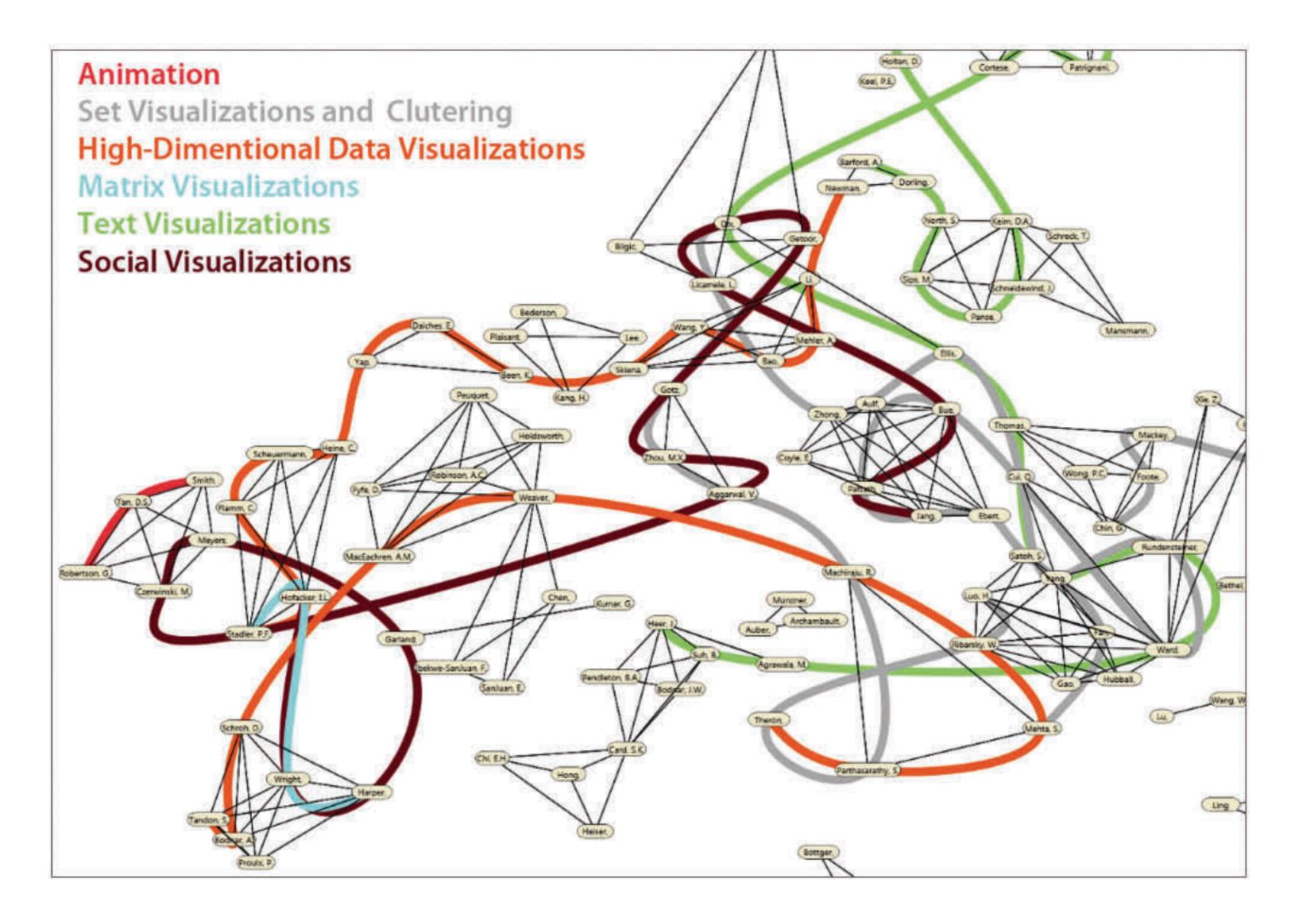
Overloaded



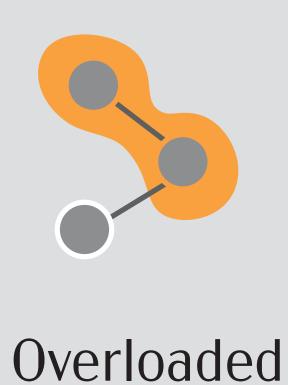
GMaps Gansner et al. 2010

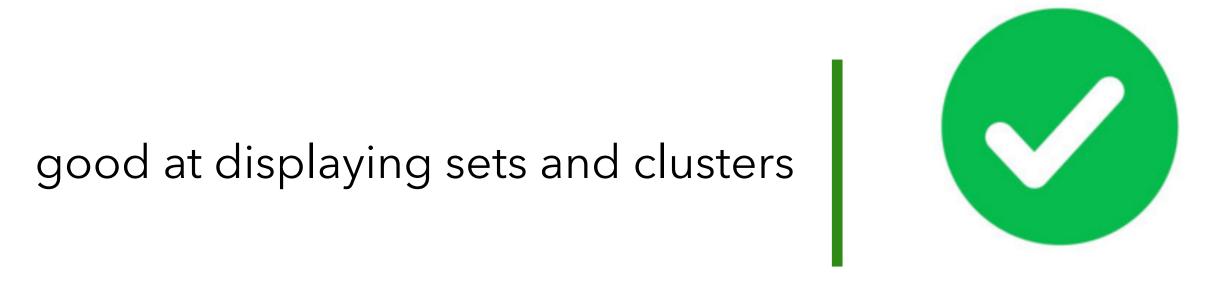


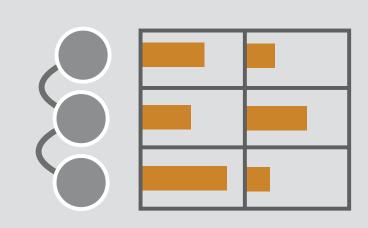
Bubble Sets Collins et al. 2009



LineSets Alper et al. 2011



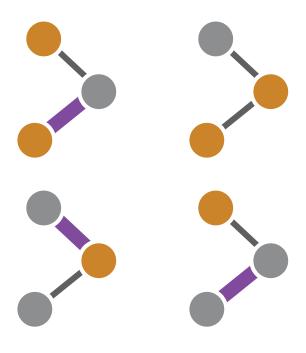




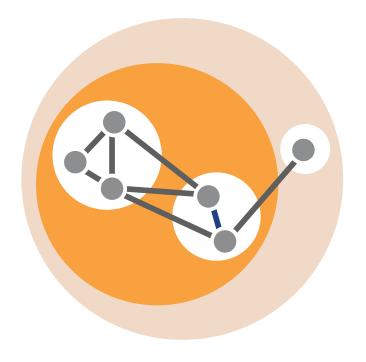
Not suitable for displaying more than one or two attributes at a time.

Recommended for recommend overloading for the particular use case of visualizing set-memberships or clusters on top of node-link diagrams

Layout Operations

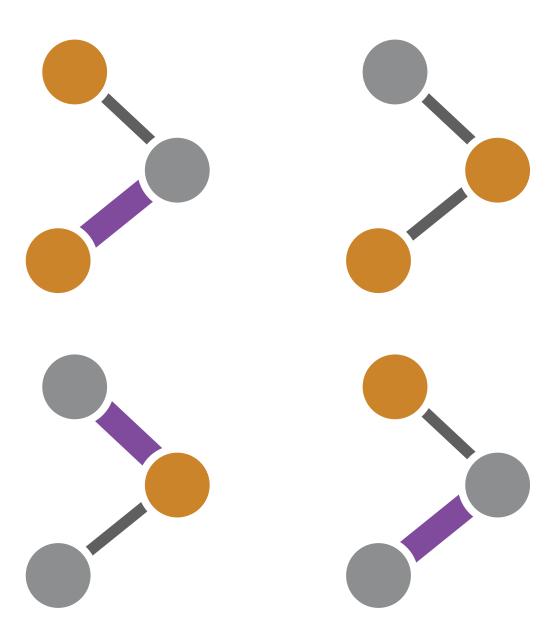


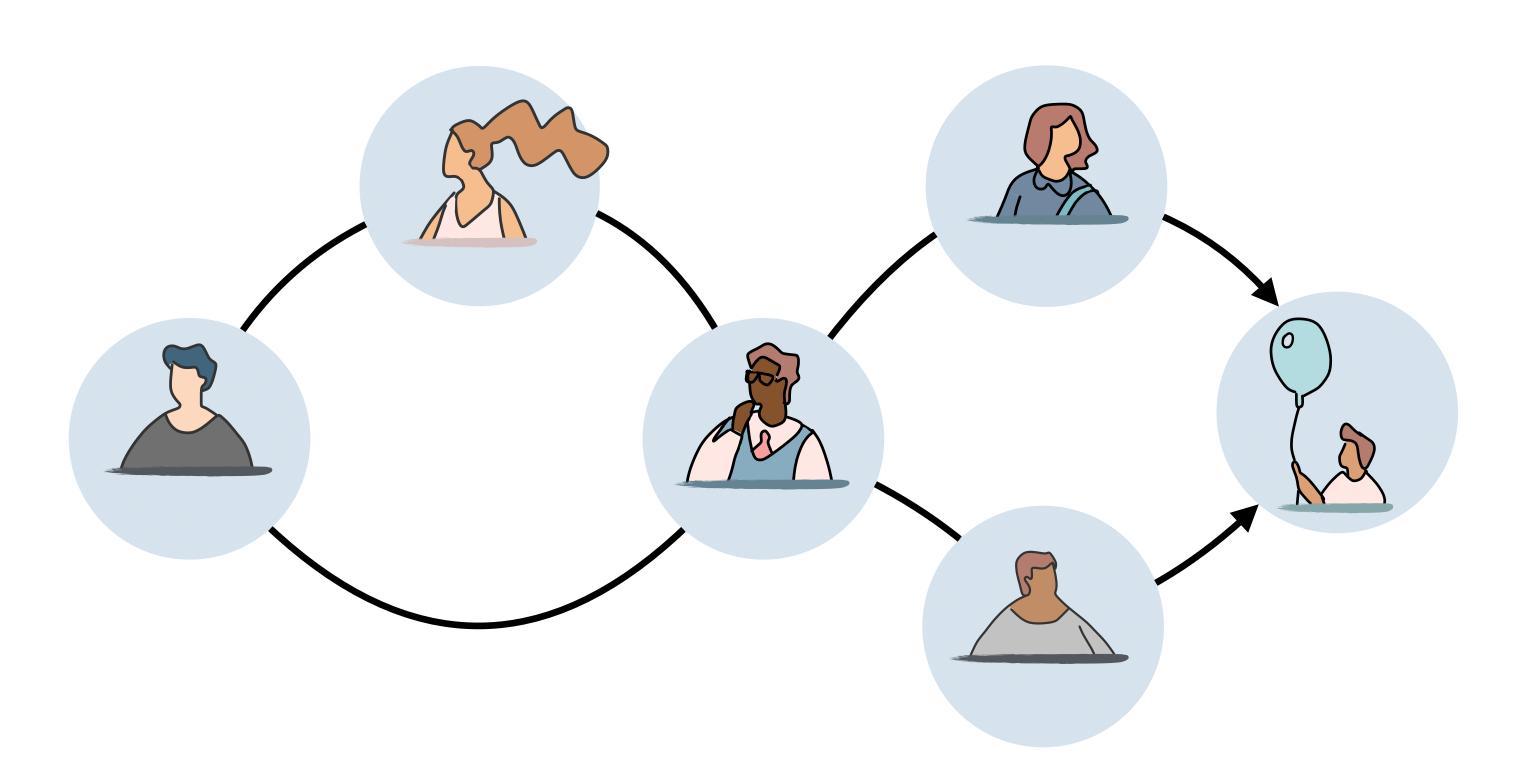
Small Multiples

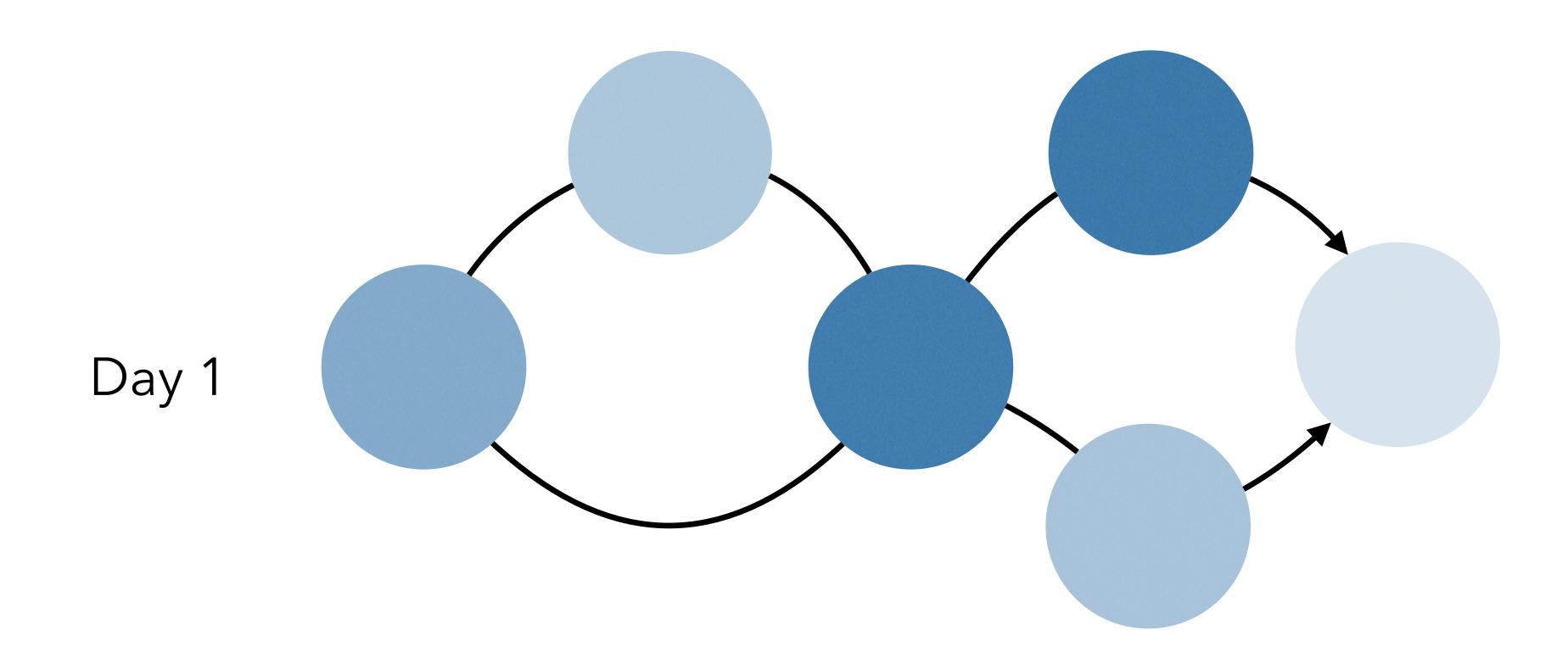


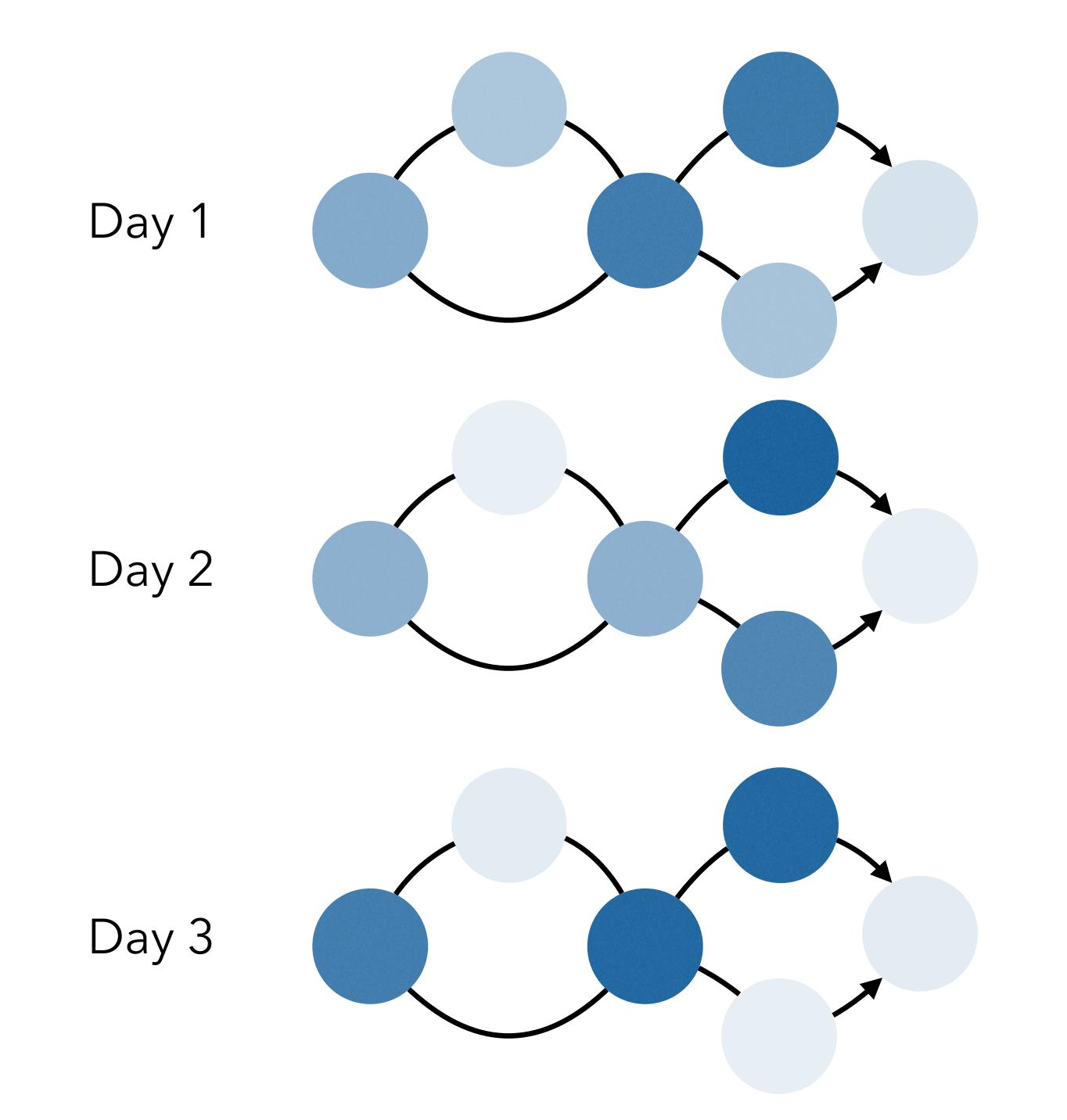
Hybrids

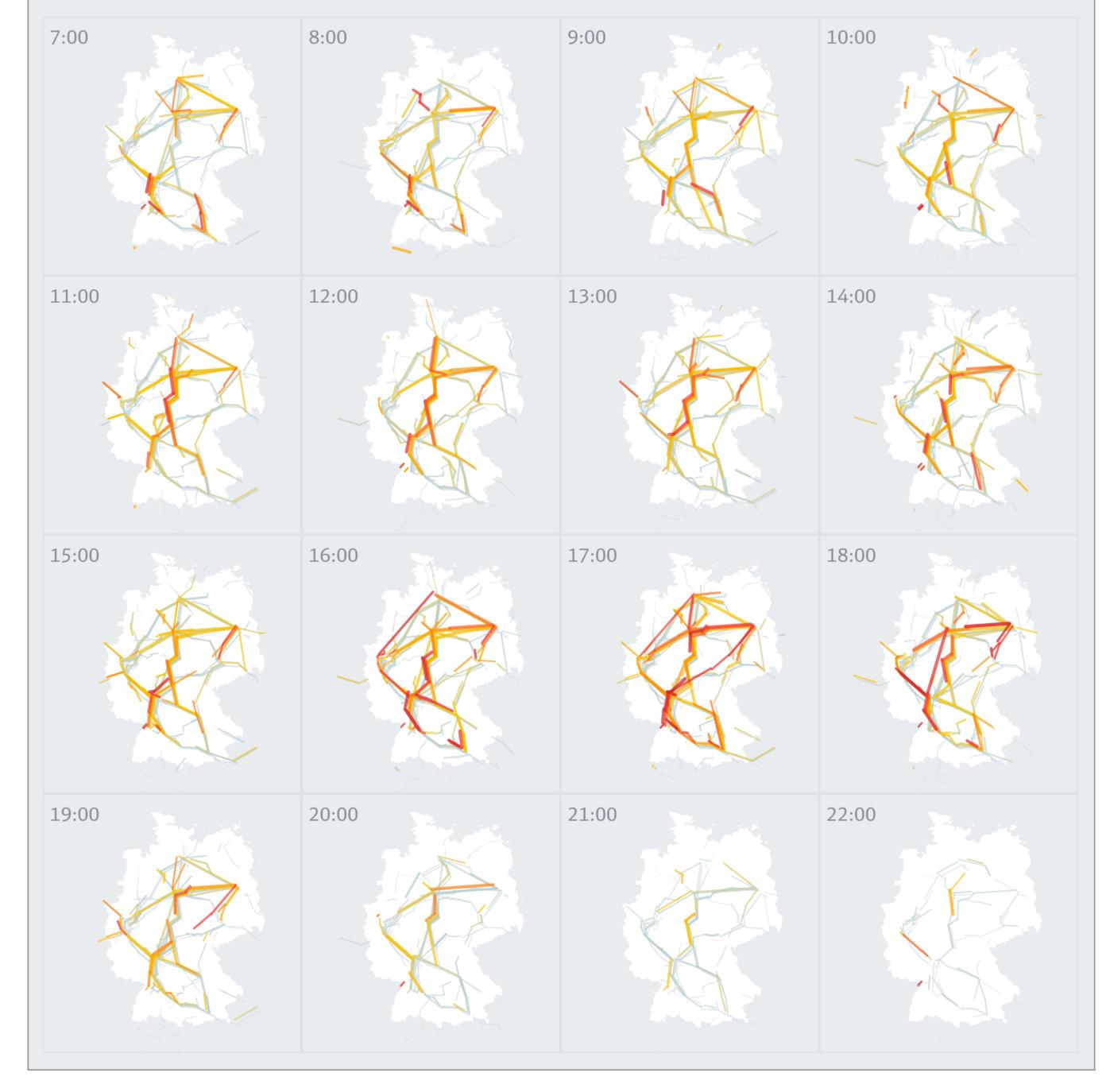
Small Multiples

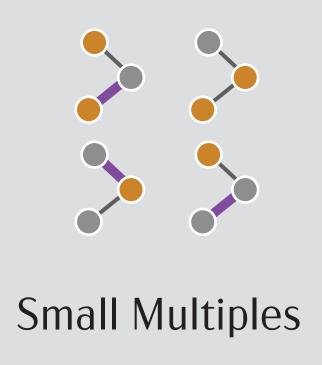


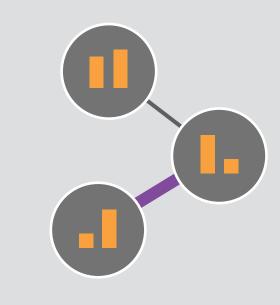






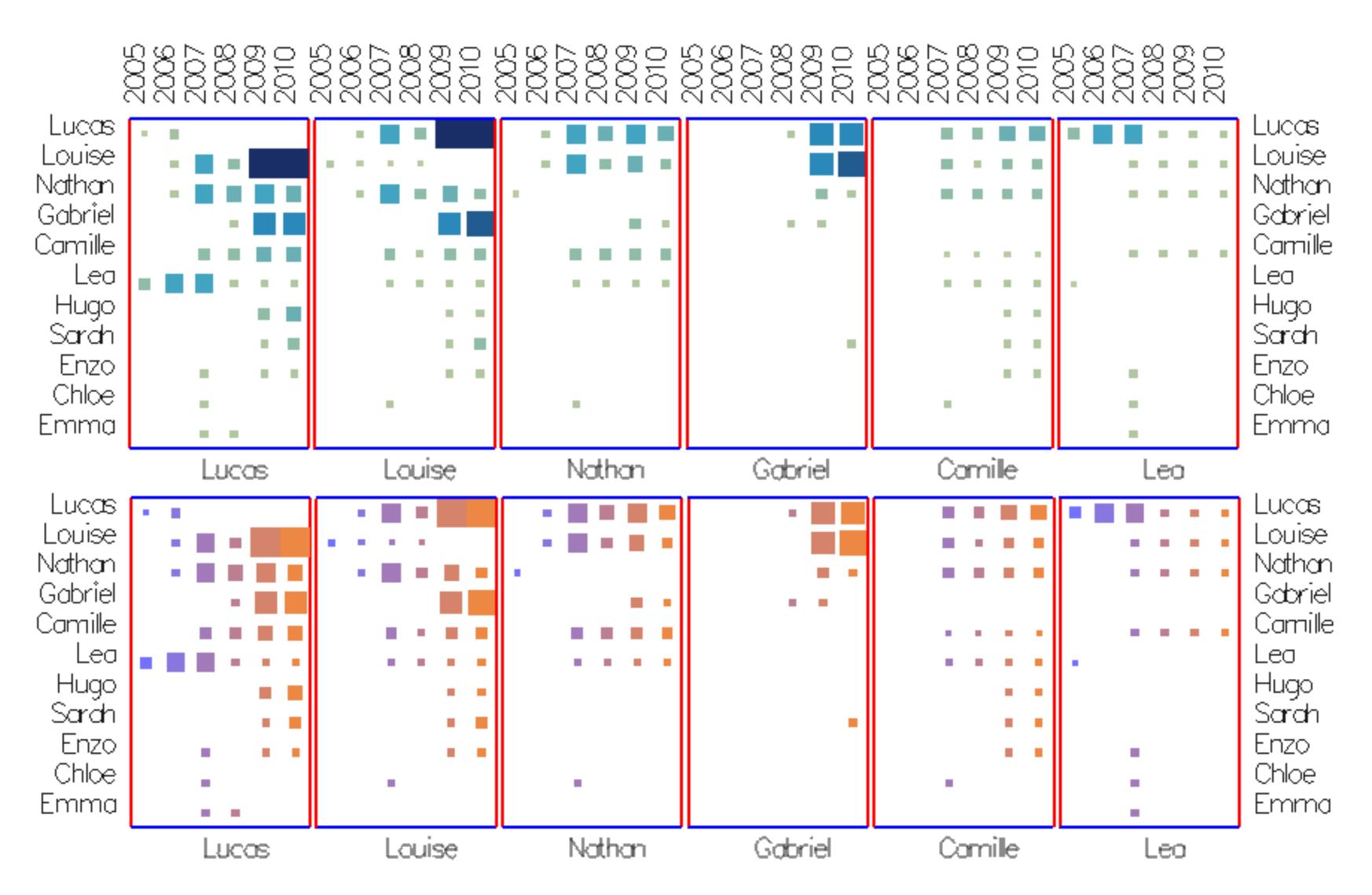




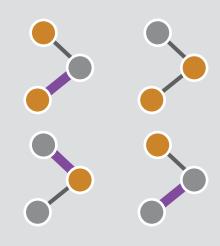


On-Node / On-Edge Encoding

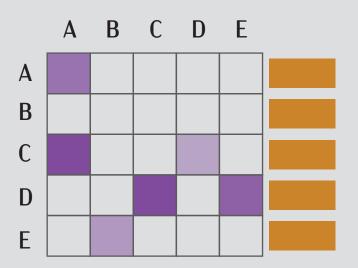
Peakspotting - https://truth-and-beauty.net/projects/peakspotting



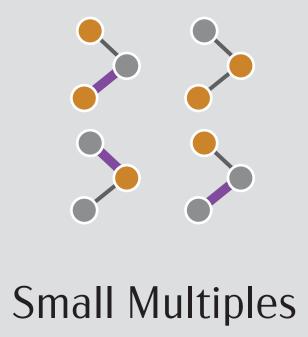
Bach et al. 2014



Small Multiples



Adjacency Matrix

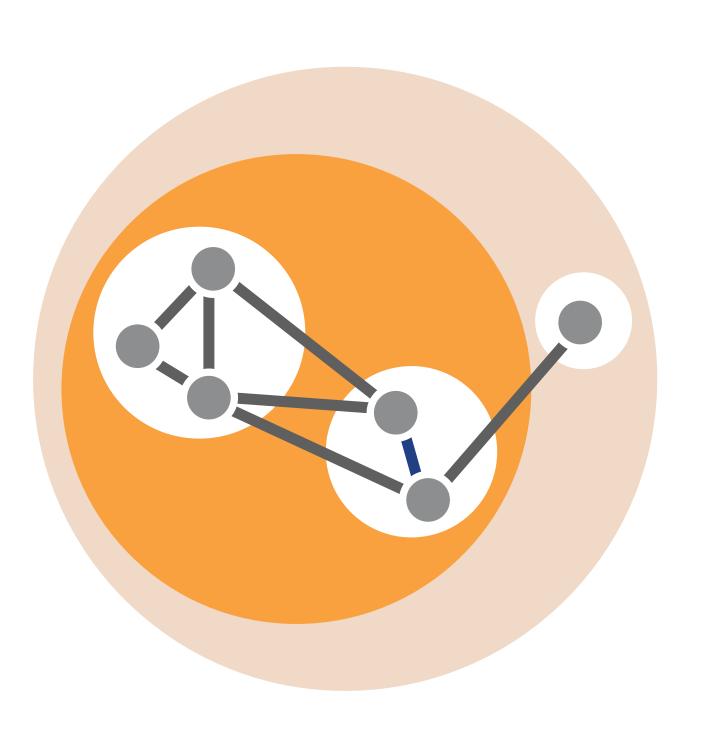


Common layout facilitates attribute comparisons in specific topological features

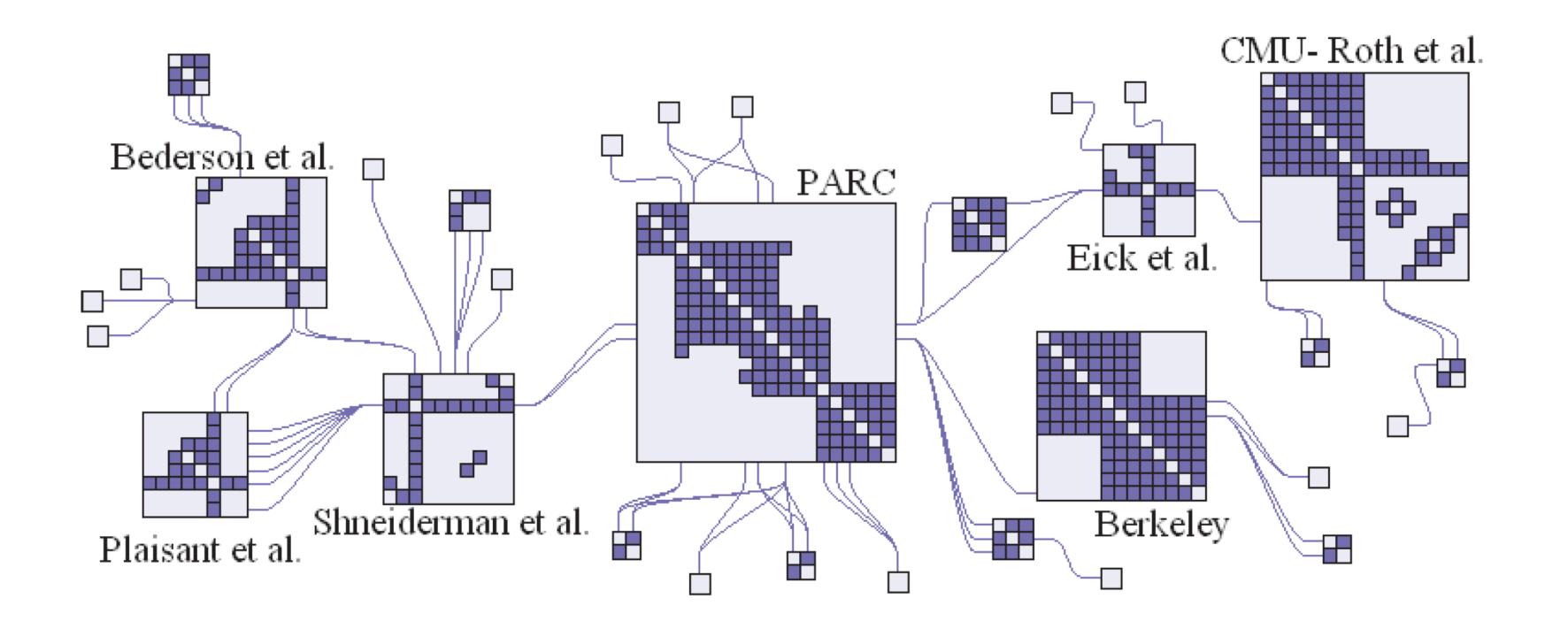


Recommended for small networks where the tasks are focused on attribute comparison

Hybrids

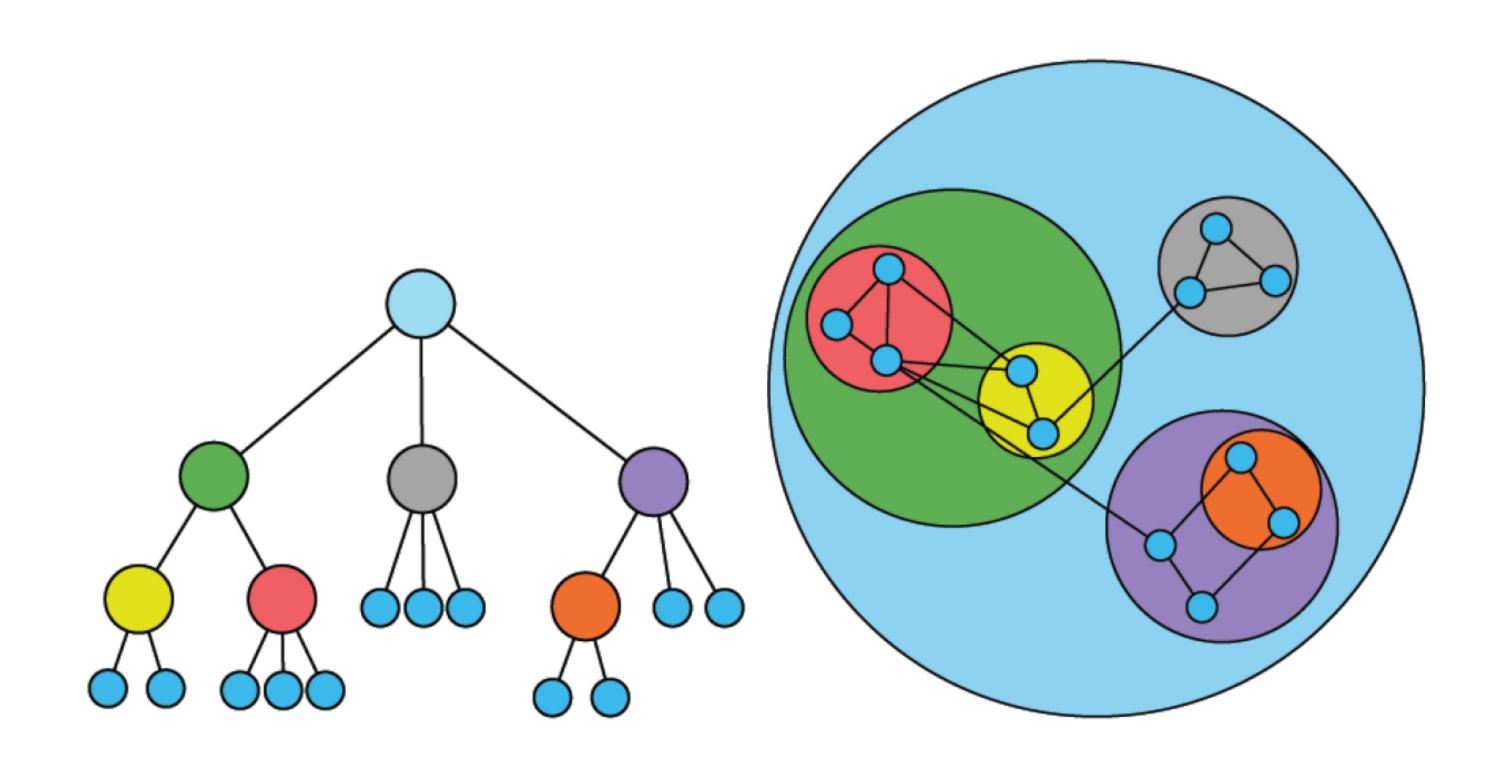


NodeTrix Henry et al. 2007

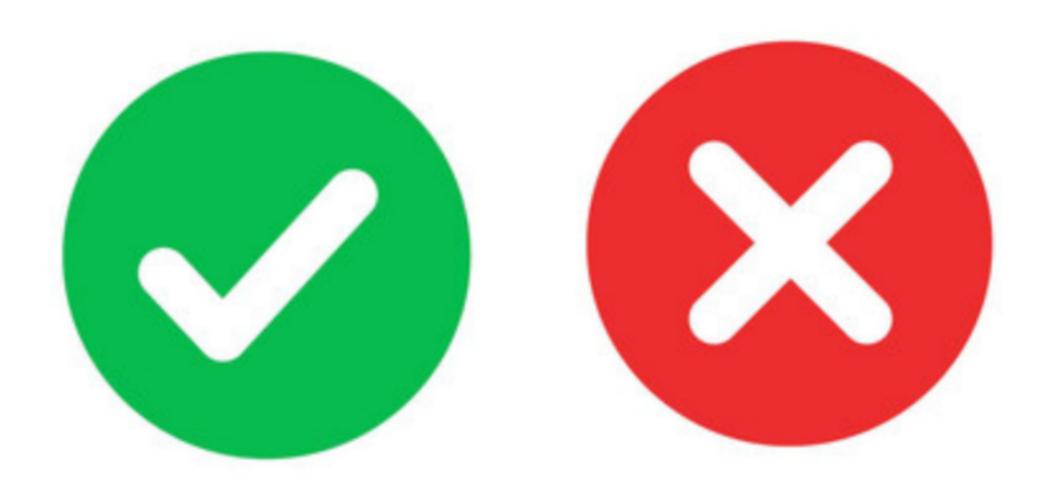


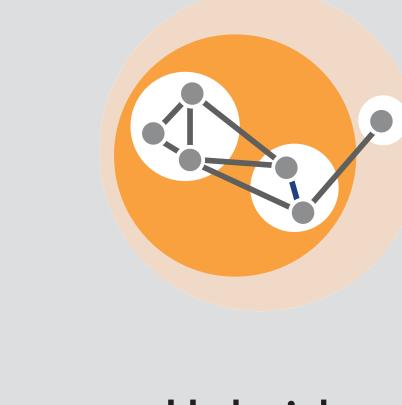
Hybrids

GrouseFlocks Archambault et al. 2008

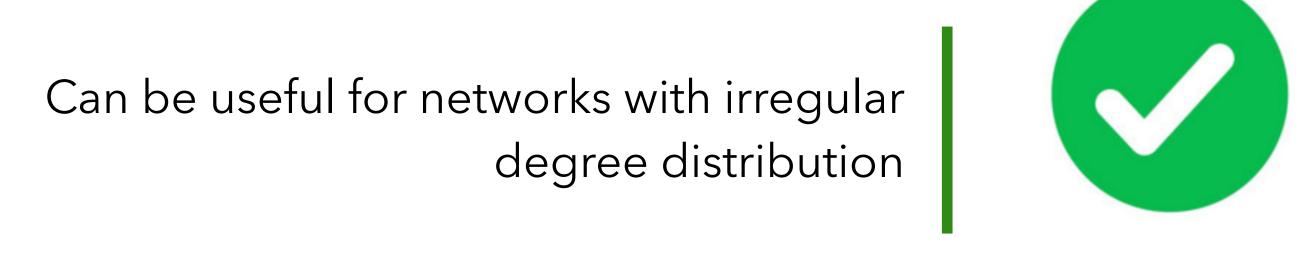


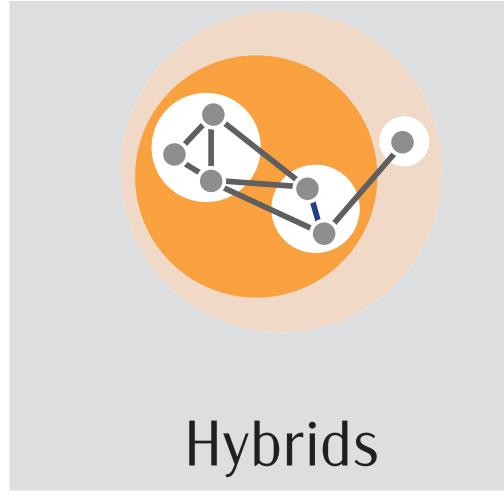
Hybrids





Hybrids

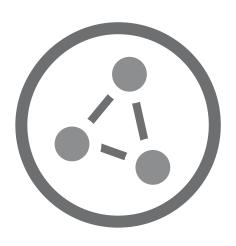




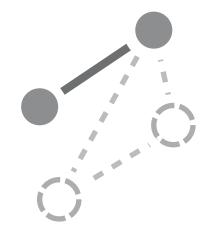
Adds complexity since users must parse different techniques simultaneously.

Recommended for networks with irregular degree distribution and few attributes

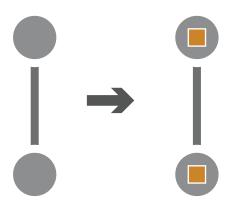
Data Operations



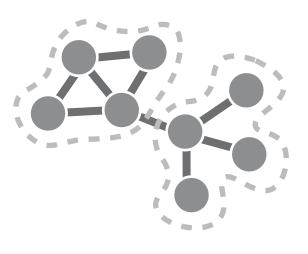
Aggregating Nodes/Edges



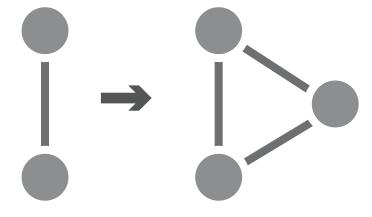
Querying and Filtering



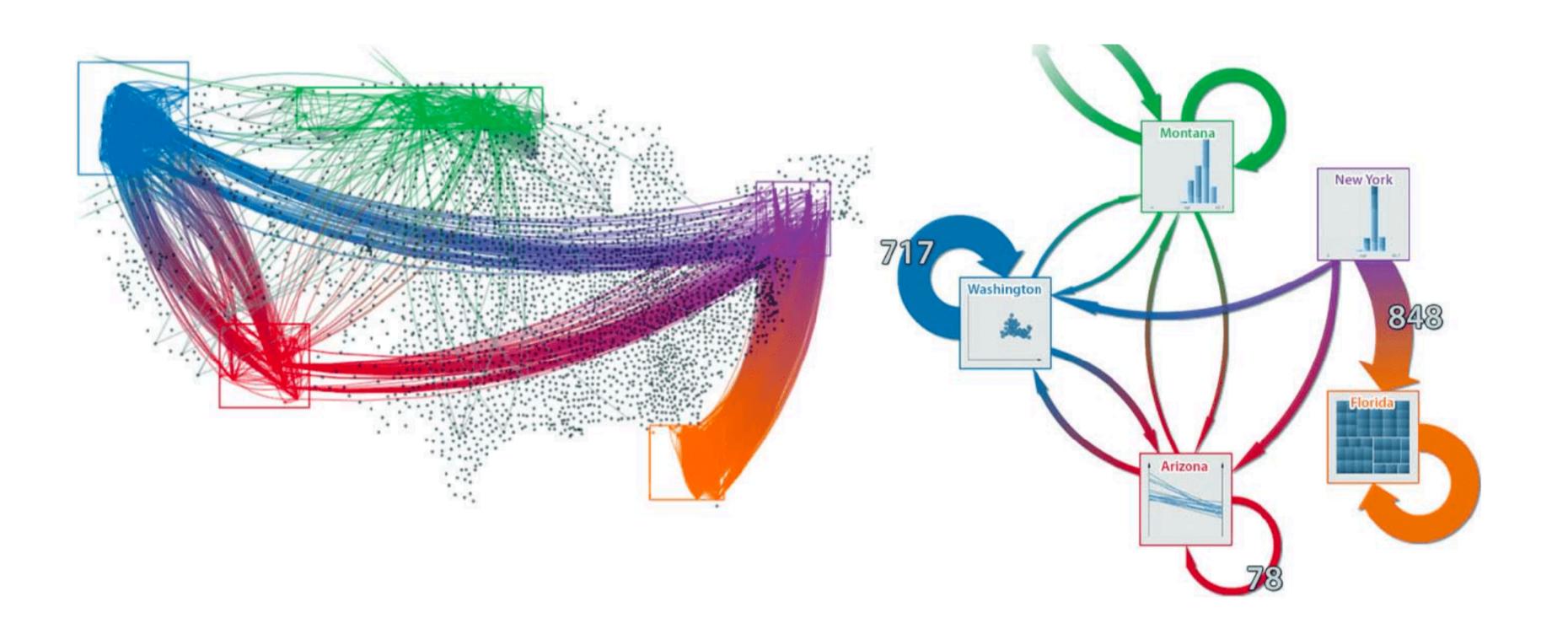
Deriving New Attributes



Clustering

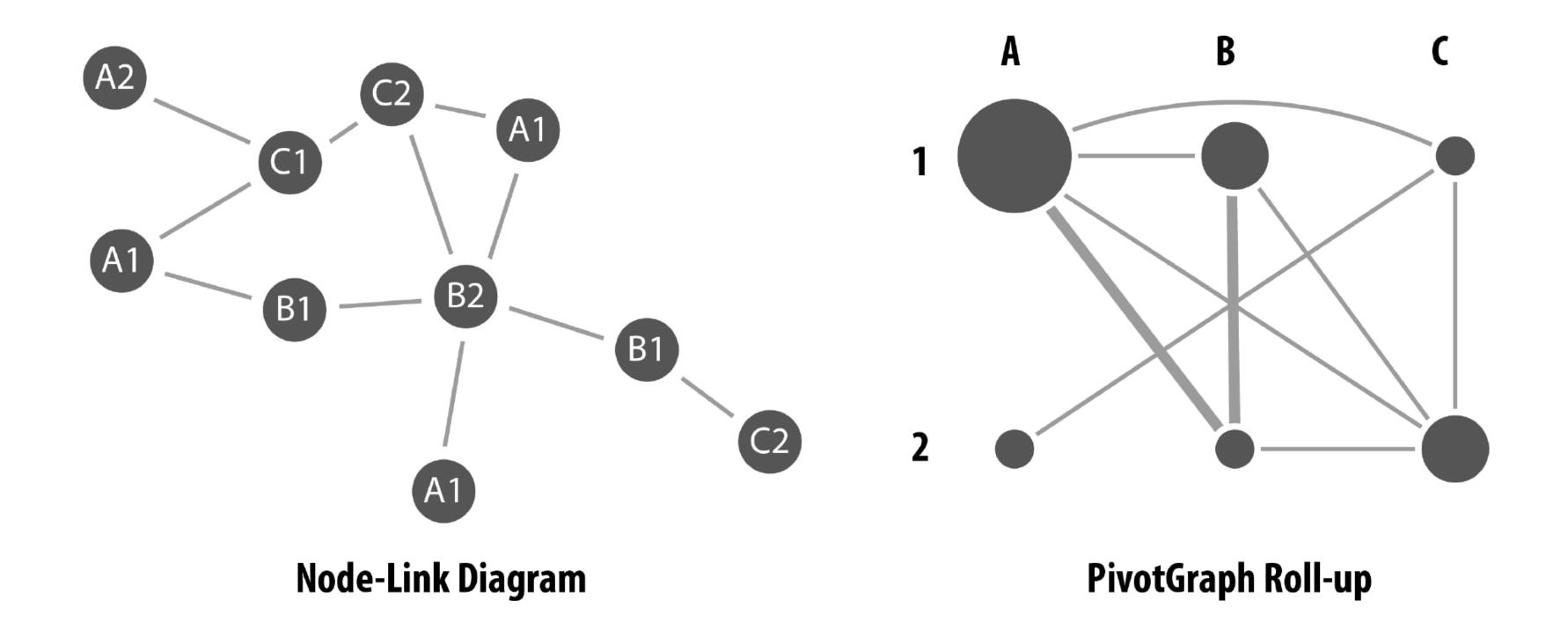


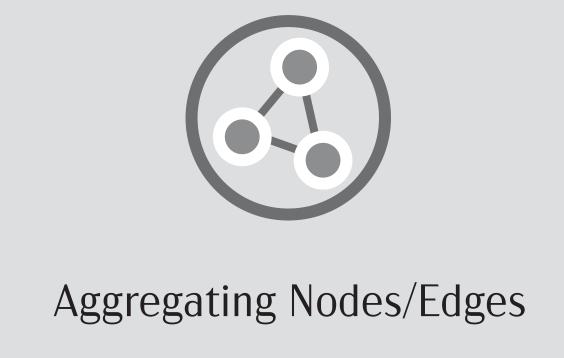
Converting Attributes/Edge to Nodes



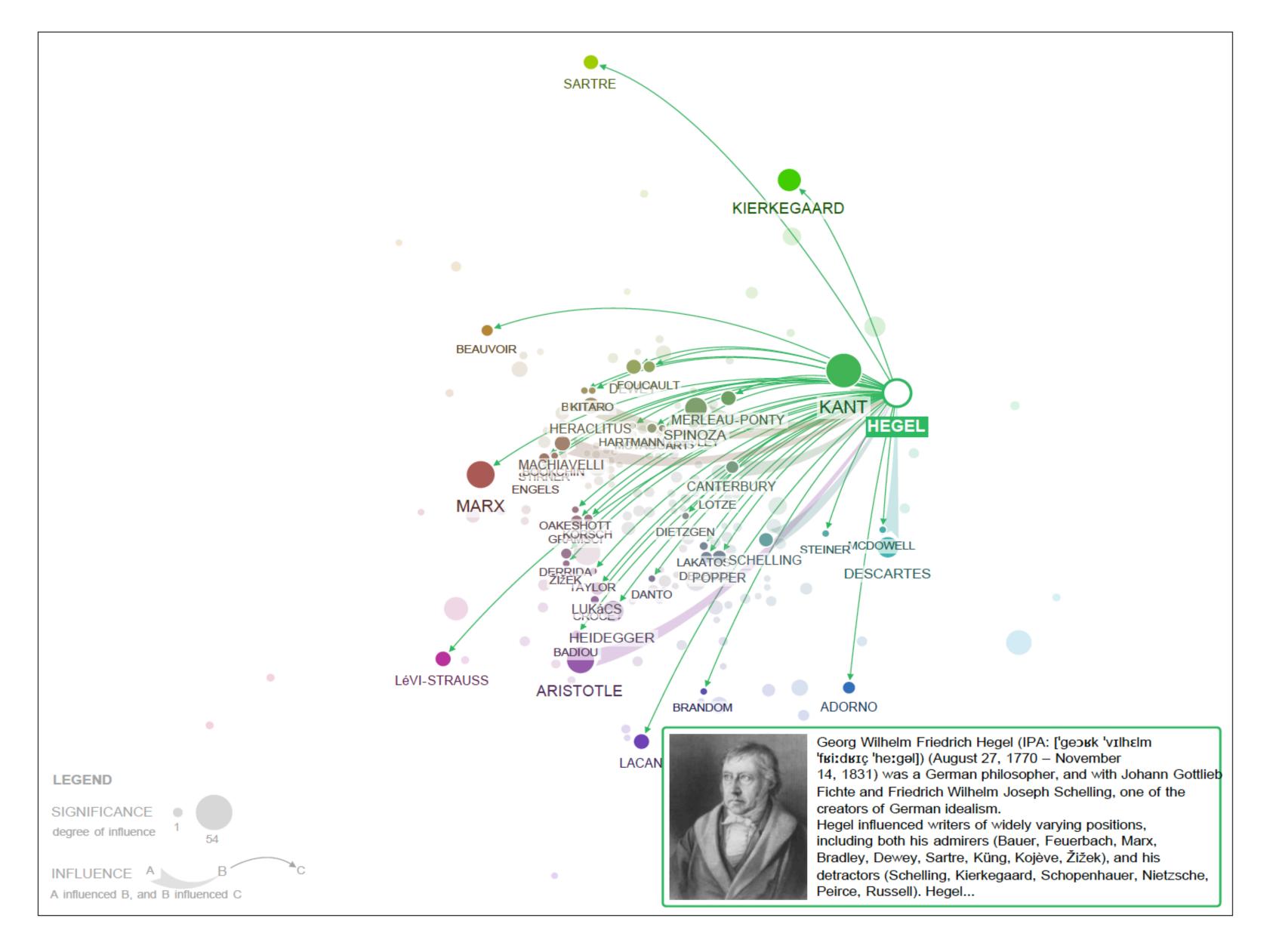
Elzen and Wijk, 2014

Aggregating Nodes/Edges

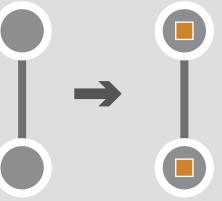




Wattenberg, 2006



Edge Map Dork et al. 2011



Deriving New Attributes

Multivariate Network Visualization Techniques

A companion website for the STAR Report on Multivariate Network Visualization Techniques.

TECHNIQUES WIZARD HOME

About

This is a companion website for a review article on multivariate network visualization techniques.

Multivariate networks are networks where both the structure of the network and the attributes of the nodes and edges matter. It turns out, these are very common. Every person in a social network, for example, has both, relationships and lot the school they went to, or the city they live with the school they went to, show both, these attributes and the shockure using these values attributes and the shockure ties are very common. Every person in a social other characteristics, such as their large, and the shockure ties are very common. Every person in a social other characteristics, such as their large, and the shockure ties are very common. Every person in a social other characteristics, such as their large, and the shockure ties are very common. Every person in a social other characteristics, such as their large, and the shockure ties are very common. Every person in a social other characteristics, such as their large, and the shockure ties are very common. Every person in a social other characteristics, such as their large, and the shockure ties are very common. Every person in a social other characteristics, such as their large, and the shockure ties are very common. Every person in a social other characteristics, such as their large, and the shockure ties are very common. Every person in a social other characteristics, such as their large, and the shockure ties are very common. Every person in a social other characteristics, such as their large, and the shockure ties are very common. Every person in a social other characteristics, such as their large, and the shockure ties are very common. Every person in a social other characteristics, such as the shockure ties are very common. Every person in a social other characteristics, such as the shockure ties are very common. Every person in a social other characteristics, such as the shockure ties are very common. Every person in a social other characteristics, such as the shockure ties are very common. Every person in a social other characteristics, such as the shockure ties are very common. Every person in a social other characteristics are very common. Ever techniques, we can analyze, for example, if a network of friends predominantly went to the same high school.

The visualization research community has developed many techniques to visualize these kinds of networks, and our review article - and this website - are designed to help you sort through these options.

Browse through the techniques illustrated below, or use our wizard to find the right multivariate network visualization technique for your datasets and tasks!

Get in touch if you have questions or comments.

Use the Wizard

Technique recommendations to fit your needs!

Read the Review Article

The State of the Art in Visualizing Multivariate Networks

Carolina Nobre, Miriah Meyer, Marc Streit, and Alexander Lex To appear in Computer Graphics Forum (EuroVis 2019)