CS-5630 / CS-6630 Uisualization for Data Science

The Uisualization Flphabet: Marks and Channels

Alexander Lex
alex@sci.utah.edu

How can I visually represent two numbers, e.g., 4 and 8

Marks \& Channels

Marks: represent items or links
Channels: change appearance based on attribute Channel = Visual Variable

Marks for Items

Basic geometric elements
Θ Points

Θ Lines

ID
Θ Areas

2D

3D mark: Volume, but rarely used

Marks for Links

Θ Containment
Θ Connection

Containment can be nested

Channels (aka Visual Variables)

Control appearance proportional to or based on attributes
Θ
Position
\rightarrow Horizontal

Θ Shape

Θ Color

Θ Tilt

Θ Size

\rightarrow Volume

Jacques Bertin

French cartographer [1918-2010]
Semiology of Graphics [1967]
Theoretical principles for visual encodings

Bertin's Visual Variables

Marks: Points Lines Areas
Position
Size
(Grey) Value
Texture
Color Orientation Shape

Using Marks and Channels

Mark: Line
Channel: Length, Position Channel: Position
1 quantitative attribute

Mark: Point

2 quantitative attr.

Adding Hue
+1 categorical attr.

Adding Size
+1 quantitative attr.

Redundant encoding

Length, Position and Value

Good bar chart?

Rule: Use channel proportional to data!

Types of Channels

Magnitude Channels

How much? Which Rank?
Position
Length
Saturation ...

Ordinal \& Quantitative Data

Identity Channels
What?
Shape
Color (hue)
Spatial region ...

Categorical Data

Channels: Expressiveness Types and Effectiveness Ranks
Θ Magnitude Channels: Ordered Attributes
Position on common scale
Length (1D size)
Tilt/angle
Area (2D size)
Depth (3D position)
Color luminance
Color saturation
Curvature
Volume (3D size)
Θ Identity Channels: Categorical Attributes
$\pm \quad$ Spatial region
Color hue

Motion

Shape

What visual variables are used?

Across U.S. Companies, Tax Rates Vary Greatly
Last week, in a Congressional hearing, Apple got grilled for its low-tax strategy. But not every business can copy that approach. Here is a look at what S.\&P. 500 companies paid in corporate income taxes - federal, state, local and foreign - from 2007 to 2012, according to S\&P Capital IQ. Related Article »

Characteristics of Channels

Selective
Is a mark distinct from other marks?
Can we make out the difference between two marks?

Associative
Does it support grouping?
Quantitative (Magnitude vs Identity Channels)
Can we quantify the difference between two marks?

Characteristics of Channels

Order (Magnitude vs Identity) Can we see a change in order?

Length

How many unique marks can we make?

Position

Strongest visual variable
Suitable for all data types
Problems:
Sometimes not available (spatial data)
Cluttering

Selective: yes
Associative: yes
Quantitative: yes
Order: yes
Length: fairly big

Example: Scatterplot

Position in 3D?

Length \& Size

Good for 1D, OK for 2D, Bad for 3D

Easy to see whether one is bigger

Aligned bars use position redundantly
For 1D length:

Selective: yes

Associative: yes
Quantitative: yes
Order: yes
Length: high

Example 2D Size: Bubbles

Four Ways to Slice Obama's 2013 Budget Proposal
Explore every nook and cranny of President Obama's federal budget proposal.

All Spending	Types of Spending	Changes	Department Totals

How \$3.7 Trillion Is Spent

Mr. Obama's budget proposal includes $\$ 3.7$ trillion in spending in 2013, and forecasts a $\$ 901$ billion deficit.

Circles are sized according to the proposed spending.

		$\$ 100$ billion
	$\$ 10$ billion	
	$\$ 1$ billion	

Color shows amount of cut or increase from 2012.

[^0]

Value/Luminance/Saturation

OK for quantitative data when length \& size are used.
Not very many shades recognizable

Selective: yes
Associative: yes
Quantitative: somewhat (with problems)
Order: yes
Length: limited

Example: Diverging Value-Scale

Good for qualitative data (identity channel) Limited number of classes/length ($\sim 7-10$!)
 Does not work for quantitative data!
 Lots of pitfalls! Be careful!

My rule:
minimize color use for encoding data use for brushing

Selective: yes
Associative: yes
Quantitative: no
Order: no
Length: limited

Color: Bad Example

FIGURE 13. Estimated Mean Annual Ratio of Actual Evapotranspiration (ET) to Precipitation (P) for the Conterminous U.S. for the Period 1971-2000. Estimates are based on the regression equation in Table 1 that includes land cover. Calculations of ET/P were made first at the $800-\mathrm{m}$ resolution of the PRISM climate data. The mean values for the counties (shown) were then calculated by averaging the $800-\mathrm{m}$ values within each county. Areas with fractions >1 are agricultural counties that either import surface water or mine deep groundwater.

Color: Good Example

Why Peyton Manning's Record Will Be Hard to Beat

By GREGOR AISCH and KEVIN QUEALY OCT. 19, 2014

The Broncos quarterback set the all-time N.F.L. touchdown passing record - and is still going strong.

Shape

Great to recognize many classes.
No grouping, ordering.
Selective: yes
Associative: limited
Quantitative: no
Order: no
Length: vast

	\％	回	园	－	$=$			回	回	回	区	凹	\triangle	\triangle	Δ		
	园	田	凹	Q	80	R	厚	P	易	回	图	垌	圆				
	圆	5	$=$	稒	－	\％			\％	®	＂	$=$	\triangle	今	坐		（6）
	圈	$=$	＝	${ }^{\text {© }}$	围				$=$	$=$	\square	－	A	人	会		©
	불	4	4	A	1.	，	4	T	m	1	\pm	A	\triangle	A	－		\triangle（0）
	\triangle	金	人	A	A	，	－	今	θ	今	（10）	\checkmark			θ		1
	2．	（3）	（3）	（2）	©				；	（1）	O	－	（v）	（1）	＝		（3）
	餅	：3	$::$	－	－		（0）	2	（6）	（60）	E	${ }^{1}$	¢	（\％）			
	2	Θ	（\％）	©	（			（2）	θ		－	（1）	（1）	＋	－ 1		
	缶	O	4	∇	丽							30	1				

Chernoff Faces

Idea: use facial parameters to map quantitative data

Does it work? Not really!

Critique: https://eagereyes.org/criticism/chernoff-faces

More Channels

Why are quantitative channels different?

Steven's Psychophysical Power Law: $\mathrm{S}=\mathrm{I}^{\mathrm{N}}$

$S=$ sensation
I = intensity

Steven's Power Law, 1961

How much longer?

How much longer?

How much steeper?

How much larger?

5x

A
B

How much larger?

2x diameter 4x area

area is proportional to diameter squared

A
 B

How much larger (area)?

3x

A
B

How much darker?

How much darker?

A

Position, Length \& Angle

The eyeballing game

Adjust to make a parallelogram

Your inaccuracy by category:			
Parallelogram	5.0	---	----
Midpoint	---	---	---
Bisect angle	---	---	---
Triangle center	---	---	---
Circle center	---	---	---
Right angle	---	---	--
Convergence	--		

Average error: 5.00 (lower is better)
Time taken: 3.3

Best of last 500 score and time: (more) 1.32250 s Harabubakken sparkakar kl
$1.3681 \mathrm{~s} \pm$ rides saddle horn
1.39110 s have both-can f myself \pm
$1.4693 \mathrm{~s} \pm$ is one kinky dude
1.5095 s no NT...sample my taco? \pm
1.55114 s
1.57113 s
$1.6585 \mathrm{~s} \pm$ "come on funny feeling"
1.7071 s JSA
1.7589 s JSA

Best on this computer score and time:

Other Factors Affecting Accuracy

Alignment
Distractors
Distance
Common scale

Framed
Unaligned
Unaligned

Unframed Aligned

Cleveland / McGill, 1984

TYPE 1

TYPE 2

TYPE 3

TYPE 4

TYPE 5

Figure 4. Graphs from position-length experiment.

Figure 3. Graphs from position-angle experiment.

Heer \& Bostock, 2010

2

Crowdsourcing Graphical Perception: Using Mechanical

 Turk to Assess Visualization DesignJeffrey Heer and Michael Bostock
Computer Science Departmen
Stanford University
\{jheer, mbostock\}@cs.stanford.edu
abstrac
UBSTRACT
Undersanding perceppion is critical to effective visualiza-
tion design. With its Sow cost and scalability crowdsouring
 presents an atractive option for evaluating the large design
space of visualizatioss, however, it ifst requires validation
Thewis
 Turk as a platiorm for graphical perception experiments. Wc
feplicate previous studies of spatial encoding and luminance
 periments on rectangular area perception (as in iteemaps or
cartograms) and on chart sizc and grididine spacing. Our recartograms) and on chart size and gridine spacing. Our re--
sults demonstrate that crowdsourced perception experiments
are viable and contribute new insights for visualiization deare viable and contribute new insights for visualization de-
sign. Lastly, we report cost and pertormance data from out experiments and distill recommendations for the design of
crowdsourecs studies.
rowsourced staices.
ACM Classification: H5. 2 [Information interfaces and pre sentation]: User Interfaces-Evaluation/Methodology
General Terms: Experimentation, Human Factors.
Keywords: Information visualization, graphical perception,
user study, evaluation, Mechanical Turk, crowdsourcing.
introduction
wrowsourcing, is a relatively new phenomenon in which
web workers complete one or more small taks, often for
for ecological validity. Crowdsourced experiments may also
substantially reduce both the cost and time to result. Unfortunately, crowdsourcing introduces new concerms to be addressed before in is credibibe. Some concerns, such as eco
logical valdidy subicet motivation and
 otheres, such as display configuration and viewing environ
ment, are specific to visual perception. Crowdsourced per ment, are specific to visual perception. Crowdsourced per
ception experiments lack control over many experimenta ecption experiments lack control over many experimental
conditions, including display type and size, lighting, and subjects' vewing distance and angle. This, loss of ofornc
inevitably limits the scope of experiments that reliably can
 of perception experiments for which crowdsourcing can pro
vide reliable empirical datat to inform visualization design.
In this work, we investigate if crowdsourced experiments in
 sensiite to environmental context are an adequate tool for
graphical perception research. We assess the feasibility o
using Amazon's Mechanical Turk to evaluate visualization using Amazon's Mechanical Turk to evaluate visualizations
and then use these methods to gain new insights into visual and then use these methods to gain new insights into
ization design. We make thre primary contributions:

- We replicate prior laboratory studies on spatial data en-

Cleveland \& McGill's Results

Jock Mackinlay, 1986

Channels: Expressiveness Types and Effectiveness Ranks
Θ Magnitude Channels: Ordered Attributes
Position on common scale
Length (1D size)
Tilt/angle
Area (2D size)
Depth (3D position)
Color luminance
Color saturation
Curvature
Volume (3D size)
Θ Identity Channels: Categorical Attributes
$\pm \quad$ Spatial region
Color hue

Motion

Shape

Separability of Attributes

Can we combine multiple visual variables?

Fully separable

Size

+ Hue (Color)

Some interference

Width

+ Height

Some/significant interference

Red

+ Green

Major interference

[^0]: $-25 \%-5 \% \quad 0 \quad+5 \%+25 \%$

