VISUALIZING MULTIVARIATE NETWORKS

Carolina Nobre

A Multivariate Network is Network Topology + Node and Edge Attributes

SURVEYED 205 PAPERS FROM 1991 – 2018 Technique Papers, Evaluation Papers, Application Papers

EUROVIS 2019 R. S. Laramee, S. Oeltze, and M. Sedlmair (Guest Editors)

The State of the Art in Visualizing Multivariate Networks

Figure 1: A typology of operations and layouts used in multivariate network visualization. Layouts describe the fundamental choices for encoding multivariate networks. View Operations capture how topology and attribute focused visualizations can be combined. Layout Operations are applied to basic layouts to create specific visualization techniques. Data Operations are used to transform a network or derive attributes before visualizations. The colors reflect node attributes (orange), edge attributes (purple), and topology (grey).

Abstract

Multivariate networks are made up of nodes and their relationships (links), but also data about those nodes and links as attributes. Most real-world networks are associated with several attributes, and many analysis tasks depend on analyzing both, relationships and attributes. Visualization of multivariate networks, however, is challenging, especially when both the topology of the network and the attributes need to be considered concurrently. In this state-of-the-art report, we analyze current practices and classify techniques along four axes: layouts, view operations, layout operations, and data operations. We also provide an analysis of tasks specific to multivariate networks and give recommendations for which technique to use in which scenario. Finally, we survey application areas and evaluation methodologies.

C. Nobre¹, M. Meyer¹, M. Streit², and A. Lex¹

¹University of Utah, Utah, USA annes Kepler University Linz, Austria

How is an MVN task different than a regular graph task? MVN Tasks rely on both the topology of the network and the attributes of the nodes and edges

How many of my collaborators are from the oceanography field?

Which cluster of authors has the highest number of combined collaborations?

What is an efficient way I can complete all my errands?

Tasks that rely on the **topology** of the network and the attributes of the nodes and edges

How many of my collaborators are in the oceanography field?

Which cluster has the highest number of collaborations?

What is the fastest route to get all my errands done?

MVNV tasks are applied to topological structures

Network and Attribute Characteristics

FRIENDS 3 years

Name: Maya Age: 23 Nationality: Brazilian GPA: 3.8

FRIENDS 3 years

Name: Maya Age: 23 Nationality: Brazilian GPA: 3.8

Degree: 4

Name: Pedro Age: 25 Nationality: Brazilian GPA: 3.3 DEGREE: 3

Brazilians

Name: Maya Age: 23 Nationality: Brazilian GPA: 3.8

Degree: 4

Movie

Person

Movie

NamE Age Nationality GPA

Network Size

Small <100

Medium

100 - 1000

Large >1000

Network Types

Integrated

Overloaded

Hybrids

Operations View

Juxtaposed

Integrated

Overloaded

Separate views for Topology and Attributes

S)peratio ayout

Small Multiples

Hybrids

Multiple layouts for Topology or Attributes

Deriving New Attributes

Clustering

Converting Attributes/Edge to Nodes

VIEW LAYOUT OPERATIONS OPERATIONS

DATA OPERATIONS

Node-Link Diagram with on-node encoding

Small Multiples

Juxtaposed Views

Filter Data

Name	Cole	Tom
Beverage	Port	Beer
Day 1	1	0
Day 2	0	2
Day 3	4	1

Abby	Jon	Sue	Mark
Port	Coke	Coke	Beer
4	3	3	5
5	3	5	5
2	2	4	3

Ty	pe
----	----

Duration

Co-workers	3 years
Soccer Coach	2 years
Dating	1 year
Mother / Son	7 years
Friends	12 years
Friends	3 years
Married	6 years

Node-Link Layouts

Attribute Driven Layouts

On-Node / On-Edge Encoding

Attribute Driven Layouts

On-Node / On-Edge Encoding

Attribute Driven Layouts

Attribute-Driven Faceting

Attribute-Driven Positioning

Gehlenborg et al. 2010

Elzen and Wijk, 2014

Elzen and Wijk, 2014

Aggregating Nodes/Edges

Jankun-Kelly and Ma, 2003

Nielsen, 2009

Schöffel et al, 2016

Is easily understood by most users Works well for all types of networks

Recommended for small networks when only a few (usually under five) attributes on the nodes are shown, or in combination with a zooming/filtering strategy

Scalability. Node size leaves little space to encode attributes.

Attribute-Driven Faceting

Semantic Substrates Shneiderman and Aris, 2006

- 🗆 X REGIONS Supreme 36 📕 Circuit 13 CITES Supreme to Supreme 0 Supreme to Circuit 0 Circuit to Supreme 18 🔳 Circuit to Circuit 2 RANGES Supreme + 4 1978 -- 2002 Circuit • 1991 -- 1993 SWERSITY O HCIL Copyright (C) 2006 Univ. of Maryland

Querying and Filtering

Attribute-Driven Faceting

Group-in-a-box Rodrigues et al. 2011

Group-in-a-box Rodrigues et al. 2011

On-Node / On-Edge Encoding

Attribute-Driven Faceting

Cerebral Barskey et al. 2008

On-Node / On-Edge Encoding

Attribute-Driven Faceting

Well suited for networks with different node types or with an important categorical or set-like attribute.

Attribute-Driven Faceting

Less scalable with respect to the number of nodes and network density than node-link layouts.

Neighborhoods, paths, and clusters are not easily visible if they span different facets.

Recommended for networks where nodes can be separated into groups easily and where these groups are central to the analysis

Attribute-Driven Positioning

ANCHORAGE

VANCOUVER EDMONTON SEATTLE PORTLAND

SAN FRANCISCO

DENVER

1

MINNEAPOLIS / ST. PAUL

KANSAS CITY Y TORONTO CLEVELAND DALLAS BALTIMORE WASHINGTON D.C. PHILADELPHIA NEW YORK JFK & NEWARK .

يد وسو

mail.

TAMPA BAY

Graph Dice Bezerianos et al. 2010

On-Node / On-Edge Encoding

Attribute-Driven Positioning

Edge Map Dork et al. 2011

Querying and Filtering

On-Node / On-Edge Encoding

Attribute-Driven Positioning

Attribute-Driven Positioning

Does not lend itself well to visualizing the topology of the network.

Recommended for smaller, sparse networks where relationships between node attributes are paramount to the analysis task, and topological features only provide context

Tools and Applications

Brad graphic designer

Maya developer

Observable Q Search

Welcome. This is live code! Click the left margin to view or edit.

D3 용 · Nov 15, 2017 Bring your data to life. Mike Bostock

🗄 Listed in d3-drag, d3-force, and Visualization 🛛 😤 178 forks

Force-Directed Graph

This network of character co-occurence in Les Misérables is positioned by simulated forces using d3-force. See also a disconnected graph, and compare to WebCoLa.

Cola.js (A.K.A. "WebCoLa") is an open-source JavaScript library for arranging your HTML5 documents and diagrams using constraint-based optimization techniques.

Overview Wiki API Source

cola.js

Constraint-Based Layout in the Browser

Cytoscape.js

Graph theory (network) library for visualisation and analysis

Repo	GitHub	Updates T	witter	News and	d tutorials	Blog	Question	s StackO	verflow	Asl
npm i	nstalls	100k/month	mast	er branch	passing	unstat	ole branch	passing	Greenk	eepe

Reference

Getting Started -

ggraph

/dʒi:.dʒi 'raːf/ (or g-giraffe)

A grammar of graphics for relational data

ggraph is an extension of ggplot2 aimed at supporting relational data structures such as networks, graphs, and trees. While it builds upon the foundation of ggplot2 and its API it comes with its own self-contained set of geoms, facets, etc., as well as adding the concept of *layouts* to the grammar.

Articles -News -

iii plotly Graphing Libraries DEMO DASH Edit this page on GitHub Open Source Graphing Libraries 🕜 Help Python Scientific Network Graphs Create Network Graph Navigation Create random graph Create Edges fig = go.Figure(data=[edge_trace, node_trace], layout=go.Layout(Color Node Points title='
Network graph made with Python', titlefont_size=16, Create Network Graph showlegend=False, hovermode='closest', Dash Example margin=dict(b=20,l=5,r=5,t=40), annotations=[dict(Reference text="Python code: https://plot.l y/ipython-notebooks/network-graphs/", 🔶 Back To Python showarrow=False, xref="paper", yref="paper", x=0.005, y=-0.002)], xaxis=dict(showgrid=False, zeroline=False, showticklabels=False), yaxis=dict(showgrid=False, zeroline=False, showticklabels=False)) fig.show() Network graph made with Python • 0 Python code: https://plot.ly/ipython-notebooks/network-graphs/

NetworkX

Stable (notes)

2.3 – April 2019 download | doc | pdf

Latest (notes)

2.4 development github | doc | pdf

Archive

Contact

Mailing list Issue tracker

Software for complex networks

NetworkX is a Python package for the creation, manipulation, and study of the structure, dynamics, and functions of complex networks.

Features

- Data structures for graphs, digraphs, and multigraphs
- Many standard graph algorithms
- · Network structure and analysis measures
- · Generators for classic graphs, random graphs, and synthetic networks
- Nodes can be "anything" (e.g., text, images, XML records)
- Edges can hold arbitrary data (e.g., weights, time-series)
- Open source <u>3-clause BSD license</u>
- Well tested with over 90% code coverage
- · Additional benefits from Python include fast prototyping, easy to teach, and multiplatform

©2014-2019, NetworkX developers. | Powered by Sphinx 2.0.1 & Alabaster 0.7.12

graphic designer

graphic designer

The Open Graph Viz Platform

Gephi is the leading visualization and exploration software for all kinds of graphs and networks. Gephi is open-source and free.

Runs on Windows, Mac OS X and Linux.

Learn More on Gephi Platform »

Screenshots Videos

graphic designer

augmentation

Tabular Layouts

Α	В	С

Adjacency Matrix

Quilts

BioFabric

.....

.....

Coach

	<u>F</u>	Name	Beverage	Day
		Abby	Port	1
arried		Sue	Coke	0
		Jon	Coke	4
iends	Co- Worker	Tom	Beer	5
		Mark	Beer	2
		Cole	Port	3

		Name	Beverage	Day
ating	Friends	Tom	Beer	5
		Jon	Coke	4
		Cole	Port	3
	Married	Mark	Beer	2
		Abby	Port	1
		Sue	Coke	0

Imbeerei rdbeer 0

Buchweizenflocken Haferflocken Haferkleie Amaranth gepufft Fünf Körner Honeyboons Leinsamen Crunchy and Oat Plantago-Samen Vollkorn-Cornflakes Dinkelflakes Dinkel gepufft Bircher Deluxe Chocolate-Dream Quinoaflocken Schoko Correct Aroniabeeren Ananas Gojibeeren Feigen Bananen Cranberries Erdbeeren Himbeeren Apfelstücke Mango Mango Heidelbeeren Aprikosen Rosinen Datteln Sauerkirschen Veintrachen Pstansskeme Kokoschips Cashewkerne Mandeln Sonnenblumenkerne Kürbiskerne Walnusskerne Macadamia Pitatrusskerne Schokoholic-C .nocosate 80005 Hater-Crunchy Corn-Crisper Schokoplättchen Honigflocken eiße Schokolade

Moritz Stefaner, Musli Ingredient Network. <u>https://truth-and-beauty.net/projects/muesli-ingredient-network</u>

Alper et al, 2013

	-		+		
			city	Portland	Seattle
			state	OR	MA
+_ ^{degree}	city	state	airport	PDX	SEA
1.00 1.04k			airport		
•	Minneapolis	MN	MSP		
	Des Moines	IA	DSM		
	Fargo	ND	FAR		
	Sioux Falls	SD	FSD		
	Bismarck/Ma	ND	BIS	_	
	Duluth	MN	DLH		
	VVIIIISton	ND	ISN		
•					
•	Brainard		RDD		
•	Bemidii	MN	BIL		
•	Dickinson	ND	אוס		
•	Grand Forks	ND	GEK		
•	Devils Lake	ND	DVI		
•	Cedar Rapids	IA	CID	-	
•	Jamestown	ND	JMS	-	
•	Minot	ND	MOT		
•	Rapid City	SD	RAP		

Kerzner et al, 2017

Attribute similarity (nodes)

Structure (edges)

Attribute values (nodes)

Berger et al, 2019

						_	_											_			
	 						f					out					Atla		ast	Igla	
POVERTY	ME	POPULATION	REGION	DIVISION	STATE	f	t S	ä	Ē	ŝ	E	stS	ā	.≝		e	f	st	the	л Г	E
						So	Eas	Ala	Xer	Mis	Ter	We	Ar	Ľ	S	l_⊟	So	We	ŝ	Se	8
			South																		
				East Sou	th Central																
					Alabama																
					Kentucky																
	-				Mississip																\vdash
					Tenness																\vdash
				West So	uth Central																
					Arkansas																
					Louisian																\vdash
					Oklahom																⊢
	-				Toyae																\vdash
	 -			South At	antio																
_	-		West	South At	antic																
			West																		
			Northeas	t																	
				New Eng	land																
					Connecti																
					Maine																
					Massach																
					New Han																
					Dhadala																

Safarli and Lex, 2019

April 10, 2012 / Mike Bostock

Les Misérables Co-occurrence

Lt.Gillenormand Marguerite Marius Mlle.Baptistine Ille.Gillenormand Mlle.Vaubois Mme.Burgon Mme.Hucheloup Mme.Magloire Mme.Pontmercy Mme.Thenardier Montparnasse MotherInnocent MotherPlutarch Perpetue Pontmercy Scaufflaire Tholomyes

Source: The Stanford GraphBase.

Order: by Name ŧ

This matrix diagram visualizes haracter co-occurrences

Home

Jean-Daniel Fekete edited this page on Apr 23, 2015 \cdot 2 revisions

Reorder.js is a library to reorder tables and graph/networks.

Resources

- Introduction
- API Reference

Browser / Platform Support

Reorder.js is mainly developed on Chrome and Node.js. Use npm i require("reorder") to load.

Installing

Download the latest version here:

https://github.com/jdfekete/reorder.js/release

Rec

+ Add a custom footer

Wiki Security Insights									
	Edit New Page								
	Luit								
	▼ Pages 12								
	Find a Page								
	Home								
	API Reference								
	Conversion								
	Core								
<pre>m install reorder.js to install, and</pre>	Gallery								
	Introduction								
	LinearAlgebra								
	Matrix								
order									

Ideal for dense and completely connected networks

Requires quadratic space with respect to the
number of nodes.Complexity of choosing the right reordering
algorithm

Recommended for smaller, complex and dense networks with rich node and/or edge attributes, for all tasks except for those involving paths

Quilts

Sue

Friends

Married

Skiplinks

Friends

Links between nonconsecutive layers can be problematic to integrate and non-intuitive

Recommended for layered or k-partite networks with limited skiplinks.

BioFabric

	Name	Beverage	Day '
•	Mark	Beer	1
•	Sue	Coke	0
	Cole	Port	4
•	Jon	Coke	5
•	Tom	Beer	2
	Abby	Port	3
)		

Dating

elationship

BioFabric

Longabaugh, 2012

BioFabric

Can be used to visualize rich edge attributes and node attributes at the same time

BioFabric

More difficult to discover neighbors and clusters in Biofabric compared to matrices.

Recommended for small, sparse networks with many nodes and rich edge attributes

Tools and Applications

Brad graphic designer

Maya developer

http://www.biofabric.org

http://www.biofabric.org

000000000 g <u>0</u> net .. van Haarlem cher nderseel dt van Mor hem II the Elder ъğ Arpino

Zacharias Dolendo Theodoor de Bry Theodoor Galle Simon van de Passe Simon Frisius Robert de Boudous Raphael Sadeler I-Polidoro da Caravaggio Philips Galle Nicolaas de Bruyn Maerten de Vos Maarten van Heemskerck Karel van Mander I Johannes Wierix-Johannes Janssonius Johann Theodor de Bry Johann Israel de Bry-Joannes Galle Jan van der Straet-Jan van de Velde II Jan Saenredam Jan Sadeler I Jan Harmensz. Muller Jacob de Gheyn II Jacob Matham Hieronymus Wierix Hendrik Hondius I Giuseppe Cesari d'Arpino Frans Hogenberg Dirck Barendsz. Crispijn de Passe the Elder Cornelis Galle I-Cornelis Drebbel Cornelis Comelisz. van Haarlem Claes Jansz. Visscher Christophe Plantin-Christoffel van Sichem II Christoffel van Sichem I Bernardino Passeri-Bartholomeus Spranger Balthasar Moncornet Antonius Wierix Anthonie Blocklandt van Montfoort Albrecht Dürer-Ahasuerus van Londerseel Adriaen Collaert Abraham Hogenberg Abraham Bloemaert

#90 Input format for heatmap

#91 Custom seaborn heatmap

#91 Custom seaborn heatmap

#94 Column normalization on heatmap

#92 Control heatmap color

#

#91 Custom seaborn heatmap

#92 Control heatmap color

#92 Turn your data categorical for heatmap

#91 Custom seaborn heatmap

#92 Control heatmap color

Comb the Hairball with BioFabric in Tableau

graphic designer

^{+;++}+ab|eau

Graph Selection

Les Miserables

•

Node Highlight

Jean Valjean Marius Enjolras Courfeyrac Combeferre Cosette Thénardier Bossuet Fantine Gavroche Javert Joly **Bishop Myriel** Mme Thénardier Feuilly Bahorel M. Gillenormand Favourite Babet Dahlia Zephine Gueulemer Tholomyès, Blachevelle Mlle Gillenorm.. Fameuil

 ∞^{0}

 \leftarrow

 $\leftarrow \rightarrow$

Ţ

Genea Quilts

graphic designer

	File View Edit	_	_	100		_	_	_	_	_	_	_	_
y y	534			100	0		ĥ						
r													
	O'Henry IV the Great //												
	Q Margaret of Valois //	\square			•	_							
	O Robert /Devereux/						1						
	Q Honora /Rogers/	++				•							
	Q Marie Elisabeth //												
	O'John /Dudley/	++	-			-							
ner	<u>O'Philip_III //</u>	+++	++			+	H						
	Q Margaret of Austria //	++	+			-	•						
	O'Edward Beauchamp /Seymour/	++				-							
	O Ferdinand_II //	++	+			+	H						
		++				-	\vdash		1				
	C Thomas /Seymour/	++	++			+	\vdash						
	O Motheia /Telbet/	++	++			+	$\left \right $	+	2				
	Alethela / Tabov		+			+	\vdash	+	۳.				
	O Flizabeth /Resett/	++				\pm	H	+					
	d Henry /Howard/	++	++			+	\vdash	+	⊢⊢	Η			
	d Theophilus /Howard/	++	++			+	\vdash	1	++	F			
	O Elizabeth /Dunbar/	++				+	H	-	++-				
	Catherine /Howard/	++	++			+	++	+	++	Ħ	-		
	d William of Berksbire (Cecil/					+				+	Ť		
	d'Robert /Devereux/	++	++			÷	H	+	++	++			
	O Frances /Howard/	++				t	H		++	+			1
	d Robert /Carr/	++	+			+	\vdash	+	++	++	+	Ť	
	O Thomas of Berkshire /Howard/	++				-	Ħ	-	++	\square			
	Q Elizabeth /Cecil/					17							
	o Ivan /Ravevski/	++				+	Ħ	+		\square			
	O Constantine /Volkonski/						T			\square			
	d Ivan of Shestov //	++				\top	\square		\square	\square			\square
	d'William /Hill/												
	Q Eleanor /Boyle/					1.1							1.0
	-	FF	FF	FF	E	FF	F	FF	FF	F	FF	FF	FF
					Π	Т	П						1
					\square		\square						
					\square		\square						
			\bullet										
			\bullet				\square						
						1							
						-	\square	+					\rightarrow
						1		+					_
					\vdash	+	\vdash	_					_
			\square		$\left \right $	-	\square	+					-+
						1							
	111												
https://aviz tr/i	neneanuite		ſ	•									
	geneagants												
_	_												

graphic designer

get your own twitter network @ bit.ly/twitter-network

Choose a representation

On-Node / On-Edge Encoding

Adjacency Matrix

Attribute-Driven Faceting

Attribute-Driven Positioning

BioFabric

15 minutes

Exchange visualizations with your neighbor and explain your encodings.

How many tweets does the person who has the most connections in this graph have?

Does the person with the least tweets have more interactions of type retweet or mention?

View Operations

Juxtaposed

Integrated

Overloaded

Juxtaposed

Name	Beverage	Day 1
Mark	Beer	1
Sue	Coke	0
Cole	Port	4
Jon	Coke	5
Tom	Beer	2
Abby	Port	3

Name	Beverage	Day 1
Mark	Beer	1
Sue	Coke	0
Cole	Port	4
Jon	Coke	5
Tom	Beer	2
Abby	Port	3

Dating	4
Mother / Son	12
Co-workers	3
Soccer Coach	2
Friends	8
Friends	3
Married	4

VIGOR *Pienta et al. 2018*

Juxtaposed

Querying and Filtering

Deriving New Attributes

Graph Dice Bezerianos et al. 2010

0.0	0									Details				
49/	ACMid	alias	centrality	citationsmb	degree	firstd	fullname		id	label	lastd	papersab	raek	
04	P169127		0	4	K	1998	Laura T. Ring		n1129	Ring	1998	1	16	i i
05	P75893		0	5	4	1992	Ehud Rivlin		n1965	Rivlin	1992	1	79	- 1
16	P59283		0	3	10	1998	Daniel C. Robbin	15	n1870	Robbins	1998	1	92	- 1
17	P95916	P95917	1581.1	180	32	1989	George G. Rober	rtson	n2012	Robertson	1999	11	117	- 1
18	P75487	P73472	0	4	2	1997	Edward L. Rober	rtson	n1961	Robertson	1997	1	31	- 1
19	P73472	P73472	0	2	2	1996	E. L. Robertson		n1954	Robertson	1996	1	32	- 1
10	P19895		0	7	8	1996	Anne Rose		n1234	Rose	1996	1	70	
1	P270271	P270271	759.5	33	18	1990	Steven F. Roth		n1423	Roth	1999	8	25	
2	P573425	P270271	1056.5	17	2.2	1995	S. F. Roth		n1844	Roth	1997	4	24	
3	P299898	P573522	0	1	6	1995	William Ruh		n1499	Ruh	1995	1	62	
4	P59313	P573031	0	5	6	1993	Daniel M. Russell		n1871	Russell	1993	1	111	- 1
15	P507625		0	0	4	2002	Varun Saini		n1726	Saini	2002	1	50	- 1
6	P220113		0	Z	6	1996	Patricia Schank		n1292	Schank	1996	1	110	- 1
17	P573188	P573188	0	0	4	1999	Jeffrey Senn		n1814	Senn	1999	1	1	- k
8	P341243	P573188	0	7	14	1996	J. A. Senn		n1575	Senn	1996	1	10	- 1
9	P28682	P26399	5391	178	46	1988	Ben Striederma	m	n1473	Shneiderman	200Z	23	115	- 1
0	P76836		0	5	10	1995	Elizabeth Shoop		n1970	Shoop	1996	2	105	
1	P203702		0	2	14	1998	Nybrid Spalding		n1256	Spalding	1998	1	137	
2	PL49483		0	1	2	1992	Joseph L. Steffen	1	n1067	Steffen	1992	1	57	
:3	P191151		0	5	6	1993	Mark J. Stefik		n1197	Stefik	1993	1	112	- 0
24	P135514	4144000	0	2		9.0.	0	_	Edge (Details	_			
					6	94/	#Firstviertex	#Secce	ndivierteix	text			_	
itter i	ext:					9	Masimier	Robert	tuan	1 acm2053	26		0	
					1	00	Robertson	Masim	er	1 acm2053	26		- I D	
	Δ				1	01	Masinter	Card		1 acm2053	26		- m	
					20	02	Card	Masim	er	1 acm2053	26		-	
		4		\sim	1	03	Masinter	Mackin	tlay 👘	1 acm2053	26		- 11	
	10			$\langle \alpha \rangle$	1	04	Mackinlay	Masim	er	1 acm2053	26		- 11	
	(T			(\mathbf{u})	> 1	05	Hearst	Halvor	361	1 acm2053	26		- 11	
				51	1	06	Halvorsen	Hearst	t	1 acm2053	26		- 11	
	-			\smile	1	07	Hearst	Rao		1 acm2053	26		- 11	
					1	08	Rao	Hearst	t	1 acm2053	26		- 11	
					21	09	Hearst	Robert	15011	1 acm2053	26		- 11	
					1	10	Kobertson	Hears	t I	1 acm2053	26		- 11	
					3	11	Hearst	Card		1 acm2053	26		- 11	
					1	12	Card	Hearst	t i	1 acm2053	26			
					1	13	Hearst	Mackie	stary	1 acm2053	26			
					1	14	Mackinlay	Hearst	t	1 acm2053	26		-	
					1	15	Halvorsen	Rao		1 acm2053	26		+	
							Filter Text:							

Juxtaposed

Guo, 2009

Juxtaposed

Juxtaposed

Independent views can optimize for topology and attribute independently.

Not great for tasks on topological structures beyond a single node or edge.

Recommended for large networks and/or very large numbers or heterogeneous types of node and link attributes

Name	Beverage	Day 1
Mark	Beer	1
Sue	Coke	0
Cole	Port	4
Jon	Coke	5
Tom	Beer	2
Abby	Port	3

Name

Beverage	Day 1
Beer	1
Coke	0
Port	4
Coke	5
Beer	2
Port	3

Juniper Nobre et al. 2018

Juniper Nobre et al. 2018

Integrated

Deriving New Attributes

Querying and Filtering

good at integrating attributes with topology, if the topology can be represented in a linear layout.

Integrated

Not suitable for networks that can not be sensibly linearized.

Recommended for networks with several, heterogenous, node attributes and well suited for tasks on single nodes, neighbors, and paths

GMaps Gansner et al. 2010

She & amp Him **Freelance Whales** Metric Snow Patrol The Shins Empire of the Sun **Beach House Animal Collective** The Album Leaf Efterklang **Battles** Akron/Family **Tim Hecker** Tortoise Jaga Jazzist

Bubble Sets Collins et al. 2009

LineSets Alper et al. 2011

Not suitable for displaying more than one or two attributes at a time.

Recommended for recommend overloading for the particular use case of visualizing set-memberships or clusters on top of node-link diagrams

Small Multiples Hybrids

Layout Operations

Small Multiples

Day 1

Day 1

Day 2

Day 3

Peakspotting - <u>https://truth-and-beauty.net/projects/peakspotting</u>

Small Multiples

On-Node / On-Edge Encoding

Bach et al. 2014

Small Multiples

Adjacency Matrix

Small Multiples

Common layout facilitates attribute comparisons in specific topological features

Small Multiples

Recommended for small networks where the tasks are focused on attribute comparison

Hybrids

NodeTrix Henry et al. 2007

Hybrids

GrouseFlocks Archambault et al. 2008

Hybrids

Can be useful for networks with irregular degree distribution

Hybrids

Adds complexity since users must parse different techniques simultaneously.

Recommended for networks with irregular degree distribution and few attributes

Data Operations

Aggregating Nodes/Edges

Deriving New Attributes

Clustering Converting Attributes/Edge to Nodes

Querying and Filtering

Elzen and Wijk, 2014

Aggregating Nodes/Edges

Node-Link Diagram

Wattenberg, 2006

PivotGraph Roll-up

Aggregating Nodes/Edges

Edge Map Dork et al. 2011

Deriving New Attributes

Multivariate Network Visualization Techniques A companion website for the STAR Report on Multivariate Network Visualization Techniques.

TECHNIQUES WIZARD HOME

About

This is a companion website for a review article on multivariate network visualization techniques.

Multivariate networks are networks where both the structure of the network and the attributes of the nodes and edges matter. It turns out, these are very common. Every person in a social network, for example, has both, relationships and lot o other characteristics, such as their ade, the school they went to, or the city they live notative and the school they be able to show both, these attributes and the school they went to be able to show both, these attributes and the school they went to be able to show both, these attributes and the school they went to be able to show both, these attributes and the school they went to be able to show both, these attributes and the school they went to be able to show both. designed to be able to show both, thes techniques, we can analyze, for example, if a network of friends predominantly went to the same high school.

The visualization research community has developed many techniques to visualize these kinds of networks, and our review article – and this website – are designed to help you sort through these options.

Browse through the techniques illustrated below, or use our wizard to find the right multivariate network visualization technique for your datasets and tasks!

Get in touch if you have questions or comments.

Use the Wizard

Read the Review Article

The State of the Art in Visualizing Multivariate Networks Carolina Nobre, Miriah Meyer, Marc Streit, and Alexander Lex To appear in Computer Graphics Forum (EuroVis 2019)

