CS-5630 / CS-6630 Uisualization for Data Science Networks Alexander Lex alex@sci.utah.edu

Networks and Graphs

Networks model relationships between items Network vs Graph Network: a specific instance social network... Graph: the generic term graph theory...

Network Exercise

Nodes and Node Attributes

Author (# papers) Carolina (6), Miriah (42) Alex (36), Sean (8), Marc (40)Nils (51), Silvia (110)

Links and Link Attributes

Co-author, co-author - # joint papers Carolina, Alex - 2 Sean, Miriah - 7 Miriah, Alex - 2 Alex, Sean - 1 Alex, Nils - 10 Alex, Marc - 24 Marc, Silvia - 1 Marc, Nils - 8

	Carolina (6)	Miriah (42)	Alex (36)
Carolina (6)			2
Miriah (42)			2
Alex (36)	2	2	
Sean (8)		7	1
Marc (40)			14
Nils (51)			10
Silvia (110)			

Alex (36)	Sean (8)	Marc (40)	Nils (51)	Silvia (110)	
2					
2	7				
	1	14	10		
1					
14			8	1	
10		8			
		1			

Applications of Networks Without graphs, there would be none of these:

Biological Networks

The brain: connections between neurons Phylogeny: the evolutionary relationships of life

- Interaction between genes, proteins and chemical products
- Your ancestry: the relations between you and your family

	2	KOTO ATT DATE
-	202	-tonE
and a state of the		
Personal Per		
	and the party of	
	Carleson,	arrent.
-	52	£
	E.	action of
	ACTINATION OF	BATTER, J
-	100	
NAME OF A DESCRIPTION OF	- LE	Parties of
(A REPORT OF	(Landarda)	and the second second
and	. 72	12.
1114-0	-	211-2-1at
1.777-15-		ACRES
\sim	12	-17
THE OWNER	-	
in has	·	NP 1
S.	5722	School Section
11100	200	Brendan III
THE	5	-
	Low	and have
	- 0.079	10 minut
i Gre	- 100	In Station
		CONSISTENCE.
All Property lines and the lines		- 2
		0000

195-52-50 5-40 90

itens tuer hite

.54	and a second			
1000	E.m.	100.00	-	
× 1.*	i i i i i	100.000	-	L Las
4	2 =		are and	100
Const.	-	-	100	-C
	<u> </u>			
	prints.	4875	parent of	1
- and	1 960	217	Y	
	2	.9	and a	and and
Taxa and	1 3	24.022		
-1 -	Ú.T	2002	1.40	and age
	5-			

(1999) (1999)

- to -

The state

Graph Analysis Case Study

Graph Theory fundamentals

Network

Tree

See also "Network Science", Barabasi http://barabasi.com/networksciencebook/chapter/2

> Hypergrap h

Bipartite Graph

Now Kaliningrad: historically German, now a Russian exclave Can you take a walk and visit every land mass without crossing a bridge twice?

eonhard Euler:

Only possible with a graph with at most two nodes with an odd number of links. This graph has four nodes (all) with odd number of links.

Related: a "Hamiltonian path", i.e., a path that visits each vertex exactly once

Graph Terms

A graph **G(V,E)** consists of a set of **vertices V** (also called nodes) and a

set of **edges E** (also called links) connecting these vertices.

Graph Term: Simple Graph

A simple graph G(V,E) is a graph which contains **no multi-edges** and **no loops**

Not a simple graph! → A *general graph*

Graph Term: Directed Graph

A directed graph (digraph) is a graph that discerns between the edges (A-B) and (A-B).

Graph Terms: Hypergraph

A hypergraph is a graph with edges connecting any number of vertices.

Think of edges as sets.

Hypergraph Example

Graph Terms

Independent Set G contains no edges

Clique G contains all possible edges

Independent Set

Unconnected Graphs, Articulation Points

Unconnected graph

An edge traversal starting from a given vertex cannot reach any other vertex.

Articulation point

Vertices, which if deleted from the graph, would break up the graph in multiple sub-graphs.

Unconnected Graph

Articulation Point (red)

Biconnected, Bipartite Graphs *Biconnected graph* A graph without articulation points.

Bipartite graph The vertices can be partitioned in two independent sets.

Biconnected Graph

Bipartite Graph

Tree A graph with no cycles - or: **A collection of nodes** contains a root node and 0-n subtrees subtrees are connected to root by an edge

Different Kinds of Graphs

Over 1000 different graph classes

A. Brandstädt et al. 1999

Degree

Node degree deg(x) The number of edges connecting a node. For directed graphs in- and out-degree are considered separately.

Average degree

$$\langle k \rangle = \frac{1}{N} \sum_{i=1}^{N} k_i = \frac{2L}{N}$$

Degree distribution

Degree Distribution of a real Network

Protein Interaction Network, Barabasi

Degrees

Degree is a measure of local importance

Paths & Distances

- Path is route along links
- Path length is the number of links contained
- Shortest paths connects nodes i and j with the smallest number of links
- **Diameter of graph G** The longest shortest path within G.

A path from 1 to 6

Shortest paths (two) from 1 to 7.

Betweenness Centrality

a measure of how many shortest paths pass through a node good measure for the overall relevance of a node in a graph

Degree vs BC

Network and Tree Visualization

Setting the Stage

of graph in order to achieve which kind of goal?

How to decide which **representation** to use for which **type**

Task Taxonomy for Graph Visualization

Bongshin Lee, Catherine Plaisant, Cynthia Sims Parr Human-Computer Interaction Lab University of Maryland, College Park, MD 20742, USA

+1-301-405-7445

{bongshin, plaisant, csparr}@cs.umd.edu

ABSTRACT

tasks used in those studies. Our goal is to define a list of tasks for graph visualization that has enough detail and specificity to be useful to: 1) designers who After making those two lists, we considered the set of low-level want to improve their system and 2) to evaluators who want to Visual Analytics tasks proposed by Amar et al. [2]. These tasks compare graph visualization systems. In this paper, we suggest a were extracted from a corpus of questions about tabular data. We realized that our tasks all seem to be compound tasks made up of list of tasks we believe are commonly encountered while analyzing graph data. We define graph specific objects and Amar *et al*'s primitive tasks applied to the graph objects. When demonstrate how all complex tasks could be seen as a series of some tasks could not be represented with those tasks and objects, low-level tasks performed on those objects. We believe that our we added either an object or a low-level task. In this paper, we taxonomy, associated with benchmark datasets and specific tasks, demonstrate how all complex tasks could be seen as a series of would help evaluators generalize results collected through a series low-level tasks performed on those objects. of controlled experiments.

Categories and Subject Descriptors H.5.2 [Information Interfaces and Presentation]: User Interfaces – Graphical user interfaces (GUI) Jean-Daniel Fekete, Nathalie Henry INRIA Futurs/LRI Bat. 490 Université Paris-Sud, 91405 ORSAY, France

+33-1-69153460

u Jean-Daniel.Fekete@inria.fr, nhenry@lri.fr

user studies of graph visualization techniques and extracted the tasks used in those studies.

2. GRAPH-SPECIFIC OBJECTS

A graph consists of two types of primitive elements, nodes and links. A subgraph of a graph G is a graph whose nodes and links are subsets of G. There are several meaningful subgraphs such as

Different Kinds of Tasks/Goals

Localize – find a single or multiple nodes/edges with a given property

• ABT: Find the edge(s) with the maximum edge weight.

• TBT: Find all adjacent nodes of a given node. Find neighbors nodes Identify Clusters / Communities Find Paths

. . . .

- Two principal types of tasks: attribute-based (ABT) and topology-based (TBT)

Three Types of Graph Representations

Explicit (Node-Link)

Matrix

Implicit

Explicit Graph Representations

Node-link diagrams: vertex = point, edge = line/arc

Criteria for Good Node-Link Layout

Minimized edge crossings Minimized **distance** of neighboring nodes Minimized drawing area Uniform edge length Minimized edge **bends** Maximized angular distance between different edges Aspect ratio about 1 (not too long and not too wide) Symmetry: similar graph structures should look similar

list adapted from Battista et al. 1999

Conflicting Criteria

VS.

Uniform edge length

Schulz 2004
Explicit Layouts

- problem
- 1. Conversion of the layout criteria into a weighted cost function: $F(layout) = a^{*}ledge crossingsl + ... + f^{*}lused drawing spacel$
- 2. Use a standard optimization technique (e.g., simulated annealing) to find a layout that minimizes the cost function

Layout approach: formulate the layout problem as an optimization

Force Directed Layouts

Physics model: edges = springs, vertices = repulsive magnets

Expander (pushing nodes apart)

(pulling nodes together)

_

Algorithm

Place Vertices in random locations While not equilibrium calculate force on vertex sum of pairwise repulsion of all nodes attraction between connected nodes move vertex by c * force on vertex

What happens when there are no links?

Properties

Generally good layout Uniform edge length Clusters commonly visible Not deterministic

Computationally expensive: $O(n^3)$ n² in every step, it takes about n cycles to reach equilibrium Limit (interactive): ~1000 nodes in practice: damping, center of gravity

http://bl.ocks.org/steveharoz/8c3e2524079a8c440df60c1ab72b5d03

Adress Computational Scalability: Multilevel Approaches

[Schulz 2004]

Expand on Demand

What do you want to know from a network?

Rarely is an overview helpful.

Alternative Approach: Query first,

HOLA: Human-like Orthogonal Layout Study how humans lay-out a graph Try to emulate layout

Left: human, middle: conventional algo, right new algo

Graph 1

Initial

 $\hat{\mu}_1 = 0.00$

 $\bar{\mu}_1 = 0.00$

 $\tilde{\mu}_1=0.00$

Graph 2

 $\bar{\mu}_1 = 0.02$

 $\bar{\mu}_1 = 0.02$

 $\bar{\mu}_1 = 0.09$

Graph 3

 $\mu_1 = 0.00$

 $\mu_1=0.00$

┏—

 $\mu_1 = 0.00$

Graph 4

 $\bar{\mu}_1 = 0.00$

 $\bar{\mu}_{1}=0.00$

Human 2nd

Human 1st

yFiles

HOLA

 $\hat{\mu}_2 = 0.48$

 $\bar{\mu}_1=0.51,\,\bar{\mu}_2=0.41$

 $\bar{\mu}_1=0.25,\,\bar{\mu}_2=0.21$

 $\bar{\mu}_2 = 0.49$

 $P_1 = 0.59$

P ф---0-Q-O

 $\mu_1=0.33,\,\mu_2=0.10$

 $\bar{\mu}_1=0.21,\,\bar{\mu}_2=0.11$

Graphs in 3D

Why, why not visualize graphs in 3D?

Why, why not use AR/VR?

Styled / Restricted Layouts

Circular Layout Node ordering Edge Clutter

ca. 3% of all possible edges

ca. 6,3% of all possible edges

Reduce Clutter: Edge Bundling

Bundling Strength

Holten et al. 2006

Bundling Strength

tension: -

Michael Bostock

mbostock.github.com/d3/talk/20111116/bundle.html

Fixed Layouts

Can't vary position of nodes Edge routing important

Supernodes / Aggregation

Supernodes: aggregate of nodes

manual or algorithmic clustering

Aggregation

https://youtu.be/E1PVTitj7h0?t=57

Explicit Representations

- Pros:
 - able to depict all graph classes
 - can be customized by weighing the layout constraints
 - very well suited for TBTs, if also a suitable layout is chosen
- Cons:
 - computation of an optimal graph layout is in NP (even just achieving minimal edge crossings is already in NP) even heuristics are still slow/complex (e.g., naïve spring embedder is in O(n3)) has a tendency to clutter (edge clutter, "hairball")

Instead of node link diagram, use adjacency matrix

Examples:

ABCDE

HJ Schulz 2007

Well suited for neighborhood-related TBTs

Not suited for path-related TBTs

van Ham et al. 2009 Shen et al. 2007

Order Critical!

Pros:

can represent all graph classes except for hypergraphs puts focus on the edge set, not so much on the node set simple grid -> no elaborate layout or rendering needed well suited for ABT on edges via coloring of the matrix cells well suited for neighborhood-related TBTs via traversing rows/columns

Cons:

quadratic screen space requirement (any possible edge takes up space) not suited for path-related TBTs

Hybrid Explicit/Matrix

NodeTrix [Henry et al. 2007]

Matrix Representations Problem: used screen real estate is quadratic in the number of nodes Solution approach: hierarchization of the representation

[van Ham et al. 2009]

[van Ham et al. 2009]

Higher-Order Connectivity

Graffinit	с у				
Flight Query			Connectivity Matrix		
Max len 3		•			
Start ND (state) × IA (state) × state) × SD (state) ×				city
End OR (state) × WA (state) ×				state
Show cypher		Submit			
Connectivity	Matrix Controls		+ degree city	state	
Aggregate rows	none	•	1.00 1.04k Minneapolis Des Moines	MN IA	airpor MSP DSM
Aggregate cols	none	-	Fargo	ND SD	FAR FSD
Sort order	optimal leaf	•	Bismarck/Ma Duluth Williston	MN ND	DLH ISN
Metric	path count	•	Hibbing Aberdeen Brainerd	MN SD MN	HIB ABR BRD
Encoding	colormap	•	Bemidji	MN ND	BJI DIK
Scale	log	•	Grand Forks Grand Forks Cedar Rapids	ND ND IA	GFK DVL CID
Int. Node Table Controls			Jamestown Minot	ND ND	JMS MOT
Aggregate rows	none	•	Rapid City	SD	RAP
Metric	path count	-	node-to-node path count	t	
Encoding	colormap	•	1 4 20 95 438 200	08 9194	
Scale	log	•			

[Kerzner et al., Graffinity, 2017]

Tree-Exercise

Tree Exercise

Here is part of a directory structure used for the material for this class and the relative file size.

datavis-17/

lectures/

Intro.key (110 MB)

perception/

Perception.key (113 MB)

Blindness.mov (15MB)

Data.key (12 MB)

Graphs.key (180 MB)

exams/

Exam1-solution.doc (5MB)

Exam1.doc (1MB)

exercise/

Graph.doc (3MB)

Graph-video.doc (210MB)

Sketch two different visualizations that show both, the directory structure and the size of the directories and the contained files.

Explicit Tree Visualization

Reingold– Tilford layout

http://billmill.org/pymagtrees/

Manipulating Aggregation Levels

First interactive tree manipulation

Douglas Engelbart 1968 - http://www.1968demo.org

(a) Drill-Down (b) Roll-Up

(a) Unbalanced Drill-Down

"The mother of all demos" https://www.youtube.com/watch?v=yJDv-zdhzMY

Tree Interaction, Tree Comparison

Implicit Layouts for Trees

Implicit Layout Options

Treemap

Sunburst

Icicle Plot

Squarified Treemaps

Original Algorithm lead to thin slices

Squarified Treemaps

- Algo by Bruls, Huizing, Van Wijk 2000]
- 1: Horizontal subdivision to optimize aspect ratio
- 2: adding rect improves aspect ration
- 3: adding another deteriorates aspect ratio, back-track
- 4: add rect to unused area

Squarified Treemaps

Squarified treemaps [Bruls, Huizing, Van Wijk 2000]

Seeing Tree Structure

Software

Mac: GrandPerspective Windows: Sequoia View

Sunburst: Radial Layout

[Sunburst by John Stasko, Implementation in Caleydo by Christian Partl]

Icicle Plot

fare									
	S. S.			<u>L</u>	animate	query	analytics	data	display physics
operator	data	legend controls	Visualization axis	Stats Dates Arrays Colors Geometry Displays Maths Shapes	Tween Transition Easing Transitioner interpolate	Query methods	optimization cluster graph	converters	DirtySprite TextSprite Simulation NBodyForce
filter distortion encoder label layout	ree render TreeBuilder DataSprite ScaleBinding NodeSprite DataList Data	LegendRange Legend SelectionControl TooltipControl	CartesianAxes Axis	FibonacciHeap ColorPalette	Interpolator		AspectRatioBanker HierarchicalCluster MaxFlowMinCut	GraphMLConverter	
Distortion Labeler AxisLayout ForceDirectedLayout StackedAreaLayout CirclePackingLayout RadialTreeLayout NodeLinkTreeLayout									

Differences? Pros, Cons?

Inner Nodes and Leaves Visible

Only Leaves Visible

Implicit Representations

Pros:

large graphs

in most cases well suited for ABTs on the node set

depending on the spatial encoding also useful for TBTs

Cons:

can only represent trees

arranged (e.g., to reflect geographical positions) useless to pursue any task on the edges

- space-efficient because of the lack of explicitly drawn edges: scale well up to very

- since the node positions are used to represent edges, they can no longer be freely

Tree Visualization Reference

Graph Tools & Applications

The Open Graph Viz Platform

Gephi is a visualization and exploration platform for all kinds of networks and complex systems, dynamic and hierarchical graphs.

Runs on Windows, Linux and Mac OS X. Gephi is open-source and free.

Download FREE

Screenshots

Videos

Gephi 0.7 alpha

Release Notes | System Requirements

Features

Quick start

Learn More on Gephi Platform »

Gephi has been accepted again for Google Summer of Code! The program is the best way for students around the world to start contributing to an open-source project. Students, apply now for Gephi proposals. Come to the GSOC forum section and say Hi! to this topic.

Gephi http://gephi.org

Learn More »

Cytoscape

Open source platform for complex network analysis

http://www.cytoscape.org/

Cytoscape Web http://cytoscapeweb.cytoscape.org/

NetworkX https://networkx.github.io/

NetworkX

NetworkX Home | Documentation | Download | Developer (Github)

High-productivity software for complex networks

NetworkX is a Python language software package for the creation, manipulation, and study of the structure, dynamics, and functions of complex networks.

Documentation all documentation

Examples using the library

Features

- Python language data structures for graphs, digraphs, and multigraphs.
- Nodes can be "anything" (e.g. text, images, XML records)
- Edges can hold arbitrary data (e.g. weights, time-series)
- · Generators for classic graphs, random graphs, and synthetic networks
- Standard graph algorithms
- Network structure and analysis measures
- Open source BSD license
- Well tested: more than 1800 unit tests, >90% code coverage
- Additional benefits from Python: fast prototyping, easy to teach, multi-platform

Reference all functions and methods Versions

Latest Release

1.8.1 - 4 August 2013 downloads | docs | pdf

Development

1.9dev github | docs | pdf build passing coverage 83%

Contact

Mailing list Issue tracker Developer guide

