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Recap from last spatial vis 
lecture

• Fields and grids 

• Unstructured and structured grids 

• Direct and indirect workflows 

• Interpolation



Today
• Computer graphics basics 

• Rasterization and ray tracing 

• Shading 

• Alpha blending 

• Volume rendering 

• How integration works 

• Code and examples! 

• Transfer functions 

• 1D, 2D, and Exotica



Computer graphics
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(3D) Computer Graphics



What is graphics?
• Computer graphics is the process of converting a 3D scene (model) into a 2D image (frame buffer), via a 

camera model. 

• Principally, there are two ways of doing this: 

• Rasterization 
“project the scene, sort and shade textured fragments, and shade”  
The camera transforms the primitives.  
4x4 matrix multiplication, Z-buffer algorithm, scan conversion.  
Cost: O(N) 
APIs: OpenGL / WebGL / three.js, DirectX, Vulcan 

• Ray tracing 
Ray casting: “generate rays, search the scene for which primitive a ray hits, and shade”  
Ray tracing: “rinse and repeat.” 
The camera defines the ray; primitives remain in native 3D coordinates.  
Many parallel tasks traversing a tree or grid in very different ways.  
Cost: O(P log N).  
APIs: Intel Embree & OSPRay, NVIDIA OptiX & IndeX, write your own! 

• Volume rendering can be implemented either via ray tracing  
(sampling along the ray) or rasterization (textured proxy geometry)
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Rasterization
• Putting shaded polygons on screen

• Transform geometric primitives into pixels

• Lowest level: scan conversion
• Bresenham, midpoint algorithms



Rasterization

Image: Carson Brownlee, TACC. Data: Michael Sukop, FIU



Ray tracing

Image: Carson Brownlee, TACC. Data: Michael Sukop, FIU



Rasterization illustrated
http://acko.net/files/gltalks/pixelfactory/online.html#1

Relevant classes: CS 5600, CS 5610/6610

http://www.realtimerendering.com  
http://openglbook.com/the-book.html

http://acko.net/files/gltalks/pixelfactory/online.html#1
http://www.realtimerendering.com
http://openglbook.com/the-book.html


Ray tracing 

Relevant class: CS 5620/6620

http://www.ospray.org  

https://developer.nvidia.com/optix

http://www.ospray.org
https://developer.nvidia.com/optix


Graphics Primitives
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Graphics Primitives
Surfaces
• 2-dimensional objects (in 3D)
• Polygonal description

• Important topologies (special cases)

1

2

3

4

5

6

7

8

triangle fan triangle strip quad strip
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Graphics Primitives
Points
• Positions in space
• 2D, 3D coordinates
• 0-dimensional objects

Points CS530 - Introduction to Scientific VisualizationCS 530 - Introduction to Scientific Visualization - 08/27/2014

Graphics Primitives
Lines
• 1-dimensional objects
• Polygonal description (”polyline”)

• piecewise linear 

Lines
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Graphics Primitives
Surfaces
• 2-dimensional objects
• Polygonal description

• typically: triangle mesh                                           
(piecewise linear)

Surfaces
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Primitive Attributes
Color Normal

Texture coordinates

Opacity

slides: IU Purdue



The rasterization pipeline

Camera/
Primitives Transformation Lighting Projection Rasterization Texturing

Fragment 
Shader

Geometry 
shader

Vertex 
shader

Image

fixed function pipeline

Compute 
shaders

programmable pipeline



The rasterization pipeline

Camera/
Primitives Transformation Lighting Projection Rasterization Texturing

Fragment 
Shader

Geometry 
shader

Vertex 
shader

Image

fixed function pipeline

Compute 
shaders

programmable pipeline

(e.g., indirect visualization with rasterization)



The rasterization pipeline

Camera/
Primitives Transformation Lighting Projection Rasterization Texturing

Fragment 
Shader

Geometry 
shader

Vertex 
shader

Image

fixed function pipeline

Compute 
shaders

programmable pipeline

(e.g. direct visualization GPU ray casting)



The rasterization pipeline

Camera/
Primitives Transformation Lighting Projection Rasterization Texturing

Fragment 
Shader

Geometry 
shader

Vertex 
shader

Image

fixed function pipeline

Compute 
shaders

programmable pipeline

(Much easier way to do direct visualization, 
but can’t do it in WebGL yet)



Camera model
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Camera

View angle

Front clipping plane

Back clipping plane

Focal point
Camera
position

View up

Direction of 
projection
Parallel /

Perspective

Image plane

• Need to specify eye position, eye direction, and eye orientation 
(or “up” vector) 

• This information defines a transformation from world coordinates 
to camera coordinates 



Camera model

CS530 - Introduction to Scientific VisualizationCS 530 - Introduction to Scientific Visualization - 08/27/2014
33

Camera

View angle

Front clipping plane

Back clipping plane

Focal point
Camera
position

View up

Direction of 
projection
Parallel /

Perspective

Image plane

• Need to specify eye position, eye direction, and eye orientation 
(or “up” vector) 

• This information defines a transformation from world coordinates 
to camera coordinates 

origin 
(position)

lookAt 
(position)

up (vector)

direction (vector)

In OpenGL:  
vec3 origin, direction, up;  
float fovy, aspect; 
int width, height; 

In three.js (done for you in HW6):
_gl.viewport( _viewportX, _viewportY, _viewportWidth, _viewportHeight ); 
var cameraPX = new THREE.PerspectiveCamera( fov, aspect, near, far );

fovy 
(angle)

width 
(pixels)

glViewport (width, height); 
gluPerspective(width, height, fov, near, far); 
gluLookAt(origin, direction, up);

height 
(pixels)
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Projections
Perspective projection

• parallel lines do not necessarily            
remain parallel

• objects get larger as                              
they get closer

• fly-through realism



three.js volume rendererPerspective Projection
• Maps points in 4D (where it is easier to define the 

view volume and clipping planes) to positions on the 
2D display through multiplication and homogenization



Ray tracing pipeline

Camera/
Primitives

Build 
Acceleration 

structure

Ray 
traversal

Ray 
intersection

Shading 
and 

texturing

Image

(direct visualization with ray tracing)



Pinhole camera (GPU ray casting)

• Camera setup (per frame, on the CPU): 
vec3 u,v,w;  
w = normalize(lookAt - origin);  
u = cross(up, w); 
v = cross(w,u); 
u = normalize(u); 
v = normalize(v);  
 
float tanThetaOver2 = tanf(fovy * .5 * PI / 180);  
float aspect = width / height;  
 
vec3 frameBuffer_u = u * tanThetaOver2; 
vec3 frameBuffer_v = v * tanThetaOver2 / aspect; 

• Ray generation (per pixel, e.g. in a fragment shader on the GPU, or task per pixel): 
varying vec2 pixelPos;   //computed by the vertex shader stage  
uniform vec3 origin, w, frameBuffer_u, frameBuffer_v;  //set by the user  
vec3 ray_dir = w + (frameBuffer_u * pixelPos.x) + (frameBuffer_v * pixelPos.y);

w
u

v
origin

frameBuffer



Ray casting within a rasterizer

Figure 3: Volume rendering examples.

celerator. In particular, the availability of the following features was
essential for the realization:

• Per-fragment texture fetch operations: In the pixel shader pro-
gram it is possible to access up to 8 different textures, but
only a limited number of dependent texture fetches can be
performed on the ATI.

• Texture render target: Instead of using the frame buffer, ren-
dering can be directed to a 2D texture map aligned with the
viewport. This texture can be accessed in the following ren-
dering passes. Consequently, this mechanism allows different
passes to communicate their rendering results to consecutive
passes. Note that, floating point textures are available. Thus,
negative values can be stored.

• Texture coordinate generation: Texture coordinates to be used
for texture access can be specified directly or manipulated in
the shader program.

• Per-fragment arithmetic: A number of arithmetic operations
on scalar or vector variables can be performed in the shader
program. These include the computation of simple arithmetic
operations, i.e. +,-,*, but also more complex ones like dot
products and square roots.

• Depth replace: A fragment can replace its depth value by
writing an arbitrary value to the z-buffer.

All of these features are supported on current graphics cards like
the ATI 9700. Together with the early z-test they build the basis for
the proposed volume rendering acceleration techniques.

2.1 Ray-Casting Implementation
The key to volume ray-casting is to find an effective stream model
that allows one to continuously feed multiple, data-parallel frag-
ment units on recent chips. In addition, the number of fragments
to be processed and the number of operations to be performed for
each fragment should be minimized.
The proposed algorithm is a multi-pass approach. For each frag-

ment, it casts rays of sight through the volume until an opacity
threshold is reached or a selected iso-value is hit. In the latter case,
the coordinates in local texture space of the intersection points with
the surface are written to a 2D texture. This texture is used in a fi-
nal pass to restrict necessary computations, i.e. access to a gradient
texture and shading computations, to these points.
Prior to ray traversal, for each pixel the direction in local texture

coordinates of the ray through that pixel is computed. This direction
is stored in two 2D textures, and it can now be retrieved directly in
all upcoming rendering passes. Ray traversal is done in a fixed
number of rendering passes, each performing a constant number of

steps along the rays. The render target in each pass is a 2D texture
that is accessed in consecutive passes to access accumulated color
and opacity values.
Between any two main passes, an additional pass is performed

that simply tests whether the actual opacity value has already ex-
ceeded a specified threshold or an iso-surface is hit. Depending on
the result of this test, the pixel shader modifies the z-value. If the
test succeeds, the z-value is set to the maximum value, it is set to
zero otherwise. As a consequence, if the z-test is set to GREATER,
all consecutive main passes will be discarded due to the early z-test.

(1,1,1)

(0,1,0) (0,1,0)

(0,0,1)

(1,0,1) (1,0,1)

(0,0,1)

(0,0,0)

(1,0,0) (1,0,0)

Figure 4: Rendering front faces (left) and back faces (right) of the
volume bounding box in order to generate ray directions and texture
coordinates of first ray intersection points.

In essence, the following steps are performed (the depth test is
always set to GREATER):

• Pass 1: (Entry point determination): The front faces of the
volume bounding box are rendered to a 2D RGB texture. 3D
texture coordinates of each vertex are issued as per-vertex
color COL (see left of Figure 4). The result is a 2D texture
(TMP) having the same resolution as the current viewport.
The color components in the texture correspond to the first
intersection point between the rays of sight and the volume.
Coordinates of the intersection points are given with respect
to texture space.

• Pass 2 (Ray direction determination): The same steps as
in Pass 1 are performed, but now back faces of the volume
bounding box are rendered to a 2D RGBA texture (DIR) (see
right of Figure 4). In this pass, a fragment shader is issued that
fetches for each fragment the respective value from TMP and
computes the normalized ray direction as normalize(COL -
TMP). The result is rendered into the color components of the
render target. Again, COL corresponds to the current vertex
color. In addition, the length of the non-normalized direction

front faces back faces

Krueger and Westermann. Acceleration Techniques for GPU Volume Rendering. IEEE Visualization 2003.

• Rasterize a 3D bounding box on [0,1]^3. 

• Fragment shader first pass (front faces): 
varying vec3 worldSpaceCoords;   //world space coordinates of front faces, from vertex shader 
gl_FragColor = vec4( worldSpaceCoords.x , worldSpaceCoords.y, worldSpaceCoords.z, 1 ); 

• Fragment shader second pass (back faces): 
varying vec3 worldSpaceCoords;    //world space coordinates of back faces, from vertex shader 
varying vec4 projectedCoords;    //projected coordinates of this pixel 
//Transform the coordinates it from [-1;1] to [0;1] 
vec2 texc = vec2(((projectedCoords.x / projectedCoords.w) + 1.0 ) / 2.0, ((projectedCoords.y / projectedCoords.w) + 1.0 ) / 2.0 ); 
//The back position is the world space position stored in the texture.  
vec3 backPos = texture2D(tex, texc).xyz; 
//The front position is the world space position of the second render pass.  
vec3 frontPos = worldSpaceCoords; 
vec3 dir = backPos - frontPos;



Shading



Computer graphics
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Shading
• Shading reveals the shape of 3D objects 

through their interaction with light
• Shading creates colors as a function of:

• surface properties
• surface normals
• lights

• Rich subject (we are only interested in basics here)

• Surfaces show information, lights show 
surfaces, shading controls how



Computer graphics
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Phong lighting model (1975)
• Specular reflection
• Diffuse reflection
• Ambient reflection

I = ksIs + kdId + kaIa

Light intensity per light source and per color channel

17

Shading

relative contributions
(material specific)



Computer graphics
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Shading
Phong lighting model: Specular Reflection
• mirror-like surfaces
• Specular reflection depends on position of the 

observer relative to light source and surface normal

⇥l

⇥n
⇥r

⇥v� � �



Computer graphics
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Shading
Phong lighting model: Specular Reflection

⇥l

⇥n
⇥r

⇥v� � �

Is = Ii cosn � = Ii cosn < �r,�v >



Computer graphics
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Shading
Phong lighting model: Diffuse Reflection
• Non-shiny surfaces
• Diffuse reflection depends only on relative position 

of light source and surface normal.

⇥l

⇥n

�



Computer graphics
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Shading
Phong lighting model: Diffuse Reflection

Id = Ii cos � = Ii cos < �l,�n >

⇥l

⇥n

�

Id = Ii cos ✓ = Ii (~l · ~n)



Computer graphics
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Shading
Phong lighting model

⇥l

⇥n
⇥r

⇥v� � �

sum over all light sourcesambient light

per color channel

I = kaIa +
NX

i=1

Ii (kd cos(✓) + ks cos
n
(�))



Computer graphics
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Shading
Phong lighting model

http://en.wikipedia.org/wiki/Phong_shading

Ambient Diffuse Specular Phong Reflection



Gradient and Phong shading code
vec3 shade(vec3 material_color, vec3 p, float value, vec3 dir) 
{ 
  vec3 normal = gradient(p, value); 
  vec3 light_direction = -normalize(dir); 
   
  vec3 v = -normalize(dir); 
  float n_dot_v = dot(normal, v); 
   
  if (n_dot_v < 0.0) 
    normal = -normal; 

  float n_dot_l = dot(normal, light_direction); 
  vec3 color = .15 * vec3(1.0,1.0,1.0); 

  if (n_dot_l > 0.0)          //diffuse 
  { 
    vec3 diffuse; 
    diffuse = vec3(min(max(n_dot_l, 0.0), 1.0)); 
    color += diffuse * material_color; 

    //specular 
    vec3 half_vector = normalize(v + light_direction); 
    float n_dot_h = max( dot(normal, half_vector),0.0); 
    color += vec3(pow( n_dot_h, 32.0 )); 
 } 
   
  return color; 
} 

vec3 gradient(vec3 psample, float value) 
{ 
  float dcd = .001; 
  vec3 p = psample; 
  vec3 grad; 

  p.x -= dcd; 
  grad.x = sampleAs3DTexture(p); 
  p.x = psample.x + dcd; 
  grad.x -= sampleAs3DTexture(p); 
  p.x = psample.x; 

  p.y -= dcd; 
  grad.y = sampleAs3DTexture(p); 
  p.y = psample.y + dcd; 
  grad.y -= sampleAs3DTexture(p); 
  p.y = psample.y; 

  p.z -= dcd; 
  grad.z = sampleAs3DTexture(p); 
  p.z = psample.z + dcd; 
  grad.z -= sampleAs3DTexture(p); 
  
  return normalize(grad); 
}

Smooth, interpolated normal at an arbitrary point Shades your sample “p” like it’s on a surface!



The Rendering Equation

• James Kajiya, “The Rendering equation”, Siggraph 1986. 
Generalizes all light transport in graphics into one equation! 

• Phong shading, the “Utah approximation” 

• Ray tracing, i.e. Whitted 1980 

• Radiosity, i.e. Goral et al. 1984 

• Volume rendering (e.g. Sabella 1988, Kniss et al. “Gaussian Transfer Functions for Multifield Visualization”, Vis 03)
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THE RENDERING EQUATION 

James T. Kajiya 
California Institute of Technology 

Pasadena, Ca. 91125 

ABSTRACT. We present an integral equation which generallzes a variety 
of known rendering algorithms. In the course of discussing a monte carlo 
solution we also present a new form of variance reduction, called Hierarchical 
sampling and give a number of elaborations shows that it may be an efficient 
new technique for a wide variety of monte carlo procedures. The resulting 
renderlng algorithm extends the range of optical phenomena which can be 
effectively simulated. 

KEYWORDS: computer graphics, raster graphics~ ray tracing~ radios- 
ity~ monte carlo, distributed ray tracing, variance reduction. 

CR CATEGORIES: 1.3.3, 1.3.5, 1.3.7 

1. T h e  r e n d e r i n g  e q u a t i o n  

The technique we present subsumes a wide variety of rendering algo- 
r i thms and provides a unified context for viewing them as more or less 
accurate approximations to the solution of a single equation. That 
this should be so is not surprising once it is realized that all rendering 
methods a t tempt  to model the same physical phenomenon, that of 
light scattering off various types of surfaces. 

We mention that  the idea behind the rendering equation is hardly 
new. A description of the phenomenon simulated by this equation 
has been well studied in the radiative heat transfer literature for years 
[Siegel and Howell 1981]. However, the form in which we present this 
equation is well suited for computer graphics, and we believe that this 
form has not appeared before. 

The rendering equation is 

I(z,z') = g(x,x'} [e(z,x') + fsp(=,a: ' ,x")[(z',x"}dz" ] . (1) 

where: 
x(=, ~') 

~( x, =9 ,(=, =') 

p(z, z'=") 

is the related to the intensity of light 
passing from point z '  to point x 
is a ~geometry ~ term 
is related to the intensity of emitted light 
from x' to x 
is related to the intensity of light scattered 
from x" fox by a patch of surface at z' 

Permission to copy without fee all or part of this material is granted 
provided that the copies are not made or distributed for direct 
commercial advantage, the ACM copyright notice and the title of the 
publication and its date appear, and notice is given that copying is by 
permission of the Association for Computing Machinery. To copy 
otherwise, or to republish, requires a fee and/or  specific permission. 

© 1986 ACM 0-89791-196-2/86/008/0143 $00.75 

The equation is very much in the spirit of the radiosity equation, sim- 
ply balancing the energy flows from one point of a surface to another. 
The equation states that  the transport  intensity of light from one sur- 
face point to another is simply the sum of the emitted light and the 
total light intensity which is scattered toward z from all other surface 
points. Equatlon (1) differs from the radiosi~y equation of course be- 
cause, unlike the latter, no assumptions are made about reflectance 
characteristics of the surfaces involved. 

Each of the quantities in the equation are new quantities which we call 
unoecluded multipoint transport quantities. In section 2 we define each 
of these quantities and relate them to the more conventional quantities 
encountered in radiometry. 

The integral is taken over S = U s i ,  the union of all surfaces. Thus 
the points x, x'~ and x" range over all the surfaces of all the objects in 
the scene. We also include a global background surface So, which is 
a hemisphere large enough to act as an enclosure for the entire scene. 
Note that  the inclusion of a enclosure surface ensures that the total 
positive hemisphere for reflection and total negative hemisphere for 
transmission are accounted for. 

As an approximation to Maxwell's equation for electromagneticseq. (1) 
does not at tempt to model all interesting optical phenomena. It is es- 
sentially a geometrical optics approximation. We only model time 
averaged transport  intensity, thus no account is taken of phase in this 
equation--rul ing out any treatment of diffraction. We have also as- 
sumed that the media between surfaces is of homogeneous refractive 
index and does not itself participate in the scattering light. The latter 
two eases can be handled by a pair of generalizations of eq. (1). In 
the first case, simply by letting g{x, z') take into account the eikonal 
handles media with nonhomogenous refractive index. For participating 
propagation media, a integro-differentiM equation is necessary. Exten- 
sions are again well known, see [Chandrasekar 195% and for use in a 
computer  graphics application [Kajiya and yon Herren 1984]. Elegant 
ways of viewing the eikoual equation have been available for at least 
a century with Hamilton-Jacobi theory [Goldstein 1950]. Treatments 
of participatory media and of phase and diffraction can be handled 
with path integral techniques. For a treatment of such generalizations 
concerned with various physical phenomena see [Feynman and Hibbs 
1965]. Finally, no wavelength or polarization dependence is mentioned 
in eq. (1). Inclusion of wavelength and polarization is straightforward 
and to be understood. 

2. D i s c u s s i o n  o f  t r a n s p o r t  q u a n t i t i e s  

We discuss each of the quantities and terms of equation (1}. This 
equation describes the intensity of photon transport  for a simplified 
model. I(x, zl) measures the energy of radiation passing from point z I 
to point x. We shah name [(z~ x ~) the unoccluded two point transport 
intensity from x' to x, or more compactly the transport intensity. The 
t ransport  intensity I(x, x') is the energy of radiation per unit time per 
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in eq. (1). Inclusion of wavelength and polarization is straightforward 
and to be understood. 

2. D i s c u s s i o n  o f  t r a n s p o r t  q u a n t i t i e s  

We discuss each of the quantities and terms of equation (1}. This 
equation describes the intensity of photon transport  for a simplified 
model. I(x, zl) measures the energy of radiation passing from point z I 
to point x. We shah name [(z~ x ~) the unoccluded two point transport 
intensity from x' to x, or more compactly the transport intensity. The 
t ransport  intensity I(x, x') is the energy of radiation per unit time per 
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dinary total bidirectional reflectance 

p(~, =', =") = e(o', ¢', 9', ,~') cos  0 cos o' (1~) 

Whitted [1980], proposed a different approximation: 

I = ge + gMogeo -F gMogMogeo + . . .  

8. Methods fo r  approximate s o l u t i o n  

In this section we shall review approximations to the solution of the 
rendering equation. It appears that  a wide variety of rendering algo- 
r i thms can be viewed in a unified context provided by this equation. 
During the course of this discussion, many other untried approxlmw 
tions may occur to the reader. We welcome additional work on this 
area. This territory remains l~gely unexplored~ since the bulk of the 
present effort has concentrated solely on the solution methods to be 
presented below. 

Ne s . m ~ u  serses 

One method of solving integral equations like eq.(1} comes from a 
well known formal manipulation, see [Courant and Hilbert 1953]. We 
rewrite it as: 

I = g~ + g M l  

where M is the linear operator given by the integral in eq.(l). Now if 
we rewrite this equation as 

( 1  - -  g M ) I  -~ ge 

where 1 is the identity operator, then we can formally invert the equa- 
tion by 

jr = (1 -- g M ) - l g e  
= ge + gMge + gMgMge + g(Mg}Se . . .  {2) 

A condition for the convergence of the infinite series is that  the spectral 
radius of the operator  M be less than one. {Which is met in the case 
of interest to us). A physical interpretation of the Neumann expansion 
is appealing. It gives the final intensity of radiation transfer between 
points x and x ~ as the sum of a direct term, a once scattered term, a 
twice scattered term, etc. 

The Utah approzlmation 

For lack of a bet ter  name, we shall call the classical method for render- 
ing shaded surfaces the Utah approximation. In this approximation 
we approximate I with the two term sum: 

I = ge + gMe o 

Thus the Utah approximation ignores all scattering except for the 
first. The geometry term is by far the most difficult to compute. The 
Utah approximation computes the g term only for the final scattering 
into the eye. This is, of course, the classical hidden surface problem 
studied by many early researchers at the University of Utah. Note 
that  in the second term, the operator M does not operate on ge but  
rather  directly on e0- Thus this approximation ignores vlslbilty from 
emitting surfaces: it ignores shadows. The e0 term is mesas to signify 
that  only point radiators ~re allowed. No extended lighting surfaces 
were allowed. This simplification reduces the operator M to a small 
sum over light sources rather  than an integration over ~". 

Since that time many extensions have appeared, most notably shadow 
algorithms and extended light sources. 

The Ray Tracing approximation 

In this famous approximation, Me is a scattering model which is the 
sum of two delta functions a cosine term. The two delta functions of 
course represent the reflection and refraction of his lighting model. The 
cosine term represents the diffuse component. Note that  he gives gee: 
shadows but with point radiators. Whitted's  ambient term translates 
directly to the • term. Again the operator M can be approximated by 
a small sum. 

The distributed ray tracing approximation 

In 1984, Cook [Cook et al 1984], introduced distributed ray tracing. 
This approximation uses an extension of the three component Whitted 
model resulting in a more accurate scattering model. This extension 
necessitated the evaluation of an integral in computing the operator 
M. In this model M is approximated by a distribution around the 
reflection a~td refraction delta functions. The innovation that made 
this possible was the use of monte carlo like techniques for the eval- 
uation. As is well known, the ability to evaluate integrals has widely 
extended the range of optical phenomena captured by this technique. 
A proper treatment of the ambient term, however, remained elusive 
to distributed ray tracing. 

The radioMty approximation 

In 1984, Goral, Torrance, and Greenburg [Goral et. aL 1984, Cohen 
md Greenburg 1985, Nishita and Nakamas 1985] introduced radiosity 
to the computer graphics world. This is a major new rendering tech- 
nique which handles the energy balance equations for perfectly diffuse 
surfaces. That is, surfaces which have no angular dependence on the 
bidirectional reflectance function 

p{O', ¢', ¢ ' ,  ~,') = Po. (14) 

The radiosit 9 B(x') of a surface element dx' is the energy flux over 
the total visible hemisphere. It is the energy per unit time per unit 
(unprojected) area, measured in watts per meter squaxed. It is defined 
by 

dB{=') = an' ] q o ' , ¢ )  cos e ' ~  
..1 hctrti 

= an' f : C = , = ' ) r ' ~  (i~) 
J heml C~ 

= dz' [ /C=, =')d= JS 

Thus to calculate hemispherical quantities we may simply integrate 
over all the surfaces in the scene. So from eq.(1) and (15) we obtain 

= / { g{., . , ) , { . ,  dB(x')  
(16) 

+g(~, =') : [ p(=, =', ="} r(~', =")de'}  d~ 

If there is an occlusion between ~ and x* then the contribution of the 
emmitance term is zero. Otherwise the contribution is 

dx' [ ~ - - - d x  q=' =') dB,(x ' )  

d='f , , ,¢osea= dO,¢  ) cose ~ (17) J 

= dz'  J eCe',¢' } cos e'd~ 

~_ dxt ~ o  
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W h e r e  ~o is the  h e m i s p h e r i c a l  e m i t t a n c e  of the  surface e lement  dx'. 

Simi la r ly  for the ref lec tance  t e rm,  the c o n t r i b u t i o n  to  r ad io s i t y  is aga in  
zero for an occ luded  surface.  O the rwi se  we get  

dB,(x') = dx' f ~ f p(x,z',x")z(z',z")dz"dz 
= ax, f ~p(O',¢',¢',a')cosOcosO'd~ 

× / I(x', x")dx" (is) 

= dxlpo~rH(x ') 

W h e r e  H is the  h e m i s p h e r i c a l  inc iden t  ene rgy  p e r  u n i t  t i m e  and  u n i t  
area.  In  th i s  d e r i v a t i o n  we s w i t c h e d  the  o rde r  of i n t eg r a t i on  and  used  
iden t i t i e s  (13),(12),  and  (14). Now us ing  equa t i ons  (17) and  (18) in  
(16) we see t h a t  the  r e n d e r i n g  e q u a t i o n  becomes  

dB(x') = ~r[e0 + poH(x')]dx' (19) 

W h i c h  is e q u a t i o n  (4) in  O c t a l  et .  al.  [1984]. 

C a l c u l a t i n g  the  t o t a l  i n t e g r a t e d  i n t e n s t y  H is essen t ia l  to  ca l cu la t e  
the  f inal  F~ d m a t r i x  in rad ios i ty .  T h i s  r equ i res  a v i s ib i l i t y  ca l cu l a t i on  
which  m a y  be Quite expens ive .  Since t he  m a t r i x  e q u a t i o n  is solved by  
a number of relaxation steps, it is essentially equivalent to s u m m i n g  
the  first  few t e r m s  of the  N e u m a n n  series:  p r o p a g a t i n g  the  e m i t t e r s  
across  four  or  so s ca t t e r e r s .  To use r e l a x a t i o n  requi res  t h a t  the  ful l  
m a t r i x  be  ca l cu la t ed .  R e l a x a t i o n  also gives a l l  t he  in t ens i t i e s  a t  a l l  t he  
sur faces  in  the  scene.  W h i l e  in  c e r t a i n  cases th i s  m ay  be  an  advantage~ 
i t  is s u g g e s t e d  t h a t  the  m o n t e  car lo  m e t h o d  ou t l ined  be low may  be  
quite superior. 

4.  M a r k e r  c h a i n s  f o r  s o l v i n g  i n t e g r a l  equations 

The use of Markov chains is perhaps the most popular numerical 
method for for solving integral equations. It is used in fields as di- 
verse as queuing theory and neutron transport. In facts the use of 
monte carlo Markov chain methods in radiative heat transfer has been 
in use for quite some time, [Siegel and Howell 19811. In the heat trans- 
fer approach, a packet of radiation of specified wavelength is emitted, 
reflected, and absorbed from a configuration of surfaces in some enclo- 
sure. Counting the number of packets absorbed by each surface after 
a run gives an estimate of the geometric factors whose exact calcula- 
tion would pose an intractible problem. This is similar to ray tracing 
a scene from the light sources to the eye. Rather than follow these 
methods, we will choose to solve eq.(1) more directly going back to an 
early monte carlo method first put forth by yon Neumann and Ulam 
[Rubens t e in  1981]. 

Finite dimensional version 

By way of i n t r o d u c t i o n  we first p resen t  the  m e t h o d  in a f ini te  d imen-  
s iona l  con tex t .  Th is  s impl i f ies  the  n o t a t i o n  and  makes  obvious  the  
essen t ia l  ideas  involved.  A g a i n  we no te  t h a t  t h i s  example  m e t h o d  
m a y  poss ib ly  hold  m a n y  a d v a n t a g e s  over the  cu r r en t l y  used  re lax-  
a t ion  schemes  p o p u l a r  in r ad ios i ty :  i n t ens i t i e s  a t  on ly  vis ib le  po in t s  
need  be c o m p u t e d ,  and  ca l cu l a t i on  of the  full  r ad io s i t y  m a t r i x  may  be 
e x c h a n g e d  for a ve ry  m u c h  sma l l e r  set  of se lec ted  m a t r i x  e lements .  

Suppose  we wish  to  solve the vec tor  equa t ion :  

x = a W M x  
where  x and  a are n - d i m e n s i o n a l  vectors~ x an  unknown ,  and  M = 
(miy) is an n X n m a t r i x .  

Now from a N e u m a n n  e x p a n s i o n  we see t h a t  for M a m a t r i x  w i t h  

eigenvalues lying within the unit circle, the solution x is given by 
co 

x = a + Z M k a  
k= l  

The  m e t h o d  eva lua t e s  th i s  s u m  by  ave rag ing  over  p a t h s  t h r o u g h  the  
m a t r i x  mul t ip l i e s .  T h a t  is, i t  follows a p a t h  t h r o u g h  rows and  co lumns  
t h a t  compr i ses  an  i t e r a t e d  m a t r i x  p roduc t .  For each po in t  in the  p a t h  
we get  a row or  c o l u m n  which  can  be  i nd exed  by  an  in t ege r  f rom 1 to  

C o n s t r u c t  a p r o b a b i l i t y  space  g / w h e r e  each po in t  w is a p a t h  v i s i t i ng  
one of n p o i n t s  a t  each  d i sc re te  t ime ,  "vis, w = ( n 0 , n t , . . . , n ~ )  where  
each n~ is an  in t ege r  f rom 1 to  n. The  l eng th  k = l{w) of the  p a t h  w is 
f ini te  b u t  o the rwise  a r b i t r a r y  and  co r re sponds  to an  en t ry  in  the  k t h  
m a t r i x  power .  Each  p a t h  is a ss igned  a p r o b a b i l i t y  p(w). 

If we wish  to c a l c u l a t e  the  va lue  of one coo rd ina t e  of x~ say  xjL, t h e n  
we calculate the quantity 

l(~) 
~ '  = ( 1 ~  m . . . . . .  )~-,,-i 1 p(~) i=O 

ave raged  over  a l l  p a t h s  w E t~. S imp ly  t a k i n g  e x p e c t e d  va lues  verif ies 
t h a t  t h i s  q u a n t i t y  gives the  des i red  quan t i ty .  

The  p r o b a b i l i t y  space  of p a t h s  is m o s t  eas i ly  c o n s t r u c t e d  us ing  Maxkov 
chains .  A ( s t a t i o n a r y )  d i sc re te  Markov  cha in  cons i s t s  of a set  of s t a t e s  
X ,  and  an  a s s i g n m e n t  of a transition probability p(x, x') f rom one s t a t e  
x '  ~ X to  a n o t h e r  x E X~ an d  an  i n i t i a l  p r o b a b i l i t y  dens i ty  of s t a t e s  
p(x). Some s u b s e t  of s t a t e s  m a y  be  d e s i g n a t e d  as absorbing in t h a t  no  
t r a n s i t i o n s  ou t  of an  a b s o r b i n g  s t a t e  axe p e r m i t t e d .  

T h e  p r o b a b i l i t y  of a p a t h  g e n e r a t e d  by  a Maxkov cha in  is s i m p l y  the  
the  p r o d u c t  of the  i n i t i a l  s t a t e  and  al l  the  t r a n s i t i o n  p r o b a b i l i t i e s  u~ t l l  
an  a b s o r b i n g  s t a t e  is reached.  So for a p a t h  

we have  the  p r o b a b i l i t y  is 

In the finite dimensional ease we let the state set of the Markov chin 
be the set of indices into the vector or matrix, X = {1, ..., n}. Note 
that although we axe allowed wide lattltude in choosing the transition 
probabilities, they must be positive for the corresponding nonzero en- 
tries in the matrix. In the limit our estimate of the solution is quite 
independent of the probability distribution of the paths. But the rate 
of convergence to the limit is highly dependent on the manner of choos- 
ing the transition probabilities. Section 5 gives a set of new techniques 
for choosing the transition probabilities. 

Infifiaitc dimaasional solution 

E x t e n d i n g  the  mon te  car lo  M a r k e r  cha in  m e t h o d  to  inf ini te  d imen-  
s iona l  e q u a t i o n s  is s t r a i gh t fo rwa rd .  For the  e q u a t i o n  a t  h a n d ,  we Rote 
t h a t  i t  is a v a r i a n t  of a F r e d h o l m  e q u a t i o n  of the  second  k ind .  The  
p a s s i v i t y  of sur faces  in ref lec t ing  and  t r a n s m i t t i n g  r a d i a t i o n  assures  
the  convergence  of t he  N e u m a n n  series.  We s i m p l y  rep lace  the  s t a t e  
se t  by  the  set  of po in t s  x on a surface.  The  p rocedure  for c a l c u l a t i n g  
the points is thus: 

1. Choose a point z' in the scene visible through the imaging aperture to a 
selected pixel z on the virtual screen. 

2. Add in the radiated intensity. 
3. For the length of a Marker path do 

3.1 Select the point z s~ and calculate the geometrical factor g(z, zt). 
3.2 Calculate the reflectance function @(z, x', z") and multiply by ((z', x"). 
3.3 Add this contribution to the pixel intensity. 

Note  t h a t  c a l c u l a t i n g  the  e m i t t a n c e  and  s c a t t e r i n g  fac tors  is s i m p l y  a 
matter of consulting texture maps and lighting models. Calculating 
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dinary total bidirectional reflectance 

p(~, =', =") = e(o', ¢', 9', ,~') cos  0 cos o' (1~) 

Whitted [1980], proposed a different approximation: 

I = ge + gMogeo -F gMogMogeo + . . .  

8. Methods fo r  approximate s o l u t i o n  

In this section we shall review approximations to the solution of the 
rendering equation. It appears that  a wide variety of rendering algo- 
r i thms can be viewed in a unified context provided by this equation. 
During the course of this discussion, many other untried approxlmw 
tions may occur to the reader. We welcome additional work on this 
area. This territory remains l~gely unexplored~ since the bulk of the 
present effort has concentrated solely on the solution methods to be 
presented below. 

Ne s . m ~ u  serses 

One method of solving integral equations like eq.(1} comes from a 
well known formal manipulation, see [Courant and Hilbert 1953]. We 
rewrite it as: 

I = g~ + g M l  

where M is the linear operator given by the integral in eq.(l). Now if 
we rewrite this equation as 

( 1  - -  g M ) I  -~ ge 

where 1 is the identity operator, then we can formally invert the equa- 
tion by 

jr = (1 -- g M ) - l g e  
= ge + gMge + gMgMge + g(Mg}Se . . .  {2) 

A condition for the convergence of the infinite series is that  the spectral 
radius of the operator  M be less than one. {Which is met in the case 
of interest to us). A physical interpretation of the Neumann expansion 
is appealing. It gives the final intensity of radiation transfer between 
points x and x ~ as the sum of a direct term, a once scattered term, a 
twice scattered term, etc. 

The Utah approzlmation 

For lack of a bet ter  name, we shall call the classical method for render- 
ing shaded surfaces the Utah approximation. In this approximation 
we approximate I with the two term sum: 

I = ge + gMe o 

Thus the Utah approximation ignores all scattering except for the 
first. The geometry term is by far the most difficult to compute. The 
Utah approximation computes the g term only for the final scattering 
into the eye. This is, of course, the classical hidden surface problem 
studied by many early researchers at the University of Utah. Note 
that  in the second term, the operator M does not operate on ge but  
rather  directly on e0- Thus this approximation ignores vlslbilty from 
emitting surfaces: it ignores shadows. The e0 term is mesas to signify 
that  only point radiators ~re allowed. No extended lighting surfaces 
were allowed. This simplification reduces the operator M to a small 
sum over light sources rather  than an integration over ~". 

Since that time many extensions have appeared, most notably shadow 
algorithms and extended light sources. 

The Ray Tracing approximation 

In this famous approximation, Me is a scattering model which is the 
sum of two delta functions a cosine term. The two delta functions of 
course represent the reflection and refraction of his lighting model. The 
cosine term represents the diffuse component. Note that  he gives gee: 
shadows but with point radiators. Whitted's  ambient term translates 
directly to the • term. Again the operator M can be approximated by 
a small sum. 

The distributed ray tracing approximation 

In 1984, Cook [Cook et al 1984], introduced distributed ray tracing. 
This approximation uses an extension of the three component Whitted 
model resulting in a more accurate scattering model. This extension 
necessitated the evaluation of an integral in computing the operator 
M. In this model M is approximated by a distribution around the 
reflection a~td refraction delta functions. The innovation that made 
this possible was the use of monte carlo like techniques for the eval- 
uation. As is well known, the ability to evaluate integrals has widely 
extended the range of optical phenomena captured by this technique. 
A proper treatment of the ambient term, however, remained elusive 
to distributed ray tracing. 

The radioMty approximation 

In 1984, Goral, Torrance, and Greenburg [Goral et. aL 1984, Cohen 
md Greenburg 1985, Nishita and Nakamas 1985] introduced radiosity 
to the computer graphics world. This is a major new rendering tech- 
nique which handles the energy balance equations for perfectly diffuse 
surfaces. That is, surfaces which have no angular dependence on the 
bidirectional reflectance function 

p{O', ¢', ¢ ' ,  ~,') = Po. (14) 

The radiosit 9 B(x') of a surface element dx' is the energy flux over 
the total visible hemisphere. It is the energy per unit time per unit 
(unprojected) area, measured in watts per meter squaxed. It is defined 
by 

dB{=') = an' ] q o ' , ¢ )  cos e ' ~  
..1 hctrti 

= an' f : C = , = ' ) r ' ~  (i~) 
J heml C~ 

= dz' [ /C=, =')d= JS 

Thus to calculate hemispherical quantities we may simply integrate 
over all the surfaces in the scene. So from eq.(1) and (15) we obtain 

= / { g{., . , ) , { . ,  dB(x')  
(16) 

+g(~, =') : [ p(=, =', ="} r(~', =")de'}  d~ 

If there is an occlusion between ~ and x* then the contribution of the 
emmitance term is zero. Otherwise the contribution is 

dx' [ ~ - - - d x  q=' =') dB,(x ' )  

d='f , , ,¢osea= dO,¢  ) cose ~ (17) J 

= dz'  J eCe',¢' } cos e'd~ 
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the chance that the region will be selected by the transfer function.
The use of the triangular classification function can also be easily
extended for use with multi-field datasets by replacing the gradient
magnitude from the univariate case with the L2 norm of the ma-
trix DTD where the rows of D are the gradients of each of the data
fields.

4 Piecewise Analytic Integration
The intersection of the multidimensional GTF with an arbitrary line
through data space results in one-dimensional Gaussian. This al-
lows us to integrate the transfer function over line segments in the
volume for which the data varies linearly. As shown in Figure 3
for narrow peaked transfer functions, this analytical integration is
much more accurate than a numerical (Riemann sum) integration
using the same number of samples for each viewing ray.
The emission-absorption volume rendering equation over a line

segment is defined as [Sabella 1988]:

I(a,b) =
∫ b

a
Cρ(v(u)) e−

∫ u
a τρ(v(t))dtdu (4)

where τ is extinction (expressing attenuation along the ray), ρ is
density, C is radiant intensity or color, v(t) is the data value at the
position along the ray parameterized by t starting at the spatial po-
sition x in direction ω⃗ . If we assume that the color C and extinc-
tion τ are constant over the segment, the intensity can be expressed
as [Max et al. 1990]:

I(a,b) =
C
τ α (5)

where the opacity term α is:

α = 1− e−τ
∫ b
a ρ(v(t))dt . (6)

If we further assume that data values along the ray between param-
eters a and b vary linearly, the opacity term becomes:

α(v1,v2, l) = 1− e−τ l
∫ 1
0 ρ(v1+t(v2−v1))dt = 1− e−τ lρ ′

(7)

where v1 = v(a) is the data value at ray parameter a, v2 = v(b) is the
value at ray parameter b, l = b−a, and ρ ′ is the density line integral
along the segment. For arbitrary one dimensional transfer functions
the integral can be expressed as [Williams and Max 1992]:

ρ ′(v1,v2) =
∫ 1

0
ρ(v1+ t(v2− v1))dt =

R(v2)−R(v1)
v2− v1

(8)

where R(v) is the integral function of the density:

R(v) =
∫ v

−∞
ρ(x)dx (9)

The opacity is computed similarly to (7) when ρ is a multidimen-
sional function:

α (⃗v1, v⃗2, l) = 1− e−τ l
∫ 1
0 ρ (⃗v1+t (⃗v2−⃗v1))dt = 1− e−τ lρ ′

(10)

In general, the line integral ρ ′ has no analytic solution. In the com-
panion paper [Kniss et al. 2003], we show that if we let ρ (⃗v) =
GTF(⃗v, c⃗,K), ρ ′ becomes:

ρ ′(⃗v1, v⃗2) =
√

π
2

S
∥d⃗∥

(erf(B) − erf(A)) (11)

where

A=
d⃗ · v⃗ ′1
∥d⃗∥

, B= A+∥d⃗∥, S= e−∥⃗v ′
1∥2+A2

f(x)
T(x)

T(f(x))

x1 x2 x3 xn

{

l

A B

S

Figure 3: Setup for analytic integration using Gaussian transfer
functions. The top image shows a parameterized ray going through
a volume. The volume is sampled at points x1...xn along this ray.
A continuous function f is reconstructed from these samples using
linear interpolation. A Gaussian transfer function T is then applied
to the function f , and becomes T ( f (v)). Traditionally, the integral
of T ( f (v)) is computed using a Riemann sum, seen at the bottom
labeled S. Notice how the peaks A and B in T ( f ) are missing in the
Riemann sum. Piecewise analytic integration of T ( f ) ensures that
we do not miss these peaks.

v⃗ ′1 =K
(

v⃗1− c⃗
)

, v⃗ ′2 =K
(

v⃗2− c⃗
)

, d⃗ = v⃗ ′2− v⃗ ′1 (12)

and erf(z) is the error function:

erf(z) =
2√
π

∫ z

0
e−x

2
dx. (13)

Notice that the
√

π/2 in equation (11) cancels the 2/
√

π in equa-
tion (13). While erf has no explicit representation, it can be closely
approximated with simple functions. We found the approximation
of [Abramowitz and Stegun 1974] particularly useful and easy to
implement.
Note that if v⃗1 = v⃗2, i.e., when we have two samples in a homo-

geneous region, ∥d⃗∥ = 0 and we cannot use equation (11) directly.
In this case the formula converges to:

ρ ′(⃗v1, v⃗2) → ρ (⃗v1) (14)

as ∥d⃗∥→ 0, since ρ ′ becomes the derivative of the integral function,
which is the integrand itself.
We use the following formulae to combine transfer function ele-

ments during piecewise analytic integration of each segment:

ρ ′
i =

∫ 1
0 ρi(v1+ t(v2− v1))dt ρi(v) = GTF(v, ci, Ki)

α = 1− e−l∑τiρ ′
i

C = ∑τiρ ′
i C ′

i
∑τiρ ′

i
= ∑ρ ′

i Ci
∑τiρ ′

i
C ′
i =

Ci
τi

(15)

where the integrals in the sum for computing the opacity α are eval-
uated separately similarly to equation (11). Note that even though
the sum of GTFs is not a GTF, we can still integrate them sepa-
rately, scale them by τi and sum them in the exponent. Combining
the color contributions employs a commonly used approximation
that neglects the order in which the primitives appear along the line
segment [Engel et al. 2001]. We also have to divide the input color
Ci by the input extinction coefficient τi according to equation (5).



The Rendering Equation

• James Kajiya, “The Rendering equation”, Siggraph 1986. 
Generalizes all light transport in graphics into one equation! 

• Phong shading, the “Utah approximation” 

• Ray tracing, i.e. Whitted 1980 

• Radiosity, i.e. Goral et al. 1984 

• Volume rendering (e.g. Sabella 1988, Kniss et al. “Gaussian Transfer Functions for Multifield Visualization”, Vis 03)

Dallas, August 18-22 Volume 20, Number 4, 1986 

THE RENDERING EQUATION 

James T. Kajiya 
California Institute of Technology 

Pasadena, Ca. 91125 

ABSTRACT. We present an integral equation which generallzes a variety 
of known rendering algorithms. In the course of discussing a monte carlo 
solution we also present a new form of variance reduction, called Hierarchical 
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new technique for a wide variety of monte carlo procedures. The resulting 
renderlng algorithm extends the range of optical phenomena which can be 
effectively simulated. 
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1. T h e  r e n d e r i n g  e q u a t i o n  

The technique we present subsumes a wide variety of rendering algo- 
r i thms and provides a unified context for viewing them as more or less 
accurate approximations to the solution of a single equation. That 
this should be so is not surprising once it is realized that all rendering 
methods a t tempt  to model the same physical phenomenon, that of 
light scattering off various types of surfaces. 

We mention that  the idea behind the rendering equation is hardly 
new. A description of the phenomenon simulated by this equation 
has been well studied in the radiative heat transfer literature for years 
[Siegel and Howell 1981]. However, the form in which we present this 
equation is well suited for computer graphics, and we believe that this 
form has not appeared before. 

The rendering equation is 

I(z,z') = g(x,x'} [e(z,x') + fsp(=,a: ' ,x")[(z',x"}dz" ] . (1) 

where: 
x(=, ~') 

~( x, =9 ,(=, =') 

p(z, z'=") 

is the related to the intensity of light 
passing from point z '  to point x 
is a ~geometry ~ term 
is related to the intensity of emitted light 
from x' to x 
is related to the intensity of light scattered 
from x" fox by a patch of surface at z' 

Permission to copy without fee all or part of this material is granted 
provided that the copies are not made or distributed for direct 
commercial advantage, the ACM copyright notice and the title of the 
publication and its date appear, and notice is given that copying is by 
permission of the Association for Computing Machinery. To copy 
otherwise, or to republish, requires a fee and/or  specific permission. 

© 1986 ACM 0-89791-196-2/86/008/0143 $00.75 

The equation is very much in the spirit of the radiosity equation, sim- 
ply balancing the energy flows from one point of a surface to another. 
The equation states that  the transport  intensity of light from one sur- 
face point to another is simply the sum of the emitted light and the 
total light intensity which is scattered toward z from all other surface 
points. Equatlon (1) differs from the radiosi~y equation of course be- 
cause, unlike the latter, no assumptions are made about reflectance 
characteristics of the surfaces involved. 

Each of the quantities in the equation are new quantities which we call 
unoecluded multipoint transport quantities. In section 2 we define each 
of these quantities and relate them to the more conventional quantities 
encountered in radiometry. 

The integral is taken over S = U s i ,  the union of all surfaces. Thus 
the points x, x'~ and x" range over all the surfaces of all the objects in 
the scene. We also include a global background surface So, which is 
a hemisphere large enough to act as an enclosure for the entire scene. 
Note that  the inclusion of a enclosure surface ensures that the total 
positive hemisphere for reflection and total negative hemisphere for 
transmission are accounted for. 

As an approximation to Maxwell's equation for electromagneticseq. (1) 
does not at tempt to model all interesting optical phenomena. It is es- 
sentially a geometrical optics approximation. We only model time 
averaged transport  intensity, thus no account is taken of phase in this 
equation--rul ing out any treatment of diffraction. We have also as- 
sumed that the media between surfaces is of homogeneous refractive 
index and does not itself participate in the scattering light. The latter 
two eases can be handled by a pair of generalizations of eq. (1). In 
the first case, simply by letting g{x, z') take into account the eikonal 
handles media with nonhomogenous refractive index. For participating 
propagation media, a integro-differentiM equation is necessary. Exten- 
sions are again well known, see [Chandrasekar 195% and for use in a 
computer  graphics application [Kajiya and yon Herren 1984]. Elegant 
ways of viewing the eikoual equation have been available for at least 
a century with Hamilton-Jacobi theory [Goldstein 1950]. Treatments 
of participatory media and of phase and diffraction can be handled 
with path integral techniques. For a treatment of such generalizations 
concerned with various physical phenomena see [Feynman and Hibbs 
1965]. Finally, no wavelength or polarization dependence is mentioned 
in eq. (1). Inclusion of wavelength and polarization is straightforward 
and to be understood. 

2. D i s c u s s i o n  o f  t r a n s p o r t  q u a n t i t i e s  

We discuss each of the quantities and terms of equation (1}. This 
equation describes the intensity of photon transport  for a simplified 
model. I(x, zl) measures the energy of radiation passing from point z I 
to point x. We shah name [(z~ x ~) the unoccluded two point transport 
intensity from x' to x, or more compactly the transport intensity. The 
t ransport  intensity I(x, x') is the energy of radiation per unit time per 
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dinary total bidirectional reflectance 

p(~, =', =") = e(o', ¢', 9', ,~') cos  0 cos o' (1~) 

Whitted [1980], proposed a different approximation: 

I = ge + gMogeo -F gMogMogeo + . . .  

8. Methods fo r  approximate s o l u t i o n  

In this section we shall review approximations to the solution of the 
rendering equation. It appears that  a wide variety of rendering algo- 
r i thms can be viewed in a unified context provided by this equation. 
During the course of this discussion, many other untried approxlmw 
tions may occur to the reader. We welcome additional work on this 
area. This territory remains l~gely unexplored~ since the bulk of the 
present effort has concentrated solely on the solution methods to be 
presented below. 

Ne s . m ~ u  serses 

One method of solving integral equations like eq.(1} comes from a 
well known formal manipulation, see [Courant and Hilbert 1953]. We 
rewrite it as: 

I = g~ + g M l  

where M is the linear operator given by the integral in eq.(l). Now if 
we rewrite this equation as 

( 1  - -  g M ) I  -~ ge 

where 1 is the identity operator, then we can formally invert the equa- 
tion by 

jr = (1 -- g M ) - l g e  
= ge + gMge + gMgMge + g(Mg}Se . . .  {2) 

A condition for the convergence of the infinite series is that  the spectral 
radius of the operator  M be less than one. {Which is met in the case 
of interest to us). A physical interpretation of the Neumann expansion 
is appealing. It gives the final intensity of radiation transfer between 
points x and x ~ as the sum of a direct term, a once scattered term, a 
twice scattered term, etc. 

The Utah approzlmation 

For lack of a bet ter  name, we shall call the classical method for render- 
ing shaded surfaces the Utah approximation. In this approximation 
we approximate I with the two term sum: 

I = ge + gMe o 

Thus the Utah approximation ignores all scattering except for the 
first. The geometry term is by far the most difficult to compute. The 
Utah approximation computes the g term only for the final scattering 
into the eye. This is, of course, the classical hidden surface problem 
studied by many early researchers at the University of Utah. Note 
that  in the second term, the operator M does not operate on ge but  
rather  directly on e0- Thus this approximation ignores vlslbilty from 
emitting surfaces: it ignores shadows. The e0 term is mesas to signify 
that  only point radiators ~re allowed. No extended lighting surfaces 
were allowed. This simplification reduces the operator M to a small 
sum over light sources rather  than an integration over ~". 

Since that time many extensions have appeared, most notably shadow 
algorithms and extended light sources. 

The Ray Tracing approximation 

In this famous approximation, Me is a scattering model which is the 
sum of two delta functions a cosine term. The two delta functions of 
course represent the reflection and refraction of his lighting model. The 
cosine term represents the diffuse component. Note that  he gives gee: 
shadows but with point radiators. Whitted's  ambient term translates 
directly to the • term. Again the operator M can be approximated by 
a small sum. 

The distributed ray tracing approximation 

In 1984, Cook [Cook et al 1984], introduced distributed ray tracing. 
This approximation uses an extension of the three component Whitted 
model resulting in a more accurate scattering model. This extension 
necessitated the evaluation of an integral in computing the operator 
M. In this model M is approximated by a distribution around the 
reflection a~td refraction delta functions. The innovation that made 
this possible was the use of monte carlo like techniques for the eval- 
uation. As is well known, the ability to evaluate integrals has widely 
extended the range of optical phenomena captured by this technique. 
A proper treatment of the ambient term, however, remained elusive 
to distributed ray tracing. 

The radioMty approximation 

In 1984, Goral, Torrance, and Greenburg [Goral et. aL 1984, Cohen 
md Greenburg 1985, Nishita and Nakamas 1985] introduced radiosity 
to the computer graphics world. This is a major new rendering tech- 
nique which handles the energy balance equations for perfectly diffuse 
surfaces. That is, surfaces which have no angular dependence on the 
bidirectional reflectance function 

p{O', ¢', ¢ ' ,  ~,') = Po. (14) 

The radiosit 9 B(x') of a surface element dx' is the energy flux over 
the total visible hemisphere. It is the energy per unit time per unit 
(unprojected) area, measured in watts per meter squaxed. It is defined 
by 

dB{=') = an' ] q o ' , ¢ )  cos e ' ~  
..1 hctrti 

= an' f : C = , = ' ) r ' ~  (i~) 
J heml C~ 

= dz' [ /C=, =')d= JS 

Thus to calculate hemispherical quantities we may simply integrate 
over all the surfaces in the scene. So from eq.(1) and (15) we obtain 

= / { g{., . , ) , { . ,  dB(x')  
(16) 

+g(~, =') : [ p(=, =', ="} r(~', =")de'}  d~ 

If there is an occlusion between ~ and x* then the contribution of the 
emmitance term is zero. Otherwise the contribution is 

dx' [ ~ - - - d x  q=' =') dB,(x ' )  

d='f , , ,¢osea= dO,¢  ) cose ~ (17) J 

= dz'  J eCe',¢' } cos e'd~ 

~_ dxt ~ o  
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W h e r e  ~o is the  h e m i s p h e r i c a l  e m i t t a n c e  of the  surface e lement  dx'. 

Simi la r ly  for the ref lec tance  t e rm,  the c o n t r i b u t i o n  to  r ad io s i t y  is aga in  
zero for an occ luded  surface.  O the rwi se  we get  

dB,(x') = dx' f ~ f p(x,z',x")z(z',z")dz"dz 
= ax, f ~p(O',¢',¢',a')cosOcosO'd~ 

× / I(x', x")dx" (is) 

= dxlpo~rH(x ') 

W h e r e  H is the  h e m i s p h e r i c a l  inc iden t  ene rgy  p e r  u n i t  t i m e  and  u n i t  
area.  In  th i s  d e r i v a t i o n  we s w i t c h e d  the  o rde r  of i n t eg r a t i on  and  used  
iden t i t i e s  (13),(12),  and  (14). Now us ing  equa t i ons  (17) and  (18) in  
(16) we see t h a t  the  r e n d e r i n g  e q u a t i o n  becomes  

dB(x') = ~r[e0 + poH(x')]dx' (19) 

W h i c h  is e q u a t i o n  (4) in  O c t a l  et .  al.  [1984]. 

C a l c u l a t i n g  the  t o t a l  i n t e g r a t e d  i n t e n s t y  H is essen t ia l  to  ca l cu la t e  
the  f inal  F~ d m a t r i x  in rad ios i ty .  T h i s  r equ i res  a v i s ib i l i t y  ca l cu l a t i on  
which  m a y  be Quite expens ive .  Since t he  m a t r i x  e q u a t i o n  is solved by  
a number of relaxation steps, it is essentially equivalent to s u m m i n g  
the  first  few t e r m s  of the  N e u m a n n  series:  p r o p a g a t i n g  the  e m i t t e r s  
across  four  or  so s ca t t e r e r s .  To use r e l a x a t i o n  requi res  t h a t  the  ful l  
m a t r i x  be  ca l cu la t ed .  R e l a x a t i o n  also gives a l l  t he  in t ens i t i e s  a t  a l l  t he  
sur faces  in  the  scene.  W h i l e  in  c e r t a i n  cases th i s  m ay  be  an  advantage~ 
i t  is s u g g e s t e d  t h a t  the  m o n t e  car lo  m e t h o d  ou t l ined  be low may  be  
quite superior. 

4.  M a r k e r  c h a i n s  f o r  s o l v i n g  i n t e g r a l  equations 

The use of Markov chains is perhaps the most popular numerical 
method for for solving integral equations. It is used in fields as di- 
verse as queuing theory and neutron transport. In facts the use of 
monte carlo Markov chain methods in radiative heat transfer has been 
in use for quite some time, [Siegel and Howell 19811. In the heat trans- 
fer approach, a packet of radiation of specified wavelength is emitted, 
reflected, and absorbed from a configuration of surfaces in some enclo- 
sure. Counting the number of packets absorbed by each surface after 
a run gives an estimate of the geometric factors whose exact calcula- 
tion would pose an intractible problem. This is similar to ray tracing 
a scene from the light sources to the eye. Rather than follow these 
methods, we will choose to solve eq.(1) more directly going back to an 
early monte carlo method first put forth by yon Neumann and Ulam 
[Rubens t e in  1981]. 

Finite dimensional version 

By way of i n t r o d u c t i o n  we first p resen t  the  m e t h o d  in a f ini te  d imen-  
s iona l  con tex t .  Th is  s impl i f ies  the  n o t a t i o n  and  makes  obvious  the  
essen t ia l  ideas  involved.  A g a i n  we no te  t h a t  t h i s  example  m e t h o d  
m a y  poss ib ly  hold  m a n y  a d v a n t a g e s  over the  cu r r en t l y  used  re lax-  
a t ion  schemes  p o p u l a r  in r ad ios i ty :  i n t ens i t i e s  a t  on ly  vis ib le  po in t s  
need  be c o m p u t e d ,  and  ca l cu l a t i on  of the  full  r ad io s i t y  m a t r i x  may  be 
e x c h a n g e d  for a ve ry  m u c h  sma l l e r  set  of se lec ted  m a t r i x  e lements .  

Suppose  we wish  to  solve the vec tor  equa t ion :  

x = a W M x  
where  x and  a are n - d i m e n s i o n a l  vectors~ x an  unknown ,  and  M = 
(miy) is an n X n m a t r i x .  

Now from a N e u m a n n  e x p a n s i o n  we see t h a t  for M a m a t r i x  w i t h  

eigenvalues lying within the unit circle, the solution x is given by 
co 

x = a + Z M k a  
k= l  

The  m e t h o d  eva lua t e s  th i s  s u m  by  ave rag ing  over  p a t h s  t h r o u g h  the  
m a t r i x  mul t ip l i e s .  T h a t  is, i t  follows a p a t h  t h r o u g h  rows and  co lumns  
t h a t  compr i ses  an  i t e r a t e d  m a t r i x  p roduc t .  For each po in t  in the  p a t h  
we get  a row or  c o l u m n  which  can  be  i nd exed  by  an  in t ege r  f rom 1 to  

C o n s t r u c t  a p r o b a b i l i t y  space  g / w h e r e  each po in t  w is a p a t h  v i s i t i ng  
one of n p o i n t s  a t  each  d i sc re te  t ime ,  "vis, w = ( n 0 , n t , . . . , n ~ )  where  
each n~ is an  in t ege r  f rom 1 to  n. The  l eng th  k = l{w) of the  p a t h  w is 
f ini te  b u t  o the rwise  a r b i t r a r y  and  co r re sponds  to an  en t ry  in  the  k t h  
m a t r i x  power .  Each  p a t h  is a ss igned  a p r o b a b i l i t y  p(w). 

If we wish  to c a l c u l a t e  the  va lue  of one coo rd ina t e  of x~ say  xjL, t h e n  
we calculate the quantity 

l(~) 
~ '  = ( 1 ~  m . . . . . .  )~-,,-i 1 p(~) i=O 

ave raged  over  a l l  p a t h s  w E t~. S imp ly  t a k i n g  e x p e c t e d  va lues  verif ies 
t h a t  t h i s  q u a n t i t y  gives the  des i red  quan t i ty .  

The  p r o b a b i l i t y  space  of p a t h s  is m o s t  eas i ly  c o n s t r u c t e d  us ing  Maxkov 
chains .  A ( s t a t i o n a r y )  d i sc re te  Markov  cha in  cons i s t s  of a set  of s t a t e s  
X ,  and  an  a s s i g n m e n t  of a transition probability p(x, x') f rom one s t a t e  
x '  ~ X to  a n o t h e r  x E X~ an d  an  i n i t i a l  p r o b a b i l i t y  dens i ty  of s t a t e s  
p(x). Some s u b s e t  of s t a t e s  m a y  be  d e s i g n a t e d  as absorbing in t h a t  no  
t r a n s i t i o n s  ou t  of an  a b s o r b i n g  s t a t e  axe p e r m i t t e d .  

T h e  p r o b a b i l i t y  of a p a t h  g e n e r a t e d  by  a Maxkov cha in  is s i m p l y  the  
the  p r o d u c t  of the  i n i t i a l  s t a t e  and  al l  the  t r a n s i t i o n  p r o b a b i l i t i e s  u~ t l l  
an  a b s o r b i n g  s t a t e  is reached.  So for a p a t h  

we have  the  p r o b a b i l i t y  is 

In the finite dimensional ease we let the state set of the Markov chin 
be the set of indices into the vector or matrix, X = {1, ..., n}. Note 
that although we axe allowed wide lattltude in choosing the transition 
probabilities, they must be positive for the corresponding nonzero en- 
tries in the matrix. In the limit our estimate of the solution is quite 
independent of the probability distribution of the paths. But the rate 
of convergence to the limit is highly dependent on the manner of choos- 
ing the transition probabilities. Section 5 gives a set of new techniques 
for choosing the transition probabilities. 

Infifiaitc dimaasional solution 

E x t e n d i n g  the  mon te  car lo  M a r k e r  cha in  m e t h o d  to  inf ini te  d imen-  
s iona l  e q u a t i o n s  is s t r a i gh t fo rwa rd .  For the  e q u a t i o n  a t  h a n d ,  we Rote 
t h a t  i t  is a v a r i a n t  of a F r e d h o l m  e q u a t i o n  of the  second  k ind .  The  
p a s s i v i t y  of sur faces  in ref lec t ing  and  t r a n s m i t t i n g  r a d i a t i o n  assures  
the  convergence  of t he  N e u m a n n  series.  We s i m p l y  rep lace  the  s t a t e  
se t  by  the  set  of po in t s  x on a surface.  The  p rocedure  for c a l c u l a t i n g  
the points is thus: 

1. Choose a point z' in the scene visible through the imaging aperture to a 
selected pixel z on the virtual screen. 

2. Add in the radiated intensity. 
3. For the length of a Marker path do 

3.1 Select the point z s~ and calculate the geometrical factor g(z, zt). 
3.2 Calculate the reflectance function @(z, x', z") and multiply by ((z', x"). 
3.3 Add this contribution to the pixel intensity. 

Note  t h a t  c a l c u l a t i n g  the  e m i t t a n c e  and  s c a t t e r i n g  fac tors  is s i m p l y  a 
matter of consulting texture maps and lighting models. Calculating 

1 4 6  
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dinary total bidirectional reflectance 

p(~, =', =") = e(o', ¢', 9', ,~') cos  0 cos o' (1~) 

Whitted [1980], proposed a different approximation: 

I = ge + gMogeo -F gMogMogeo + . . .  

8. Methods fo r  approximate s o l u t i o n  

In this section we shall review approximations to the solution of the 
rendering equation. It appears that  a wide variety of rendering algo- 
r i thms can be viewed in a unified context provided by this equation. 
During the course of this discussion, many other untried approxlmw 
tions may occur to the reader. We welcome additional work on this 
area. This territory remains l~gely unexplored~ since the bulk of the 
present effort has concentrated solely on the solution methods to be 
presented below. 

Ne s . m ~ u  serses 

One method of solving integral equations like eq.(1} comes from a 
well known formal manipulation, see [Courant and Hilbert 1953]. We 
rewrite it as: 

I = g~ + g M l  

where M is the linear operator given by the integral in eq.(l). Now if 
we rewrite this equation as 

( 1  - -  g M ) I  -~ ge 

where 1 is the identity operator, then we can formally invert the equa- 
tion by 

jr = (1 -- g M ) - l g e  
= ge + gMge + gMgMge + g(Mg}Se . . .  {2) 

A condition for the convergence of the infinite series is that  the spectral 
radius of the operator  M be less than one. {Which is met in the case 
of interest to us). A physical interpretation of the Neumann expansion 
is appealing. It gives the final intensity of radiation transfer between 
points x and x ~ as the sum of a direct term, a once scattered term, a 
twice scattered term, etc. 

The Utah approzlmation 

For lack of a bet ter  name, we shall call the classical method for render- 
ing shaded surfaces the Utah approximation. In this approximation 
we approximate I with the two term sum: 

I = ge + gMe o 

Thus the Utah approximation ignores all scattering except for the 
first. The geometry term is by far the most difficult to compute. The 
Utah approximation computes the g term only for the final scattering 
into the eye. This is, of course, the classical hidden surface problem 
studied by many early researchers at the University of Utah. Note 
that  in the second term, the operator M does not operate on ge but  
rather  directly on e0- Thus this approximation ignores vlslbilty from 
emitting surfaces: it ignores shadows. The e0 term is mesas to signify 
that  only point radiators ~re allowed. No extended lighting surfaces 
were allowed. This simplification reduces the operator M to a small 
sum over light sources rather  than an integration over ~". 

Since that time many extensions have appeared, most notably shadow 
algorithms and extended light sources. 

The Ray Tracing approximation 

In this famous approximation, Me is a scattering model which is the 
sum of two delta functions a cosine term. The two delta functions of 
course represent the reflection and refraction of his lighting model. The 
cosine term represents the diffuse component. Note that  he gives gee: 
shadows but with point radiators. Whitted's  ambient term translates 
directly to the • term. Again the operator M can be approximated by 
a small sum. 

The distributed ray tracing approximation 

In 1984, Cook [Cook et al 1984], introduced distributed ray tracing. 
This approximation uses an extension of the three component Whitted 
model resulting in a more accurate scattering model. This extension 
necessitated the evaluation of an integral in computing the operator 
M. In this model M is approximated by a distribution around the 
reflection a~td refraction delta functions. The innovation that made 
this possible was the use of monte carlo like techniques for the eval- 
uation. As is well known, the ability to evaluate integrals has widely 
extended the range of optical phenomena captured by this technique. 
A proper treatment of the ambient term, however, remained elusive 
to distributed ray tracing. 

The radioMty approximation 

In 1984, Goral, Torrance, and Greenburg [Goral et. aL 1984, Cohen 
md Greenburg 1985, Nishita and Nakamas 1985] introduced radiosity 
to the computer graphics world. This is a major new rendering tech- 
nique which handles the energy balance equations for perfectly diffuse 
surfaces. That is, surfaces which have no angular dependence on the 
bidirectional reflectance function 

p{O', ¢', ¢ ' ,  ~,') = Po. (14) 

The radiosit 9 B(x') of a surface element dx' is the energy flux over 
the total visible hemisphere. It is the energy per unit time per unit 
(unprojected) area, measured in watts per meter squaxed. It is defined 
by 

dB{=') = an' ] q o ' , ¢ )  cos e ' ~  
..1 hctrti 

= an' f : C = , = ' ) r ' ~  (i~) 
J heml C~ 

= dz' [ /C=, =')d= JS 

Thus to calculate hemispherical quantities we may simply integrate 
over all the surfaces in the scene. So from eq.(1) and (15) we obtain 

= / { g{., . , ) , { . ,  dB(x')  
(16) 

+g(~, =') : [ p(=, =', ="} r(~', =")de'}  d~ 

If there is an occlusion between ~ and x* then the contribution of the 
emmitance term is zero. Otherwise the contribution is 

dx' [ ~ - - - d x  q=' =') dB,(x ' )  

d='f , , ,¢osea= dO,¢  ) cose ~ (17) J 

= dz'  J eCe',¢' } cos e'd~ 

~_ dxt ~ o  
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the chance that the region will be selected by the transfer function.
The use of the triangular classification function can also be easily
extended for use with multi-field datasets by replacing the gradient
magnitude from the univariate case with the L2 norm of the ma-
trix DTD where the rows of D are the gradients of each of the data
fields.

4 Piecewise Analytic Integration
The intersection of the multidimensional GTF with an arbitrary line
through data space results in one-dimensional Gaussian. This al-
lows us to integrate the transfer function over line segments in the
volume for which the data varies linearly. As shown in Figure 3
for narrow peaked transfer functions, this analytical integration is
much more accurate than a numerical (Riemann sum) integration
using the same number of samples for each viewing ray.
The emission-absorption volume rendering equation over a line

segment is defined as [Sabella 1988]:

I(a,b) =
∫ b

a
Cρ(v(u)) e−

∫ u
a τρ(v(t))dtdu (4)

where τ is extinction (expressing attenuation along the ray), ρ is
density, C is radiant intensity or color, v(t) is the data value at the
position along the ray parameterized by t starting at the spatial po-
sition x in direction ω⃗ . If we assume that the color C and extinc-
tion τ are constant over the segment, the intensity can be expressed
as [Max et al. 1990]:

I(a,b) =
C
τ α (5)

where the opacity term α is:

α = 1− e−τ
∫ b
a ρ(v(t))dt . (6)

If we further assume that data values along the ray between param-
eters a and b vary linearly, the opacity term becomes:

α(v1,v2, l) = 1− e−τ l
∫ 1
0 ρ(v1+t(v2−v1))dt = 1− e−τ lρ ′

(7)

where v1 = v(a) is the data value at ray parameter a, v2 = v(b) is the
value at ray parameter b, l = b−a, and ρ ′ is the density line integral
along the segment. For arbitrary one dimensional transfer functions
the integral can be expressed as [Williams and Max 1992]:

ρ ′(v1,v2) =
∫ 1

0
ρ(v1+ t(v2− v1))dt =

R(v2)−R(v1)
v2− v1

(8)

where R(v) is the integral function of the density:

R(v) =
∫ v

−∞
ρ(x)dx (9)

The opacity is computed similarly to (7) when ρ is a multidimen-
sional function:

α (⃗v1, v⃗2, l) = 1− e−τ l
∫ 1
0 ρ (⃗v1+t (⃗v2−⃗v1))dt = 1− e−τ lρ ′

(10)

In general, the line integral ρ ′ has no analytic solution. In the com-
panion paper [Kniss et al. 2003], we show that if we let ρ (⃗v) =
GTF(⃗v, c⃗,K), ρ ′ becomes:

ρ ′(⃗v1, v⃗2) =
√

π
2

S
∥d⃗∥

(erf(B) − erf(A)) (11)

where

A=
d⃗ · v⃗ ′1
∥d⃗∥

, B= A+∥d⃗∥, S= e−∥⃗v ′
1∥2+A2

f(x)
T(x)

T(f(x))

x1 x2 x3 xn

{

l

A B

S

Figure 3: Setup for analytic integration using Gaussian transfer
functions. The top image shows a parameterized ray going through
a volume. The volume is sampled at points x1...xn along this ray.
A continuous function f is reconstructed from these samples using
linear interpolation. A Gaussian transfer function T is then applied
to the function f , and becomes T ( f (v)). Traditionally, the integral
of T ( f (v)) is computed using a Riemann sum, seen at the bottom
labeled S. Notice how the peaks A and B in T ( f ) are missing in the
Riemann sum. Piecewise analytic integration of T ( f ) ensures that
we do not miss these peaks.

v⃗ ′1 =K
(

v⃗1− c⃗
)

, v⃗ ′2 =K
(

v⃗2− c⃗
)

, d⃗ = v⃗ ′2− v⃗ ′1 (12)

and erf(z) is the error function:

erf(z) =
2√
π

∫ z

0
e−x

2
dx. (13)

Notice that the
√

π/2 in equation (11) cancels the 2/
√

π in equa-
tion (13). While erf has no explicit representation, it can be closely
approximated with simple functions. We found the approximation
of [Abramowitz and Stegun 1974] particularly useful and easy to
implement.
Note that if v⃗1 = v⃗2, i.e., when we have two samples in a homo-

geneous region, ∥d⃗∥ = 0 and we cannot use equation (11) directly.
In this case the formula converges to:

ρ ′(⃗v1, v⃗2) → ρ (⃗v1) (14)

as ∥d⃗∥→ 0, since ρ ′ becomes the derivative of the integral function,
which is the integrand itself.
We use the following formulae to combine transfer function ele-

ments during piecewise analytic integration of each segment:

ρ ′
i =

∫ 1
0 ρi(v1+ t(v2− v1))dt ρi(v) = GTF(v, ci, Ki)

α = 1− e−l∑τiρ ′
i

C = ∑τiρ ′
i C ′

i
∑τiρ ′

i
= ∑ρ ′

i Ci
∑τiρ ′

i
C ′
i =

Ci
τi

(15)

where the integrals in the sum for computing the opacity α are eval-
uated separately similarly to equation (11). Note that even though
the sum of GTFs is not a GTF, we can still integrate them sepa-
rately, scale them by τi and sum them in the exponent. Combining
the color contributions employs a commonly used approximation
that neglects the order in which the primitives appear along the line
segment [Engel et al. 2001]. We also have to divide the input color
Ci by the input extinction coefficient τi according to equation (5).
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CS530 - Introduction to Scientific VisualizationCS 530 - Introduction to Scientific Visualization - 08/27/2014

Fundamental Algorithms
Alpha blending / compositing
• Approximate visual appearance of semi-

transparent object in front of another object
• Implemented with OVER operator  

Text

cb = (1,0,0)
ab = 0.9

cf = (0,1,0)
af = 0.4

c = af*cf + (1 - af)*ab*cb
a = af + (1 - af)*ab

c = (0.54,0.4,0)
a = 0.94



Alpha blending code

float accumulatedAlpha = 0; 
vec3 accumulatedColor = vec3(0,0,0); 

//given new alphaSample, colorSample “behind” us, composite as follows: 
void blend(vec3 colorSample, float alphaSample) 
{ 

float ax1msa = (1.0 - accumulatedAlpha) * alphaSample;  
accumulatedColor += ax1msa * colorSample; 
accumulatedAlpha += ax1msa; 

} 

Volume rendering is just doing this over and over again in a loop!



Volume rendering



Data Filter Render

0" 4" 8" 0"

4" 14" 9" 0"

6" 11" 1" 0"

2" 1" 0" 0"

Data Filter + Render

0" 4" 8" 0"

4" 14" 9" 0"

6" 11" 1" 0"

2" 1" 0" 0"

Indirect Direct

The indirect-direct spectrum

volume rendering  
from raw data

splatting

isosurface extraction (marching cubes) 
+ rasterization

segmentation+filtering+  
classification+rasterization pipeline

polygonal 

direct isosurface ray casting



Rasterization vs Ray Tracing 
for volume visualization

• Volume rendering can be implemented either 
via ray tracing (sampling along the ray) or 
rasterization (with textured proxy geometry) 

• Other ways of doing “direct visualization” 
using the rasterization pipeline: 

• slicing 

• “splatting” and other proxy geometry 

• Ray tracing (or at least ray casting) 
increasingly common…

Rusinkiewicz & Levoy, “QSplat”,  
Siggraph 2000

3D texture slicing



Computer graphics

Volume ray casting
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Sample ray casting code
    //the step size, i.e. “delta t” from the Engel slides.  
    float dt = 1.0 / normalize(volumeGridDimensions);  
  
   vec3 dtDirection = normalize(direction) * dt; 
   vec3 p = frontPos; 

   vec4 accumulatedColor = vec4(0.0); 
   float accumulatedAlpha = 0.0; 
   float t = 0.0; 

    for(int i = 0; i < 4096; i++) 
    { 

   float value = sampleAs3DTexture(p); 
        vec4 colorSample = classify(value); 

        //(optional) lighting 
   colorSample.rgb = shade(colorSample.rgb, p, value, direction); 

   //front-to-back compositing 
   blend(colorSample.rgb, colorSample.a); 

        p += dtDirection; 
        t += dt; 

       //exit or early termination 
       if(t >= rayLength || accumulatedAlpha >= .97 ) 
            break; 
    } 
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Transfer functions make volume data visible
by mapping data values to optical properties

8 140

slices: volume rendering:

volume data:

Introduction
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Human Tooth CT

α(f)RGB(f)

f 

RGB

Shading,
Compositing…

Simple (usual) case: Map data 
value f  to color and opacityα

Transfer Functions (TFs)
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Basic Transfer Functions:

Space
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Domain



Transfer functions

What Can Be Controlled by 
the Transfer Function?

• Optical Properties: Anything that can be 
composited with a standard graphics operator 
(“over”) 

• Opacity:“opacity functions” 

• Color: Can help distinguish features 

• Phong parameters (ka, kd, ks) 

• Index of refraction
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Setting Transfer Function: Hard

v

α

v

α

v

α

v

α



Transfer functions

Volumes as Consisting of Materials
N

um
 v

ox
el

s

Data value

Grey-Level 
Histogram

Material 1

Material 2

Material 3



Transfer functions

SE 294: Data Analysis and Visualization #3 

Transfer Function 

»� RGB components 
»� Opacity 
»� Histogram helps in designing transfer 

function 



Transfer functions

SE 294: Data Analysis and Visualization #4 

Transfer Function 



Transfer functions

SE 294: Data Analysis and Visualization #5 
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SE 294: Data Analysis and Visualization #6 

Different colors, same opacity 

Transfer Function 
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Transfer functions

Transfer function Unintuitive

“ here’s 
the edge ”

v

α

v0

v = f (x)

v0

x



Transfer functions

“ here’s
the edge ! ”

v 0

x

v = f (x)

x

v = f (x)

“ here’s the edge ! ”

Domain of the 
transfer function 
does not include 
position

Domain

Data
Value TF

TFs as feature detection



Transfer functions

What Makes Designing TF’s 
Challenging?

1. Non-spatial: spatial isolation doesn’t imply data 
value isolation 

2. Many degrees of freedom 

3. No constraints or guidance 

4. Material uniformity assumption



Transfer functions

Goals for TF Design
• Make good renderings easier to come by 

• Make space of TFs less confusing 

• Remove excess “flexibility” 

• Provide one or more of: 

• Information 

• Guidance 

• Semi-automation / Automation



Transfer functions

TF Techniques/Tools

1. Trial and Error (manual)

2. Image-Centric Approach 

3. Data-Centric Approach



Transfer functions

1. Manually edit graph of 
transfer function

2.Enforces learning by 
experience

3. Get better with practice
4. Can make terrific images

William Schroeder, Lisa Sobierajski Avila, and
Ken Martin; Transfer Function Bake-off Vis ’00

1. Trial and Error



Nanovol demo (1D TF’s)
• simple structured volume rendering with all the goodies 

• lighting, shading 

• acceleration structure (uniform grid) 

• preintegration (Engel et al.), “peak finding” (Knoll et al. Vis 09) 

• C++/OpenGL/GLSL source code:  
http://www.sci.utah.edu/~knolla/nanovol.tgz

Aaron Knoll, Younis Hijazi, Rolf Westerteiger, Mathias Schott, Charles Hansen and Hans Hagen
Volume Ray Casting with Peak Finding and Differential Sampling. IEEE Vis 2009

http://www.sci.utah.edu/~knolla/nanovol.tgz
http://www.sci.utah.edu/~knolla/avrc.pdf


Transfer functions

Specify TFs via the resulting renderings

• Genetic Algorithms (“Generation of Transfer Functions with 
Stochastic Search Techniques”, He, Hong, et al.: Vis ’96)

• Design Galleries (Marks, Andalman, Beardsley, et al.: SIGGRAPH ’97; 
Pfister: Transfer Function Bake-off Vis ’00)

• Thumbnail Graphs + Spreadsheets (“A Graph Based 
Interface…”, Patten, Ma: Graphics Interface ’98; “Image Graphs…”, Ma: Vis ’99; 
Spreadsheets for Vis: Vis ’00, TVCG July ’01)

• Thumbnail Parameterization (“Mastering Transfer Function 
Specification Using VolumePro Technology”, König, Gröller: Spring Conference 
on Computer Graphics ’01)

3. Image-centric
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TF Techniques/Tools

1. Trial and Error (manual) 

2. Image-Centric Approach 

3. Data-Centric Approach



Transfer functions

4. Data-centric

Specify TF by analyzing volume data itself
1. Salient Isovalues:

• Contour Spectrum (Bajaj, Pascucci, Schikore:  Vis ’97)
• Statistical Signatures (“Salient Iso-Surface Detection Through 

Model-Independent Statistical Signatures”, Tenginaki, Lee, Machiraju: Vis 
’01)

• Other computational methods (“Fast Detection of Meaningful 
Isosurfaces for Volume Data Visualization”, Pekar, Wiemker, Hempel: Vis 
’01)

2. “Semi-Automatic Generation of Transfer Functions 
for Direct Volume Rendering” (Kindlmann, Durkin: VolVis ’98; 
Kindlmann MS Thesis ’99; Transfer Function Bake-Off Panel: Vis ‘00)



Transfer functions

Salient Isovalues
What are the “best” isovalues for extracting
the main structures in a volume dataset?

Contour Spectrum (Bajaj, Pascucci, 
Schikore:  Vis ’97; Transfer Function Bake-
Off: Vis ’00)

• Efficient computation of 
isosurface metrics
• Area, enclosed volume, gradient 

surface integral, etc.
• Efficient connected-component 

topological analysis
• Interface itself concisely 

summarizes data



Transfer functions

The Contour Spectrum 
(colored lines correspond to different isosurface metrics)Contour Spectrum

The contour spectrum 
allows the development of 
an adaptive ability to 
separate interesting 
isovalues from the others. 



Transfer functions

Use derivatives
Reasoning:
• TFs are volume-position invariant
• Histograms “project out” position
• Interested in boundaries between materials
• Boundaries characterized by derivatives

 Make 3D histograms of value, 1st, 2nd deriv.

By (1) inspecting and
(2) algorithmically analyzing
histogram volume, we can
create transfer functions



Transfer functionsSome Background: 
Gradients

Gradient

∇f



Computer graphics

Gradient
   ∇f = (dx, dy, dz)

∇f



Computer graphics

Gradient
   ∇f = (dx, dy, dz)
  = ( (f(1,0,0) - f(-1,0,0))/2, 
               (f(0,1,0) - f(0,-1,0))/2, 
             (f(0,0,1) - f(0,0,-1))/2)
• Approximates "surface normal“ (of isosurface)

∇f



Computer graphics

Derivative relationships

Edges at maximum
of 1st derivative or
zero-crossing of 2nd



Ideal

Turbine Blade

Engine Block

Project histogram 
volume to 2D 
scatterplots

• Visual summary

• Interpreted for TF 
guidance

• No reliance on 
boundary model at this 
stage
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1D transfer functions can not accurately 
capture all material boundaries

Slice 1D TF output Rendering
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Modify…

2D transfer functions give greater 
flexibility in boundary visualization 
Display of Surfaces from Volume Data, Levoy 1988
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ImageVis3D demo
• http://www.sci.utah.edu/software/imagevis3d.html

http://www.sci.utah.edu/software/imagevis3d.html


Multi-Dimensional TFs
• Strengths: 

• Better flexibility, specificity 

• Higher quality visualizations 

• Weaknesses: 

• Even harder to specify 

• Unintuitive relationship with boundaries 

• Greater demands on user interface



Different Interaction
Other Methods

“Interactive Volume Rendering Using Multi-Dimensional Transfer 
Functions and Direct Manipulation Widgets” Kniss, Kindlmann, Hansen: Vis ’01

• Make things opaque by pointing at them
• Uses 3D transfer functions (value, 1st, 2nd derivative)
• “Paint” into the transfer function domain



Multi-Dimensional TFs
• Strengths: 

• Better flexibility, specificity 

• Higher quality visualizations 

• Weaknesses: 

• Even harder to specify 

• Unintuitive relationship with boundaries 

• Greater demands on user interface



Multidimensional gaussian transfer functions

Kniss et al. Gaussian Transfer Functions for Multi-field Volume Visualization. IEEE Vis 2003 

Gaussian Transfer Functions for Multi-Field Volume Visualization

Joe Kniss1 Simon Premože2 Milan Ikits1 Aaron Lefohn1 Charles Hansen1 Emil Praun2

1 Scientific Computing and Imaging Institute, University of Utah
2 School of Computing, University of Utah

Abstract

Volume rendering is a flexible technique for visualizing dense 3D
volumetric datasets. A central element of volume rendering is the
conversion between data values and observable quantities such as
color and opacity. This process is usually realized through the use
of transfer functions that are precomputed and stored in lookup ta-
bles. For multidimensional transfer functions applied to multivari-
ate data, these lookup tables become prohibitively large. We pro-
pose the direct evaluation of a particular type of transfer functions
based on a sum of Gaussians. Because of their simple form (in
terms of number of parameters), these functions and their analytic
integrals along line segments can be evaluated efficiently on cur-
rent graphics hardware, obviating the need for precomputed lookup
tables. We have adopted these transfer functions because they are
well suited for classification based on a unique combination of mul-
tiple data values that localize features in the transfer function do-
main. We apply this technique to the visualization of several mul-
tivariate datasets (CT, cryosection) that are difficult to classify and
render accurately at interactive rates using traditional approaches.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism I.3.7 [Computer Graphics]: Three-
Dimensional Graphics

Keywords: Volume Rendering, Transfer Functions, Multi-field
visualization

1 Introduction
Direct volume rendering is a flexible technique for visualizing ar-
bitrary three-dimensional scalar and multi-field datasets. Other 3D
visualization techniques require the computation of an intermediate
geometric representation of the data prior to rendering (e.g. creat-
ing a polygonal mesh using isosurface extraction). In contrast, di-
rect volume rendering does not require intermediate geometry; the
data is resampled and converted to optical properties as it is being
rendered. This conversion from data values to optical properties
is represented using a transfer function, which is typically imple-
mented as a lookup table.
One advantage of direct volume rendering is its ability to visu-

alize multiple values, or fields, simultaneously. Multi-field volume
rendering has been shown to dramatically improve our ability to
classify subtle features that may not be well characterized by any
single input field [Laidlaw 1995]. Even scalar datasets can benefit

Figure 1: Volumetric rendering using Gaussian Transfer Functions
(GTF). Left: analytic approximation of the GTF integral evaluated
on graphics hardware (128 slices). Middle: numerical integration
of the GTF using 368 slices. Right: numerical integration of the
GTF using 128 slices.

from multi-field volume rendering techniques by adding fields for
local derivative information [Kindlmann 1999]. For example, gra-
dient magnitude characterizes the rate of change of values in some
neighborhood and can help classify the input data set into homo-
geneous and transition regions [Kindlmann 2002]. Multiple data
fields effectively place the ranges of data values representing differ-
ent features at different locations in a multidimensional data space.
Features may therefore be easier to classify in a multivariate dataset
because ambiguities can be better resolved when different features
share the same range of data values in an individual field.
Although a multi-field dataset can be visualized using separate

transfer functions for each field, multidimensional transfer func-
tions that specify the optical properties for each unique combina-
tion of data values are a more general and expressive representa-
tion [Kniss et al. 2002b; Kniss et al. 2002a]. A major limitation
of multidimensional transfer functions using a lookup table is the
increased storage requirement. Each additional field in the dataset
increases the size of the transfer function lookup table. For instance,
a 1D transfer function for eight bit data would require 256 entries,
whereas a 2D transfer function requires 2562 entries. In practice,
we have found that it is not uncommon to encounter datasets that
require 3D or even 4D transfer functions.
One approach for handling the exponential memory require-

ments of a multidimensional transfer function is to decompose it
into multiple transfer functions of a lower dimension, i.e. imple-
ment it as a product of separable transfer functions. For instance,
a 4D transfer function for data fields d1,d2,d3,d4 could be repre-
sented as a 2D transfer function for fields d1 and d2 multiplied with
another 2D transfer function for fields d3 and d4. Alternatively,
this 4D transfer function could be represented as four 1D trans-
fer functions, one for each of the data fields, multiplied together.
Although separable transfer functions may reduce the memory re-
quirements of a high dimensional transfer function, they also dra-
matically limit the kinds of features that can be visualized when
compared to a general multidimensional transfer function. Sepa-
rable transfer functions also have the potential to erroneously clas-

Note that in theory the extinction coefficient τi takes values be-
tween 0 and ∞. In practice the necessary upper limit is much lower
because τi is integrated resulting in an opacity value that quickly
reaches one.

5 Implementation

In this section, we describe the practical implementation details of
Gaussian transfer functions from Section 3 and the implementation
of the analytical integration described in Section 4.

5.1 Gaussian Transfer Function

The goal of Gaussian transfer functions is to provide a general and
scalable class of transfer function primitives for specifying fully
general multidimensional transfer functions. Rather than utilizing
a lookup table to evaluate the transfer function for data values sam-
pled within the volume, the Gaussian transfer function is evaluated
as a true function for each sample. The down side of transfer func-
tions that are evaluated explicitly is that the computational cost of
evaluation is linearly proportional to the number of transfer func-
tion primitives used. Although it may seem that this computational
cost would preclude the use of this class of transfer functions for in-
teractive volume rendering, we have found them quite practical for
a number of reasons. First, the simple and continuous form of the
Gaussian transfer function makes it an efficient function to compute
on modern graphics hardware. Second, we found that in practical
applications we rarely use more than four or five transfer function
primitives at a time.
The fragment processing pipeline on modern GPUs provides a

rich set of SIMD vector operations such as component-wise arith-
metic, vector dot products, exponentiation and trigonometric func-
tions. The current generation of graphics hardware supports all of
the necessary instructions to implement explicit evaluation of trans-
fer functions at full 32-bit floating point precision. High precision
is important since we would like the transfer function primitives to
be general with respect to both dimension and dynamic range.
The GTF can be evaluated on modern graphics hardware in as

few as four instructions; a multiply-add instruction, a dot product,
an exponential, and a multiply. This holds for datasets with up to 4
fields, and each additional multiple of 4 fields adds 3 instructions;
a multiply-add, a dot product, and an add. The algorithm for evalu-
ating the GTF is shown below in pseudo code:

1 r⃗ = K⃗V,i ∗ v⃗− c⃗ ′i Vector Multiply-Add
2 r = r⃗ · r⃗ Vector Dot Product
3 r = exp(−r) Scalar Exponent
4 αi = αmax,i ∗ r Scalar Multiply

Table 2: Fragment program for computing opacity using the GTF.

The GTF parameters c⃗ ′ = K⃗V ∗ c⃗, K⃗V , and h are stored as frag-
ment program constants, while the sampled data value vector v⃗ can
be read from a data texture and/or come from other variables such
as a spatial position or the dot product of the view direction and
normal. r is a temporary register. The program in Table 2 assumes
that the matrixK only scales the GTF along the primary axes of the
transfer function domain, so the diagonal matrix K can be repre-
sented with just a vector K⃗V with n elements, where n is the num-
ber of fields in the dataset. A general matrix representation for K
would be more expressive allowing us to specify an arbitrary orien-
tation for the GTF. However, it would significantly complicate any
user interface for the transfer function, and the additional computa-
tional cost of evaluating the matrix-vector multiply may outweigh
the benefits. An example of classification using a 3D GTF is seen
in Figure 4.

Figure 4: Examples of multi-field volume classified using a GTF.
The dataset is the Visible Male Color Cryosection, courtesy of the
National Institutes of Health. Dataset size is 2563

1 r0 = 1/g Scalar Reciprocal
2 r⃗1 = K⃗V,i ∗ v⃗− c⃗ ′i Vector Multiply-Add
3 r⃗1 = r0 ∗ r⃗1 Scalar Vector Multiply
4 r1 = r⃗1 · r⃗1 Vector Dot Product
5 r1 = exp(−r1) Scalar Exponent
6 αi = αmax,i ∗ r1 Scalar Multiply
7 αi = if(g= 0){0}else{αi} Scalar Conditional

where g = ∥∇vi∥ is the gradient magnitude of one of the data
values, and r0 and r1 are temporary registers. K⃗V is the scaling
vector that scales the Gaussians along the axes of the transfer
function domain.

Table 3: Fragment program for computing opacity using the trian-
gular GTF.

The triangular GTF described in Section 3.2 requires three ad-
ditional instructions (a scalar reciprocal, a vector multiply, and a
scalar conditional-move operation) compared to the general GTF
(see Table 3). The conditional in line 7 of Table 3 is required be-
cause we have a divide by zero when g = 0. Note that we do not
always have to check for division by zero if the graphics hardware
architecture implements the IEEE floating point standard. If g is
equal to zero in the first instruction, the result will be properly car-
ried through subsequent instructions as expected, setting pixels with
invalid values to zero. An example of classification using a 4D tri-
angular GTF is seen in Figure 5.
Notice that the algorithm for computing the GTF involves two

vector operations and two scalar operations. Similarly, the triangu-
lar GTF requires three vector and four scalar operations. This sym-
metry is important since modern programmable GPUs allow us to
compute one vector and one scalar operation in parallel. We cannot
exploit this parallelism in the computation of a single GTF because
each operation is serially dependent on the previous one. However,
the computation of multiple GTF primitives can be interleaved such
that the vector operations for one are computed in parallel with the
scalar operations for another. Therefore, we can effectively com-
pute two transfer function primitives at once. Combining multiple
GTFs requires us to keep track of the summed colors and GTFs, as
in equation (3), adding an additional vector/scalar pair of instruc-
tions per GTF:
1 C =Ci ∗αi+C Vector Multiply-Add
2 α = αi+α Scalar Add
where C is the cumulative opacity weighted color, α is the cu-
mulative opacity, αi is computed using the program from Table 2
or Table 3 and Ci is the color for the current primitive.

Figure 5: An example of classification using the triangular GTF. The data set is a numerical weather simulation courtesy of the Canadian
Meteorological Centre and includes 4 fields, temperature, humidity, wind speed, and a derived multi-gradient. The left image identifies the
simulation domain. The left-center image shows a default transfer function created by centering a triangular GTF at the median value for
each axis and setting its width to one. The right-center image shows some of the airmass boundaries (fronts). The right image was created by
modifying the triangular GTF’s width along the wind speed axis to select only those portions of the previously classified airmass that have
wind speeds greater than fifty percent of the maximum wind speed in the simulation. Dataset size is 256x256x64.

5.2 Piecewise Analytic Integration

5.2.1 One Dimensional Case

The use of explicitly evaluated transfer functions as described in
the previous section, assumes that the volume rendering equation
is being solved by compositing color and opacity segments along
the viewing ray using a Riemann sum. It is well known that this
technique produces significant artifacts if the sampling rate is not
high enough. We use analytic integration based on the equations
derived in Section 4 in order to significantly reduce the number of
samples required to reconstruct the data with good fidelity.

The analytic integral for scalar data and gradient magnitude can
be implemented as a special case of equation (11). In this case we
can simplify the general multidimensional case to 1D, because the
gradient magnitude only modifies the width of a 1D GTF.

We use equation (8) to compute the density integral using the
GTF. For the triangular version, ρ ′ will depend on the gradient mag-
nitudes and we use the same formulation with the following input
parameters:

v ′j =
K (v j− c)

ĝ
, ĝ=

g1+g2
2

, g j = ∥∇v j∥.

We found that this approximation of the density integral works well
in practice. Further justification for using the average of the gradi-
ent magnitudes can be found in [Kniss et al. 2003].

For this special case we precompute a 2D function:

IGauss(x1,x2) =
√

π
2
erf(x1)−erf(x2)

x1−x2
x1 ̸= x2

IGauss(x1,x2) = e−x21 x1 = x2. (16)

In our implementation we evaluate this function within a domain
from [−10,10] in both x1 and x2, and store it as a 2D texture. Since
the function is smooth we have found 1282 16-bit samples to be suf-
ficient. A scale and bias are required to access the texture correctly,
since its texture coordinates are [0,1]. The analytic piecewise inte-
gral of the triangular GTF for scalar data can be implemented with
only four more instructions than the triangular GTF itself:

- ci = {Ci.x,Ci.y,Ci.z,τi} Color and extinction input
1 r⃗.x= K⃗V,i ∗ v1− c ′i Scalar Multiply-Add
2 r⃗.y= K⃗V,i ∗ v2− c ′i Scalar Multiply-Add
2(a) r⃗ = r⃗ ∗ (1/ĝ) Scalar Multiply
3 r⃗ = r⃗0 ∗ .05+ .5 Vector Multiply-Add
4 r⃗.x= IGauss(⃗r.xy) 2D Texture Read
5 c= c+ r⃗.x∗ ci Vector Multiply-Add

where c = (C,τ) contains the combined color and extinction
terms, and ci = (Ci,τi). Step 2(a) is used for the triangular GTF
only.

Once all primitive’s color and extinction quantities have been
computed, a final step is required to compute the opacity and the
correctly weighted color:

- r = {−l,0,0,0} Length input
1 r.w= 1/c.w Scalar Reciprocal
2 c= c∗ r.wwwx Scalar Multiply
3 c.w= exp(c.w) Scalar Exponential
4 c.w= 1− c.w Scalar Add
5 c.xyz= c.xyz∗ c.w Scalar Multiply
where r is a temporary register.

This algorithm leverages the fact that most modern graphics
hardware architectures are capable of executing a texture read and
a vector/scalar pair of operations simultaneously. For instance, the
Nvidia FX series can handle two texture reads and two operations
simultaneously. This algorithm also permits interleaving of instruc-
tions for the evaluation of multiple GTFs.
5.2.2 Multidimensional Case

The analytic integral of the general multidimensional GTF for lin-
early varying data, defined in equation (11), can be implemented
entirely in a fragment program including an approximation of the
erf function. We have however found that the large number of
instructions required (over 30) affects performance dramatically.
About half of these instructions are devoted to computing the two
erf functions. Similarly to the one-dimensional case, we can pre-
compute erf(x)− erf(y) and store it into a 2D texture. Since this
function asymptotically approaches constant values as the absolute
value of the argument grows, we only need to represent a small in-
terval around the origin and clamp to the edges of the texture when
accessing values outside this interval. We have found that the do-
main −3.6≤ x,y≤ 3.6, is adequate for a 16-bit lookup table.
Table 4 shows the fragment program used in the multidimen-

sional case. Naturally, 20 fragment instructions are a lot for a ren-
dering technique that is already fill bound. This computation takes

• Analytical integration of any-dimensional transfer functions, summed 
together as a multivariate Gaussian.  

• For data with 2, 3, 4, etc. fields 

• Piecewise-linear integration along the ray using compositing

et al. 1994] cast the volume rendering problem into a 3D texture re-
sampling problem that can be efficiently implemented in graphics
hardware. Numerous other authors made significant improvements
to texture based volume rendering such as performance optimiza-
tions, sophisticated light and shading models and improved qual-
ity [Westermann and Ertl 1998; Meißner et al. 1999; Rezk-Salama
et al. 2000; Westermann and Sevenich 2001; Engel et al. 2001].
Transfer functions and methods for generating them have also

been extensively studied. [Pfister et al. 2001] and [Kindlmann
2002] provide an excellent survey of existing methods and trade-
offs between them. While 1D and 2D transfer function have re-
ceived much attention, true multidimensional transfer functions
have not. [Laidlaw 1995] developed a framework for magnetic
resonance imaging (MRI) classification and visualization using vol-
ume rendering algorithms that included 2D Gaussian transfer func-
tions for data classification.

3 Gaussian Transfer Functions

In direct volume rendering, data points are directly mapped to op-
tical properties such as color and opacity that are then compos-
ited along the viewing direction into an image. This mapping is
achieved using transfer functions. These functions have to be able
to efficiently classify data features and produce various different
outputs such as color, opacity, emission, phase function, etc. Typ-
ically these functions have many parameters that have to be set by
the user by hand or through interactive exploration of the volume
data. As the survey by [Kindlmann 2002] on transfer functions
and generation methods shows, the process of creating expressive
transfer functions can be a very time consuming and frustrating
task. For multivariate volumes, this problem becomes even more
daunting since the number of parameters grows with the number
of dimensions, sometimes exponentially. It is therefore important,
especially for multivariate datasets, to have transfer functions with
simple expressions that rely on a limited number of free parameters.
We have found transfer functions based on the Gaussian primitive
to be particularly useful.

3.1 General GTF

TheGaussian Transfer Function (GTF) is defined in one dimension
as:

g(v,c,σ) = e−(v−c)2/σ 2
(1)

where v is the sampled data value, c is the data value that the Gaus-
sian is centered over, and σ is the width of the Gaussian. Note that
this function does not represent a probability distribution. The GTF
is a scaled version of the normal distribution that does not integrate
to one, yet retains its shape and simplicity.
While the above definition illustrates the shape and some de-

sirable properties of the GTF in one dimension, we are interested
in multidimensional transfer functions. The multivariate Gaussian
transfer function is written as:

GTF(⃗v, c⃗,K) = e−(⃗v−⃗c)TKTK(⃗v−⃗c) (2)

where v⃗ is the sampled data vector of dimension n (the number of
values at each sample in the data set), c⃗ is the vector data value
that the Gaussian is centered over, and K is an n×n linear transfor-
mation matrix that can scale and rotate the Gaussian (see Table 1).
For example, if K is a diagonal matrix, it scales the Gaussian along
the primary axes of the data domain. In the more general case, the
matrix K can rotate and scale the Gaussian about the center c⃗. As
defined above, the GTF takes values between 0 and 1. We obtain
achromatic opacity α by scaling the GTF with the maximum opac-
ity value αmax.
To select several features from the data set and show each one

in its own color, we build a transfer function by combining several

K Linear transformation matrix
K⃗V Vector representing scaling
KS Scalar representing uniform scaling
ρ Density
τ Extinction
c⃗ Center of the Gaussian
c⃗′ Transformed center of the Gaussian
v⃗ Vector data value
v Scalar data value
erf Error function
GTF Gaussian transfer function
C Color
α Opacity
αmax Maximum opacity

Table 1: Notation and important terms used in the paper

Gaussian primitives. We sum the opacities αi and average the colors
Ci together:

α = ∑αi and C = ∑αiCi. (3)

where α and C are the resulting opacity and color contributions
from all primitives. Note that these operators combine the indi-
vidual contributions without taking into account the order in which
they are specified.
Using Gaussian primitives is just one possible approach to build-

ing transfer functions. In the past, researchers have explored the
use of precomputed lookup tables, piecewise linear or piecewise
quadratic functions. While individual elements of these functions
are simple and can be evaluated efficiently, the number of elements
required to build transfer functions that can faithfully select fine
features can grow very large for multivariate datasets. For example,
representing an n-dimensional transfer function capable of select-
ing a neighborhood of size ∆ around a data value v may require
a lookup table with 1/∆n entries. Commonly used datasets can
have 1/∆ = 256 and n = 4, leading to table sizes larger than the
available texture memory on current graphics cards. Piecewise lin-
ear and piecewise quadratic functions are more memory efficient
than lookup tables but can still suffer from an exponential growth
in the number of free parameters with respect to the number of di-
mensions. For rendering, we are interested in the transfer function
applied to a line segment between two data values. Even for trans-
fer functions that can be represented with relatively few segments
along each of the primary data axes, the restriction of the function’s
domain to an arbitrary line through data space may be quite com-
plicated (use a large number of segments). Our Gaussian primitives
have higher expressive power while still being simple enough to al-
low intuitive parameter control and efficient hardware evaluation.
In addition, multidimensional GTFs restricted to arbitrary lines re-
sult in a simple one-dimensional Gaussian that can be analytically
integrated. We explore uses of this property in Section 4.
3.2 Triangular GTF

For visualizing boundaries between materials in scalar data, one
can benefit from transfer functions that also depend on the data
gradient magnitude. We extend 1D GTFs to 2D transfer functions
using a construction introduced by [Levoy 1988]. A triangular
transfer function primitive can be generated using Gaussians by ad-
justing their widths depending on the gradient magnitude ∥∇v∥ :
σ = σ ′∥∇v∥, where σ ′ is a free parameter (corresponding to the
width of the triangular GTF for ∥∇v∥ = 1). The intuition behind
this construction is that in regions of the volume with high gradient
magnitude, the data values are changing fast, so it is likely that the
region will contain the boundary (feature) that we are looking for.
Therefore, it is advantageous to apply a wider Gaussian to increase



Other multidimensional classification

Lui et al. Multivariate Volume Visualization through Dynamic Projections. IEEE LDAV 2014.

Guo et al. Classifying multi-attribute volume data with parallel coordinates. IEEE Pacific Vis 2011
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Direct Multifield Volume Ray Casting of Fiber Surfaces
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Fig. 1. Left: 2D (joint) histogram and three fiber surface control polygons (FSCPs), specified by red, blue and green annotations. Right:
Corresponding fiber surfaces. Let us compare residence time and oxygen across both data range and spatial domain, in a simulation of
coal combustion in GE-Alstom’s 15 MWth Boiler Simulation Facility (BSF). These surfaces let us show low and high regions of oxygen
as they occur over the entire course of the simulation, classified by annotating the 2D scatterplot (joint histogram) with FSCPs. Direct
ray casting allows users to explore and manipulate fiber surfaces interactively on larger datasets; in this case at 16 fps at 1024⇥1024
on an NVIDIA Geforce GT 650M mobile GPU.

Abstract— Multifield data are common in visualization. However, reducing these data to comprehensible geometry is a challenging
problem. Fiber surfaces, an analogy of isosurfaces to bivariate volume data, are a promising new mechanism for understanding
multifield volumes. In this work, we explore direct ray casting of fiber surfaces from volume data without any explicit geometry extraction.
We sample directly along rays in domain space, and perform geometric tests in range space where fibers are defined, using a signed
distance field derived from the control polygons. Our method requires little preprocess, and enables real-time exploration of data,
dynamic modification and pixel-exact rendering of fiber surfaces, and support for higher-order interpolation in domain space. We
demonstrate this approach on several bivariate datasets, including analysis of multi-field combustion data.

Index Terms—Volume Rendering, Isosurface, Multidimensional Data

1 INTRODUCTION

Multifield volume data are ubiquitous in scientific computing. Simula-
tions frequently compute several variables, for the purposes of driving
the computation itself or understanding underlying physical phenom-
ena. However, most visualizations of 3D volume data consider only a
single field in a given image, using either isosurfaces or direct volume
rendering. This is due in equal parts to audiences’ familiarity with
single-field metaphors, and the relative lack of concise techniques for
defining and describing multifield data.

Fiber surfaces are multifield equivalents of isosurfaces for univariate
3D volume data. Just as isovalues define contours in single-field data,
fibers [34] define contours over tuples in multifield data. For bivariate
(two-field) volume data, fibers are defined as points in two-dimensional
range space. A curve composed of fibers in the range defines a fiber

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

surface in the domain. These features classify spatial volume data as
a linear combination of two fields, and provide a powerful tool for
defining contours in terms of multiple attributes. As shown in Fig. 1,
fiber surfaces allow us to restrict our classification of contours to sub-
regions of bivariate range space. This not only reduces clutter, but
allows us to identify features that isosurfaces of these respective fields
could not. Fiber surfaces are a recent contribution to the visualization
literature [5], and were implemented as a straightforward extension to
Marching Cubes [28]. Though effective, surface extraction presents
two main limitations. First, the resulting mesh is a piecewise-linear
approximations of higher-order analytical implicit surfaces. Second,
the extraction process is costly and potentially non-interactive for larger
volume data. While methods exist for accelerating marching cubes,
for sufficiently large and complex data, direct rendering methods are
needed to enable interactive exploration.

Direct isosurface ray casting is a well-known alternative to mesh
extraction. Surface ray casting is attractive for its sublinear time com-
plexity – with the appropriate acceleration structure, small and large
volume data render at similar speed, constrained only by memory.
Moreover, ray casting of implicit surfaces can employ a wide range of
root-finding techniques. In this paper, we contribute a method for direct
ray casting of fiber surfaces by solving for the ray’s intersection point
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