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Recap from last spatial vis lecture
• 3D graphics 

• rasterization vs ray tracing 

• volume rendering can be accomplished with both! 

• Volume rendering 

• “Emission-absorption” model: emission = color (RGB);  absorption = opacity (A) 

• alpha blending (front-to-back) 
Cb += Cf * Ab * ((1-Af)) 
Ab += (Ab * (1-Af)) 

• Transfer functions 

• 1D: work from “outside in” or “inside out” 

• histogram guides peaks, but hard to determine a “right” transfer function 

• 2D (using gradient magnitude) : good for determining boundaries — especially medical data 

• 3D / higher dimensional : still a research problem.



Volume rendering pseudocode

• for each sample p from front to back in the volume 

• v = sample(p)  //trilinear interpolation 

• c = classify(v)  //using transfer function 

• c = shade(c, normal)   //e.g., using phong shading



One last transfer function paper: 
Preintegration (Engel et al. 2002)



Figure 8: Left to right: Multiple colored isosurfaces of a synthetic data set with the corresponding dependent texture. Isosurfaces of a human
head CT scan (2563): skin, skull, semi-transparent skin with opaque skull and the dependent texture for the latter image.

Figure 9: Images showing a comparison of a) pre-shaded, b) post-shaded without additional slices, c) post-shaded with additional slices and
d) pre-integrated volume visualization of tiny structures of the inner ear (128 128 30) with 128 slices.

Figure 10: High-quality pre-integrated direct volume rendering of a spherical harmonic (Legendre’s) function with random transfer functions
(top, left) and dependent texture (bottom, right). The resolution was 163 voxels, thus only 15 textured slices were rendered. Pre-shaded
(bottom, left) and post-shaded (top, right) results are included for comparison.

pre-integrated colors C̃ C̃ s f sb d and opacities α α s f sb d .
As these tables depend on the transfer functions, any modification
of the transfer functions requires an update of the lookup tables.
This might be no concern for games and entertainment applica-
tions, but it strongly limits the interactivity of applications in the
domain of scientific volume visualization, which often depend on
user-specified transfer functions. Therefore, we will suggest three
methods to accelerate the pre-integration step.
Firstly, under some circumstances it is possible to reduce the di-

mensionality of the tables from three to two (only s f and sb) by as-
suming a constant length of the segments. Obviously, this applies to
ray-casting with equidistant samples. It also applies to 3D texture-
based volume visualization with orthographic projection and is a
good approximation for most perspective projections. It is less ap-
propriate for axes-aligned 2D texture-based volume rendering as
discussed in Section 5.5. Even if very different lengths occur, the
complicated dependency on the segment length might be approxi-
mated by a linear dependency as suggested in [12]; thus, the lookup
tables may be calculated for a single segment length.
Secondly, a local modification of the transfer functions for a par-

ticular scalar value s does not require to update the whole lookup
table. In fact, only the values C̃ s f sb d and α s f sb d with
s f s sb or s f s sb have to be recomputed; i.e., in the worst
case about half of the lookup table has to be recomputed.
Finally, the pre-integration may be greatly accelerated by eval-

uating the integrals in Equations (5), (6), and (7) by employing
integral functions for τ s , c̃ s , and τ s c s , respectively. More
specifically, Equation (5) for αi α s f sb d can be rewritten as

α s f sb d 1 exp d
sb s f

T s f T sb (8)

with the integral function T s : s
0 τ s ds, which is easily com-

puted in practice as the scalar values s are usually quantized.
Equation (6) for C̃i C̃ s f sb d may be approximated analo-

gously:

C̃ s f sb d
d

sb s f
K sb K s f (9)

with the integral function K s : s
0 c̃ s ds. However, this requires

to neglect the attenuation within a ray segment. As mentioned
above, this is a common approximation for post-classified volume
rendering and well justified for small products τ s d.
For the non-associated color transfer function c s we approxi-

mate Equation (7) by

C̃τ s f sb d
d

sb s f
Kτ sb Kτ s f (10)

with Kτ s : s
0 τ s c s ds.

Thus, instead of numerically computing the integrals in Equa-
tions (5), (6), and (7) for each combination of s f , sb, and d, we will
only once compute the integral functions T s , K s , or Kτ s and
employ these to evaluate colors and opacities according to Equa-
tions (8), (9), or (10) without any further integration.

3.6 Application to Volume Rendering Techniques
Pre-integrated classification is not restricted to a particular volume
rendering technique, rather it may replace the post-classification
step of various techniques. For example, in [12] Röttger et al. have
applied pre-integrated classification to cell projection employing
3D textures for the lookup of segment colors C̃ and opacities α.
In fact, the application of pre-integrated classification is quite natu-
ral for the cell projection of tetrahedral meshes, because the linear

interpolation of the scalar field between two samples is exact if the
samples are taken at the faces of tetrahedra as in the case of cell
projection.
Of course, pre-integrated classification may also be employed

in other volume rendering techniques, e.g., software ray-casting of
structured and unstructured meshes. In the remainder of this pa-
per, however, we will focus on the implementation of pre-integrated
classification in texture-based volume rendering algorithms.

4 Texture-Based Pre-Integrated Volume
Rendering

Based on the description of pre-integrated classification in Sec-
tion 3.4, we will now present two novel texture-based algorithms
(one for 2D textures and one for 3D textures) that implement pre-
integrated classification. Both algorithms employ dependent tex-
tures, i.e., rely on the possibility to convert fragment (or pixel)
colors into texture coordinates. The technical details of this table
lookup will be discussed in Section 5.
The basic idea of texture-based volume rendering is to render

a stack of textured slices. Texture maps may either be taken from
three stacks of two-dimensional texture maps (object-aligned slices;
see [11]) or from one three-dimensional texture map (view-aligned
slices; see [3]). Pre-classification is implemented by applying the
transfer functions once for each texel and storing colors and opac-
ities in the texture map(s). On the other hand, post-classification
is performed by storing the scalar field value in the texture map(s)
and applying transfer functions during the rasterization of the slices
for each pixel. Each pixel (more precisely spoken, each fragment)
of a slice corresponds to the contribution of one ray segment to the
volume rendering integral for this pixel. Therefore, the composit-
ing Equations (3) or (4) are employed for the rasterization of the
textured slices. As each fragment of a slice corresponds to one ray
segment, the whole slice corresponds to a slab of the volume as
depicted in Figure 2.

s f
sb

front slice
back slice

Figure 2: A slab of the volume between two slices. The scalar value
on the front (back) slice for a particular viewing ray is called s f (sb).

After these preliminaries, we can now describe pre-integrated
volume rendering using textured slices. The texture maps (either
three-dimensional or two-dimensional textures) contain the scalar
values of the volume, just as for post-classification. As each pair of
adjacent slices (either view-aligned or object-aligned) corresponds
to one slab of the volume (see Figure 2), the texture maps of
two adjacent slices have to be mapped onto one slice (either the
front or the back slice) by means of multiple textures (see Sec-
tion 5.1). Thus, the scalar values of both slices (front and back) are
fetched from texture maps during the rasterization of the polygon
for one slab (see Section 5.2). These two scalar values are required
for a third texture fetch operation, which performs the lookup of
pre-integrated colors and opacities from a two-dimensional texture

Preintegration
• Blend using the pre-summed 

(pre-integrated) transfer function  
between front and back samples 

• Much higher quality with fewer samples.



Today
• Surfaces 

• Explicit vs implicit  

• Terrain visualization 

• Contours 

• Isosurfaces 

• Marching Cubes and variants 

• Particle-based extraction 

• Splatting 

• Ray casting and ray tracing 

• Topology 

• Reeb graphs 

• Contour and merge trees 

• Morse Smale Complexes



Wrap up transfer functions
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methods to accelerate the pre-integration step.
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ray-casting with equidistant samples. It also applies to 3D texture-
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good approximation for most perspective projections. It is less ap-
propriate for axes-aligned 2D texture-based volume rendering as
discussed in Section 5.5. Even if very different lengths occur, the
complicated dependency on the segment length might be approxi-
mated by a linear dependency as suggested in [12]; thus, the lookup
tables may be calculated for a single segment length.
Secondly, a local modification of the transfer functions for a par-

ticular scalar value s does not require to update the whole lookup
table. In fact, only the values C̃ s f sb d and α s f sb d with
s f s sb or s f s sb have to be recomputed; i.e., in the worst
case about half of the lookup table has to be recomputed.
Finally, the pre-integration may be greatly accelerated by eval-

uating the integrals in Equations (5), (6), and (7) by employing
integral functions for τ s , c̃ s , and τ s c s , respectively. More
specifically, Equation (5) for αi α s f sb d can be rewritten as

α s f sb d 1 exp d
sb s f

T s f T sb (8)

with the integral function T s : s
0 τ s ds, which is easily com-

puted in practice as the scalar values s are usually quantized.
Equation (6) for C̃i C̃ s f sb d may be approximated analo-

gously:

C̃ s f sb d
d

sb s f
K sb K s f (9)

with the integral function K s : s
0 c̃ s ds. However, this requires

to neglect the attenuation within a ray segment. As mentioned
above, this is a common approximation for post-classified volume
rendering and well justified for small products τ s d.
For the non-associated color transfer function c s we approxi-

mate Equation (7) by

C̃τ s f sb d
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sb s f
Kτ sb Kτ s f (10)

with Kτ s : s
0 τ s c s ds.

Thus, instead of numerically computing the integrals in Equa-
tions (5), (6), and (7) for each combination of s f , sb, and d, we will
only once compute the integral functions T s , K s , or Kτ s and
employ these to evaluate colors and opacities according to Equa-
tions (8), (9), or (10) without any further integration.

3.6 Application to Volume Rendering Techniques
Pre-integrated classification is not restricted to a particular volume
rendering technique, rather it may replace the post-classification
step of various techniques. For example, in [12] Röttger et al. have
applied pre-integrated classification to cell projection employing
3D textures for the lookup of segment colors C̃ and opacities α.
In fact, the application of pre-integrated classification is quite natu-
ral for the cell projection of tetrahedral meshes, because the linear

interpolation of the scalar field between two samples is exact if the
samples are taken at the faces of tetrahedra as in the case of cell
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Of course, pre-integrated classification may also be employed

in other volume rendering techniques, e.g., software ray-casting of
structured and unstructured meshes. In the remainder of this pa-
per, however, we will focus on the implementation of pre-integrated
classification in texture-based volume rendering algorithms.
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Based on the description of pre-integrated classification in Sec-
tion 3.4, we will now present two novel texture-based algorithms
(one for 2D textures and one for 3D textures) that implement pre-
integrated classification. Both algorithms employ dependent tex-
tures, i.e., rely on the possibility to convert fragment (or pixel)
colors into texture coordinates. The technical details of this table
lookup will be discussed in Section 5.
The basic idea of texture-based volume rendering is to render

a stack of textured slices. Texture maps may either be taken from
three stacks of two-dimensional texture maps (object-aligned slices;
see [11]) or from one three-dimensional texture map (view-aligned
slices; see [3]). Pre-classification is implemented by applying the
transfer functions once for each texel and storing colors and opac-
ities in the texture map(s). On the other hand, post-classification
is performed by storing the scalar field value in the texture map(s)
and applying transfer functions during the rasterization of the slices
for each pixel. Each pixel (more precisely spoken, each fragment)
of a slice corresponds to the contribution of one ray segment to the
volume rendering integral for this pixel. Therefore, the composit-
ing Equations (3) or (4) are employed for the rasterization of the
textured slices. As each fragment of a slice corresponds to one ray
segment, the whole slice corresponds to a slab of the volume as
depicted in Figure 2.
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front slice
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Figure 2: A slab of the volume between two slices. The scalar value
on the front (back) slice for a particular viewing ray is called s f (sb).

After these preliminaries, we can now describe pre-integrated
volume rendering using textured slices. The texture maps (either
three-dimensional or two-dimensional textures) contain the scalar
values of the volume, just as for post-classification. As each pair of
adjacent slices (either view-aligned or object-aligned) corresponds
to one slab of the volume (see Figure 2), the texture maps of
two adjacent slices have to be mapped onto one slice (either the
front or the back slice) by means of multiple textures (see Sec-
tion 5.1). Thus, the scalar values of both slices (front and back) are
fetched from texture maps during the rasterization of the polygon
for one slab (see Section 5.2). These two scalar values are required
for a third texture fetch operation, which performs the lookup of
pre-integrated colors and opacities from a two-dimensional texture

Preintegration
• Blend using the pre-summed 

(pre-integrated) transfer function  
between front and back samples 

• Higher quality with fewer samples.



Surfaces



Contours

© Weiskopf/Machiraju/Möller 19

Volume Visualization

• 2D visualization
  slice images
  (or multi-planar 
  reformating MPR)

• Indirect
  3D visualization
  isosurfaces
  (or surface-shaded
  display SSD)

• Direct  
  3D visualization
  (direct volume 
  rendering DVR)



Explicit vs Implicit
• In graphics, we often differentiate between explicit and implicit geometry.  

• For our purposes in scientific visualization: 

• Explicit geometry is defined directly by vertices. 

• i.e. a triangle mesh 

• Implicit geometry is defined by an isovalue of an implicit function (specifically, the scalar field) 

• i.e., an isosurface of volume data 

• Parametric geometry: explicit geometry in R
n
 interpolated via parametric equations in R

n-1
 

• I.e. a heightfield of uniform vertices, interpolated via B-spline patches 

• Depending on parameterization, can be implicit (converted into a scalar field) or explicit 
(requires geometric subdivision). To learn more, take Elaine Cohen’s CAGD class. 

• Indirect visualization usually involves turning implicit geometry into explicit geometry to be rasterized. 



Explicit vs Implicit

• There are two types of geometry 

Explicit vs. Implicit

10

Explicit:!
• Range of parameterization function

f(x) = (r cos(x), r sin(x))T

Implicit:!
• Kernel of implicit function

F (x, y) =
�

x2 + y2 � r

f([0, 2�])

F (x, y) < 0

F (x, y) > 0

F (x, y) = 0

Slides: Hao Li, USC 



Surfaces

Explicit vs. Implicit

11

Explicit:!
• Range of parameterization function 
• Piecewise approximation

F (x, y) =
�

x2 + y2 � rImplicit:!
• Kernel of implicit function 
• Piecewise approximation

f(x) = (r cos(x), r sin(x))T?

?

Slides: Hao Li, USC 



Surfaces
Implicit:!

• Kernel of implicit function 
• Piecewise approximation 
• Scalar-valued 3D grid 
• Easy in/out test 
• Easy topology modification

Explicit vs. Implicit

1212

Explicit:!
• Range of parameterization function 
• Piecewise approximation 
• Splines, triangle mesh, points 
• Easy enumeration 
• Easy geometry modification

Slides: Hao Li, USC 



Heightfields



• F(x,y) = h 

• At its simplest, just a raster image (2D texture) 

• Need some way to reconstruct the mesh in between 

• Explicit geometry (interpolating mesh) 

• Implicit geometry (ray tracing parametric patches)

Heightfields



Terrain visualization
• DEM acquired by resampling LiDAR point data onto a grid 

• Often accompanied by color  

• F(x,y) = {h,r,g,b}



Explicit Terrain Rendering
• Geometry compression (split quadtree) 

Texture compression (Built-in S3TC compression in DirectX) 

• Out-of-core rendering of a 5.1 TB terrain dataset, .25m LiDAR 
135+ fps at 1080p on a 880 GTX in 2007! 

C. Dick, J. Schneider & R. Westermann. Efficient Geometry Compression for GPU-Based  
Decoding in Realtime Terrain Rendering. Computer Graphics Forum, 2009.



Surfaces

computer graphics & visualization
Christian Dick, 04.12.2007

Resolution 0.25 m
Texture: 46 MB / km2 (R8G8B8)
Height field: 31 MB / km2 (16 Bit)
This region: 30 GB (400 km2)
Bavaria: 5.1 TB (70549 km2)

Luftbild/Geobasisdaten © Landesamt für Vermessung und Geoinformation Bayern



Surfaces

computer graphics & visualization
Christian Dick, 04.12.2007

Luftbild/Geobasisdaten © Landesamt für Vermessung und Geoinformation Bayern

C. Dick, J. Schneider & R. Westermann. Efficient Geometry Compression for GPU-Based  
Decoding in Realtime Terrain Rendering. Computer Graphics Forum, 2009.



Implicit Terrain Rendering
• Use ray casting to intersect bilinear patches directly. 

• Same quadtree LOD as before, but without the diagonal splits  

• Lower memory footprint 
(i.e., you can fit more high-resolution tiles in core) 

• Significantly faster for high-resolution data (.25 m Vorarlberg); slower for 
smoother low-resolution data (1 m Utah)

C. Dick, J. Krueger & R. Westermann. GPU Ray-Casting for Scalable Terrain Rendering.  
Eurographics 2009 Area Papers



More Terrain Rendering
• Terrain visualization for whole planets in a Planetarium 
 
R. Kooima, J Leigh, A Johnson, D Roberts, M SubbaRao, T 
DeFanti. Planetary-Scale Terrain Composition. IEEE 
Visualization 2009.  
 
https://www.youtube.com/watch?v=BVHRNYOUzcA

• LA Times Data Visualization: Mars 
Gale Crater in Three.js 
 
http://graphics.latimes.com/mars-
gale-crater-how-we-did-it/

https://www.youtube.com/watch?v=BVHRNYOUzcA
http://graphics.latimes.com/mars-gale-crater-how-we-did-it/


Contours



• In 2D, a contour at a value v of a 
scalar field F(x,y) is the set of 
curves where F(x,y) = v. 

• Design choices: 

• Plan view vs profile view 

• Line width, dashes, dots, labels. 

• Why is it best to use multiple 
contours?

Contours



Contours



Contours

Compare



2D contouring algorithmApproach to Contouring in 2D
• Contour must cross every grid line connecting two 

grid points of opposite sign 

CS530 - Introduction to Scientific Visualization Oct 7, 2014,

• Idea: primitives must cross every grid line 
connecting two grid points of opposite sign

Interpolate 
along grid lines

Contours in 2D

+ -

x

x
Get cell Identify grid 

lines w/cross
Find crossings

Primitives naturally chain together



2D contouring algorithmCases

No Crossings

Case Polarity Rotation Total

x2 2

Singlet x2 8x4

Double adjacent x2 4x2 (4)

Double Opposite x2 2x1 (2)

(x2 for 
polarity)

16 = 24

+ -



2D contouring algorithmAmbiguities
• How to form lines?

CS530 - Introduction to Scientific Visualization Oct 7, 2014,

Ambiguities
• How to form the lines?

x

x

x

x



2D contouring algorithmAmbiguities
• Right or Wrong?

CS530 - Introduction to Scientific Visualization Oct 7, 2014,

Ambiguities
• Right or wrong?

x

x

x

x

x

x

x

x

x

x

x

x



2D contouring algorithmAmbiguities
• Right or Wrong?

CS530 - Introduction to Scientific Visualization Oct 7, 2014,

Ambiguities
• Right or wrong?

x

x

x

x

x

x

x

x

x

x

x

x

More on this later… let’s go to 3D!



Isosurfaces
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Isosurfaces



• An isosurface is a contour of a scalar field in 3D. 

• An isosurface at a value v of a scalar field (volume) F(x,y,z) is the set 
of surfaces where F(x,y,z) = v.

Isosurfaces



• It’s easier to use some mathematical terminology to 
generalize contours. 

• A level set of a function                        is the set of points x, 

Level sets

Lc(f) = {x | f(x) = c}
f : Rn ! R

L�
c (f) = {x | f(x)  c}

L+
c (f) = {x | f(x) � c}

• c also defines the sublevel set,

• and the superlevel set,

In      , a level set is an isosurface. More generally, a contour.R3

both bounded manifolds in      .Rn



Isosurfaces
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Isosurfacing

• You’re given a big 3D block of numbers

• Make a picture

• Slicing shows data, but not its 3D shape

• Isosurfacing is one of the simplest ways



Isosurfaces
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10,887 citations on Google Scholar



Isosurfaces
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10,887 citations on Google ScholarNov 10, 2015: 11814 cites on Google Scholar!



Isosurfaces
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© Weiskopf/Machiraju/Möller 10

Marching Cubes

• The core MC algorithm
– Cell consists of 4(8) pixel (voxel) values:

(i+[01], j+[01], k+[01])

1. Consider a cell
2. Classify each vertex as inside or outside
3. Build an index
4. Get edge list from table[index]
5. Interpolate the edge location
6. Compute gradients
7. Consider ambiguous cases
8. Go to next cell



Isosurfaces
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© Weiskopf/Machiraju/Möller 11

Marching Cubes

• Step 1: Consider a cell defined by eight data 
values

(i,j,k) (i+1,j,k)

(i,j+1,k)

(i,j,k+1)

(i,j+1,k+1) (i+1,j+1,k+1)

(i+1,j+1,k)

(i+1,j,k+1)



Isosurfaces
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Marching Cubes

• Step 2: Classify each voxel according to 
whether it lies
– Outside the surface (value > isosurface value)
– Inside the surface (value <= isosurface value)

8
Iso=7

8

8

55

1010

10

Iso=9

=inside
=outside



Isosurfaces
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Marching Cubes

• Step 3: Use the binary labeling of each 
voxel to create an index

v1 v2

v6

v3v4

v7v8

v5

inside =1
outside=0

11110100

00110000

Index:
v1 v2 v3 v4 v5 v6 v7 v8



Isosurfaces
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Marching Cubes

• Step 4: For a given index, access an array 
storing a list of edges
– All 256 cases can be derived from 1+14=15 

base cases due to symmetries



Isosurfaces
Case 
Table 



Isosurfaces

8 Above 
0 Below 

 
1 case 



Isosurfaces

7 Above 
1 Below 

 
1 case 



Isosurfaces

6 Above 
2 Below 

 
3 cases 



Isosurfaces

5 Above 
3 Below 

 
3 cases 



Isosurfaces

4 Above 
4 Below 

 
7 cases 



Isosurfaces
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Marching Cubes

• Step 4 cont.: Get edge list from table
– Example for

Index = 10110001
triangle 1 = e4,e7,e11
triangle 2 = e1, e7, e4
triangle 3 = e1, e6, e7
triangle 4 = e1, e10, e6 e1

e10

e6

e7
e11

e4



Isosurfaces
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Marching Cubes

• Step 5: For each triangle edge, find the 
vertex location along the edge using linear 
interpolation of the voxel values

=10
=0

T=8T=5

i i+1x



Isosurfaces
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Marching Cubes

• Step 6: Calculate the normal at each cube 
vertex (central differences)
– Gx = Vx+1,y,z - Vx-1,y,z

Gy = Vx,y+1,z - Vx,y-1,z

Gz = Vx,y,z+1 - Vx,y,z-1

– Use linear interpolation to 
compute the polygon vertex 
normal (of the isosurface)



Isosurfaces
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Marching Cubes

• Step 7: Consider ambiguous cases
– Ambiguous cases: 

3, 6, 7, 10, 12, 13
– Adjacent vertices: 

different states
– Diagonal vertices: 

same state
– Resolution: choose 

one case
(the right one!)

or

or

Hint: there is no “right”, just “consistent”.



Isosurfaces

Nov 10, 2015: 626 cites on Google Scholar!



Contours

Asymptotic Decider (1) 

!  Based on bilinear interpolation over faces 

B01 

B00 B10 

B11 

(s,t) 

B(s,t) = (1-s, s)  B00  B01 
B10  B11 

1-t 
 t 

The contour curves of B:  
 
{(s,t) | B(s,t) = α } are hyperbolas 

=  B00(1- s)(1- t) + B10(s)(1- t) + 

    B01(1- s)(t) + B11(s)(t) 



Contours

Asymptotic Decider (2) 

(0,0) 

(1,1) 

Asymptote 

(Sα, Tα) 

If  B(Sα, Tα) >= α

(Sα, Tα) 

Not Separated 



Contours

Asymptotic Decider (3) 

(1,1) 

Asymptote 

(Sα, Tα) 

(0,0) 

If  B(Sα, Tα) < α

(Sα, Tα) 

    Separated 



Contours

Asymptotic Decider (4) 

(S1 , 1) 

(Sα, Tα) 

(S0 , 0) 

   Sα =        B00  - B01  
            B00 + B11 – B01 – B10 
 
   Tα=         B00 – B10  
            B00 + B11 – B01 – B10 
 
B(Sα,Tα) =      B00 B11 + B10 B01  
                  B00 + B11 – B01 – B10  

(0 , T0) 

(1 , T1) 

B( Sα , 0) = B( Sα , 1) 

B( 0, Tα) = B( 1 , Tα) 



Contours

Asymptotic Decider (4) 

(S1 , 1) 

(Sα, Tα) 

(S0 , 0) 

   Sα =        B00  - B01  
            B00 + B11 – B01 – B10 
 
   Tα=         B00 – B10  
            B00 + B11 – B01 – B10 
 
B(Sα,Tα) =      B00 B11 + B10 B01  
                  B00 + B11 – B01 – B10  

(0 , T0) 

(1 , T1) 

B( Sα , 0) = B( Sα , 1) 

B( 0, Tα) = B( 1 , Tα) 

i.e., use Sa, Ta to divide the face into  
4 unambiguous rectangles — only 2 of which we need to evaluate. 



Contours

Asymptotic Decider (5) 

!  case 3, 6, 12, 10, 7, 13 
!  (These are the cases with at least one ambiguious  faces) 



Isosurfaces

71

© Weiskopf/Machiraju/Möller 20

Marching Cubes

• Summary
– 256 Cases
– Reduce to 15 cases by symmetry
– Ambiguity in cases 

3, 6, 7, 10, 12, 13
– Causes holes if arbitrary choices 

are made

• Up to 5 triangles per cube
• Several isosurfaces

– Run MC several times
– Semi-transparency requires spatial sorting



Isosurfaces

72

© Weiskopf/Machiraju/Möller 21

Marching Cubes

• Examples
1 Isosurface

2 Isosurfaces

3 Isosurfaces



Marching Cube Variants

Marching Cubes

54

Algorithm for isosurface extraction from 
medical scans (CT, MRI)

Slides: Hao Li, USC 



Marching Cube Variants

Marching Cubes

55

Effect of grid size

Slides: Hao Li, USC 



Marching Cube Variants



Nov 10, 2015: 1033 cites on Google Scholar

The “first Marching Cubes” paper  
Wyvill, McPheeters & Wyvill 86.



Marching tetrahedra

• Only 8 cases to consider in a tetrahedron 

• Correct piecewise-linear interpolants on 
tet meshes! 

• Generates horrible triangles.

Doi and Koide. An efficient method of triangulating equi-valued surfaces by using 
tetrahedral cells. IEICE Transactions on Information and Systems, 1991

marching tets after 30 iterations of Laplacian smoothing…

http://search.ieice.org/bin/summary.php?id=e74-d_1_214


Marching Cube Variants

Increasing Resolution

57

Does not remove alias problems!

Slides: Hao Li, USC 



Marching Cube Variants

Extended Marching Cubes

62

Feature!
Detection

Feature!
Sampling

Edge!
Flipping

L Kobbelt, M Botsch, U Schwanecke, HP Seidel. Feature Sensitive 
Surface Extraction from Volume Data. Siggraph 2001. 

Extended Marching Cubes

58

Locally extrapolate distance gradient
Place samples on estimated features

65×65×65
L Kobbelt, M Botsch, U Schwanecke, HP Seidel. Feature Sensitive 

Surface Extraction from Volume Data. Siggraph 2001. 
Slides: Hao Li, USC 



Marching Cube Variants

Extended Marching Cubes

62

Feature!
Detection

Feature!
Sampling

Edge!
Flipping

L Kobbelt, M Botsch, U Schwanecke, HP Seidel. Feature Sensitive 
Surface Extraction from Volume Data. Siggraph 2001. 

Slides: Hao Li, USC 



Marching Cube Variants

L Kobbelt, M Botsch, U Schwanecke, HP Seidel. Feature Sensitive 
Surface Extraction from Volume Data. Siggraph 2001. 

Milling Simulation

63

257×257×257
L Kobbelt, M Botsch, U Schwanecke, HP Seidel. Feature Sensitive 

Surface Extraction from Volume Data. Siggraph 2001. 
Slides: Hao Li, USC 



Dual Contouring

Ju et al., Dual Contouring of Hermite Data, 
Siggraph 2002

Schafer and Warren., Dual Marching Cubes: 
Primal Contouring of Dual Grids. Computer 

Graphcis Forum, 2004



Edge Groups

Dietrich et al. Edge Groups: An Approach to Understanding the Mesh  
Quality of Marching Methods. IEEE TVCG, 2008



Particle-driven mesh 
extraction



Advancing Front

Schreiner et al. High-Quality Extraction of Isosurfaces from Regular and 
Irregular Grids. IEEE Visualization 2006

• Starting from a seed point, use curvature of the implicit surface to 
determine local feature size (LFS), find next seed points, and from those 
create a guidance field locally resampling the scalar field.  

• Continue the guidance field until all fronts merge, and the mesh is done.



Dynamic Particle Systems

Schreiner et al. High-Quality Extraction of Isosurfaces from Regular and 
Irregular Grids. IEEE Visualization 2006

5k particles!
0.5 minutes

13k particles!
3.4 minutes

28k particles!
15 minutes

59k particles!
39 minutes

Particle Systems for Efficient and Accurate High-Order Finite Element Visualization!

M. Meyer et al., TVCG 2006.79



Particle-driven extraction
182k triangles!

41 minutes!
0.18 min rr!
0.94 avg rr

Topology, Accuracy, and Quality of Isosurface 
Meshes Using Dynamic Particles.!

M. Meyer et al., Vis 2007. 80



Particle-driven extraction

81

Comparing mesh quality



Surface splatting



• The first (large) pure point-based system, built on a 
bounding sphere hierarchy. 

• Stores vertices and normals up to full resolution 

• Explicit geometry only — no mesh!

QSplat

S Rusinkiewicz and M Levoy. QSplat: A Multiresolution Point Rendering 
System for Large Meshes. Siggraph 2000



Iso-splatting

C Co, B Hamann, K Joy. Iso-splatting: A Point-based Alternative to Isosurface 
Visualization. IEEE Vis 2003.

• Create approximate points near the isosurface 
using pre-classified points inside the volume 

• Optionally, use Newton-Raphson to better fit 
samples to the isosurface.



Hybrid splatting + extraction

Y Livnat and X Tricoche. Interactive Point-Based Isosurface Extraction. IEEE 
Vis 2005.

• View dependent splatting 

• Builds on the point hierarchy idea of QSplat, and view-
dependent marching cubes. 

• Very fast for its time — but complicated.



Ray casting and ray tracing 
isosurfaces



RTRT

S Parker et al. Interactive Ray Tracing for Isosurface Rendering.  
IEEE Visualization 98. 

• Accelerate volume with a two-
level uniform grid of interval 
values 

• Direct numerical solution for 
ray intersection with the 
trilinear isosurface patch 

• 1 GB visible female, rendered 
interactively on an SGI 
shared-memory machine.



Ray-trilinear cell isosurface 
intersection (Schwarze method)

S Parker et al. Interactive Ray Tracing for Isosurface Rendering.  
IEEE Visualization 98. 



CPU Isosurface Ray Tracing — 2004-2008 

Aaron Knoll, Younis Hijazi, Andrew Kensler, Mathias Schott, Charles Hansen and Hans Hagen
Fast Ray Tracing of Arbitrary Implicit Surfaces with Interval and Affine Arithmetic.
Computer Graphics Forum, 2009

Aaron Knoll, Ingo Wald, Steven 
Parker, and Charles Hansen.
Interactive Isosurface Ray Tracing 
of Large Octree Volumes
Proceedings of the IEEE 
Symposium on Interactive Ray 
Tracing, Salt Lake City, 2006

Ingo Wald, Heiko Friedrich, Aaron Knoll, and Charles D. Hansen
Interactive Isosurface Ray Tracing of Time-Varying Tetrahedral Volumes 
IEEE Visualization 2007Aaron Knoll, Charles Hansen, and Ingo Wald

Coherent Multiresolution Isosurface Ray Tracing
The Visual Computer 2009 

Chris Wyman, Steven Parker, Pete Shirley, and Charles Hansen. 
Interactive display of isosurfaces with global illumination.
IEEE TVCG 2006.

http://www.sci.utah.edu/~knolla/cgrtia.pdf
http://www.sci.utah.edu/~knolla/tetty/tetty.pdf
http://www.sci.utah.edu/~knolla/cohoctiso.pdf


Fast GPU isosurface ray casting

E Gobbetti et al. A single-pass GPU ray casting framework for interactive out-
of-core rendering of massive volumetric datasets. The Visual Computer, 2008

M. Hadwiger et al. Real-Time Ray Casting and Advanced Shading of Discrete Isosurfaces. 
Eurographics 2005



Peak finding: combining 
isosurfacing and volume rendering

A. Knoll et al. Volume Ray Casting with Peak Finding and Differential Sampling. 
IEEE Visualization 2009. 



Fiber surfaces: multifield isosurfaces

K. Wu et al. “Direct Multifield Volume Ray Casting of Fiber Surfaces.” IEEE Vis 2016

• A fiber is multifield generalization of an isovalue 

• Polylines (“FSCPs”) of fibers in 2D range space define fiber 
surfaces in 3D domain space. 

• A lot like 2D transfer functions — but with explicit surface 
geometry.  

• Use marching cubes (Carr get al. Eurovis 2015), marching tets 
(Klacansky TVCG 2016) or direct ray casting (Wu et al. Vis 
2016) to extract/render fiber surfaces.

Direct Multifield Volume Ray Casting of Fiber Surfaces
Kui Wu1, Aaron Knoll2,3. Benjamin J Isaac3, Hamish Carr4, and Valerio Pascucci1,2

1University of Utah 2SCI Institute, University of Utah 3Institute for Clean and Secure Energy, University of Utah
4University of Leeds

Fig. 1. Left: 2D (joint) histogram and three fiber surface control polygons (FSCPs), specified by red, blue and green annotations. Right:
Corresponding fiber surfaces. Let us compare residence time and oxygen across both data range and spatial domain, in a simulation of
coal combustion in GE-Alstom’s 15 MWth Boiler Simulation Facility (BSF). These surfaces let us show low and high regions of oxygen
as they occur over the entire course of the simulation, classified by annotating the 2D scatterplot (joint histogram) with FSCPs. Direct
ray casting allows users to explore and manipulate fiber surfaces interactively on larger datasets; in this case at 16 fps at 1024⇥1024
on an NVIDIA Geforce GT 650M mobile GPU.

Abstract— Multifield data are common in visualization. However, reducing these data to comprehensible geometry is a challenging
problem. Fiber surfaces, an analogy of isosurfaces to bivariate volume data, are a promising new mechanism for understanding
multifield volumes. In this work, we explore direct ray casting of fiber surfaces from volume data without any explicit geometry extraction.
We sample directly along rays in domain space, and perform geometric tests in range space where fibers are defined, using a signed
distance field derived from the control polygons. Our method requires little preprocess, and enables real-time exploration of data,
dynamic modification and pixel-exact rendering of fiber surfaces, and support for higher-order interpolation in domain space. We
demonstrate this approach on several bivariate datasets, including analysis of multi-field combustion data.

Index Terms—Volume Rendering, Isosurface, Multidimensional Data

1 INTRODUCTION

Multifield volume data are ubiquitous in scientific computing. Simula-
tions frequently compute several variables, for the purposes of driving
the computation itself or understanding underlying physical phenom-
ena. However, most visualizations of 3D volume data consider only a
single field in a given image, using either isosurfaces or direct volume
rendering. This is due in equal parts to audiences’ familiarity with
single-field metaphors, and the relative lack of concise techniques for
defining and describing multifield data.

Fiber surfaces are multifield equivalents of isosurfaces for univariate
3D volume data. Just as isovalues define contours in single-field data,
fibers [34] define contours over tuples in multifield data. For bivariate
(two-field) volume data, fibers are defined as points in two-dimensional
range space. A curve composed of fibers in the range defines a fiber

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

surface in the domain. These features classify spatial volume data as
a linear combination of two fields, and provide a powerful tool for
defining contours in terms of multiple attributes. As shown in Fig. 1,
fiber surfaces allow us to restrict our classification of contours to sub-
regions of bivariate range space. This not only reduces clutter, but
allows us to identify features that isosurfaces of these respective fields
could not. Fiber surfaces are a recent contribution to the visualization
literature [5], and were implemented as a straightforward extension to
Marching Cubes [28]. Though effective, surface extraction presents
two main limitations. First, the resulting mesh is a piecewise-linear
approximations of higher-order analytical implicit surfaces. Second,
the extraction process is costly and potentially non-interactive for larger
volume data. While methods exist for accelerating marching cubes,
for sufficiently large and complex data, direct rendering methods are
needed to enable interactive exploration.

Direct isosurface ray casting is a well-known alternative to mesh
extraction. Surface ray casting is attractive for its sublinear time com-
plexity – with the appropriate acceleration structure, small and large
volume data render at similar speed, constrained only by memory.
Moreover, ray casting of implicit surfaces can employ a wide range of
root-finding techniques. In this paper, we contribute a method for direct
ray casting of fiber surfaces by solving for the ray’s intersection point

Carr et al. “Fiber Surfaces: Generalizing 
isosurfaces to Bivariate Data”. Eurovis 2015.



Isosurfacing vs volume 
rendering?

• 2012: “No one uses volume rendering, it’s too slow and hard.” 

• 2015: “No one uses isosurfaces, they’re ugly and limiting.” 

• Advantages of direct volume rendering:

• see the whole data set 

• use native filter kernels, per-pixel accuracy 

• scales well to huge volume data 

• now fast in many production tools (ParaView, Voreen, ImageVis3D) 

• users are finally starting to “get” transfer functions (really, just color maps with opacity!) 

• Advantages of isosurfacing:

• triangle geometry lets us do geometric analysis and subsequent numerical computation (this is huge!) 

• triangles are easy to render 

• humans tend to think in terms of surfaces 

• even good transfer functions are often “surfacey” 

• Isosurface ray casting has advantages too: 



Topology



Why topology?
• Fields are still hard to understand through visualization. 

• Volume rendering and contours (isosurfaces) don’t tell the 
whole story. 

• We want mathematical tools for understanding and 
simplifying spatial data. 

• where are the “holes”, how is space connected 

• where are features of the field, regardless of resolution of 
the discrete grid?  

• Topology tries to solve this.



Topology

What is Topology?
• Field of mathematics which studies properties 

which are preserved under continuous 
transformations. 
• Stretching, bending = continuous changes. 
• Tearing, gluing = discontinuous changes. 

• Also called: “Rubber sheet” geometry. 

• Studies the connectedness of a space.



Topology

http://simonkneebone.files.wordpress.com/2011/11/konigsberg-puzzle.jpg

http://math.arizona.edu/~models/Topology/source/2.html

http://talklikeaphysicist.com/wp-content/uploads/2008/09/image-497.jpg



Topology

1D Case

• Let us get back to the simple 1D case



Flow Visualization

1D Case

• Let us find out the local minimum/maximum
Zero derivatives



Flow Visualization

1D Case

• They partition the domain into monotonic regions



Flow Visualization

How About 2D Case?
Pre-image of an iso-value: Iso-contours



Flow Visualization

We Want to Extract Similar Information
Q: Which iso-contours are interesting?
Q: Summarize the evolution of iso-contours?



Flow Visualization

Topology
• These local minimum and maximum are called “critical 

points” of the scalar functions.

• Their connection forms the topology of the scalar field, 
which provides a partition scheme of the spatial 
domain. 

• Each segment has the equivalent homogeneous 
behavior, e.g. monotonic for 1D case.

• This is similar for 2D and 3D scalar fields



Flow Visualization

Scalar Field Analysis
• Here is a more formal definition
• Given a scalar field f

– Gradient vector

• When not zero
– Points in the direction of quickest ascend
– Always perpendicular to the iso-contours (or level sets) of f

• If      (p)=0, 
– p is a critical point 
– f(p) is a critical value
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Flow Visualization

Scalar Field Analysis

• A critical point p is isolated if there exists a 
neighborhood of p such that p is the only critical 
point in the neighborhood

• Classification of fundamental critical points in 2D

Local minima Saddle Local maxima



Flow Visualization

Detection of Critical Points

3D saddles can have two distinct configurations



Flow Visualization

Scalar Field Analysis

• A function is a Morse function if it is smooth and all 
of its critical points are isolated and non-degenerate
– Typically a good assumption for scientific data
– A non-Morse function can be made Morse by adding small 

but random noise



Flow Visualization
Level-Set Topology 

Reeb Graphs, Contour 
Trees, and Merge Trees



Flow Visualization

Example – dunking a doughnut

• f(p) = z (height function)

Shape analysis is a special 
case of scalar field analysis



Flow Visualization

Example – dunking a doughnut



Flow Visualization

Example – dunking a doughnut



Flow Visualization

Example – dunking a doughnut



Flow Visualization

Example – dunking a doughnut



Flow Visualization

Example – dunking a doughnut



Flow Visualization

How Does it Work?



Flow Visualization

How Does it Work?
Level sets obtaining by sweeping along Z direction



Flow Visualization

Reeb Graph



Flow Visualization

Reeb Graph
• Vertices of the graph are 

critical points
• Arcs of the graph are 

connected components 
(cylinders in domain)of the 
level sets of f, contracted to 
points

• Two-step algorithm
• Locate critical points
• Connect critical points



Flow Visualization

Reeb Graph
• Vertices of the graph are 

critical points
• Arcs of the graph are 

connected components 
(cylinders in domain)of the 
level sets of f, contracted to 
points

• Two-step algorithm
• Locate critical points
• Connect critical points



Flow Visualization
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Robust On-line Computation of Reeb Graphs:
Simplicity and Speed⇤
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Figure 1: (Top row) Simplified Reeb graphs of the Dancer, Malaysian Goddess, Happy Buddha; and David together with two close-ups
showing a tiny tunnel at the base of David’s leg. The pseudo-colored surfaces show the function used for computing the Reeb graph. The
transparent models show the structure of the Reeb graph and its embedding. (Bottom row) The Heptoroid model and two levels of resolution
for the Reeb graph of the Asian Dragon model.

Abstract
Reeb graphs are a fundamental data structure for understanding and
representing the topology of shapes. They are used in computer
graphics, solid modeling, and visualization for applications ranging
from the computation of similarities and finding defects in complex
models to the automatic selection of visualization parameters.

We introduce an on-line algorithm that reads a stream of elements
(vertices, triangles, tetrahedra, etc.) and continuously maintains the
Reeb graph of all elements already read. The algorithm is robust
in handling non-manifold meshes and general in its applicability to
input models of any dimension.

Optionally, we construct a skeleton-like embedding of the Reeb
graph, and/or remove topological noise to reduce the output size.

⇤For more information about the project see:
http://pascucci.org/research/topology/reeb-graph/

For interactive multi-resolution navigation we also build a hierar-
chical data structure which allows real-time extraction of approxi-
mated Reeb graphs containing all topological features above a given
error threshold.

Our extensive experiments show both high performance and prac-
tical linear scalability for meshes ranging from thousands to hun-
dreds of millions of triangles. We apply our algorithm to the largest,
most general, triangulated surfaces available to us, including 3D,
4D and 5D simplicial meshes. To demonstrate one important appli-
cation we use Reeb graphs to find and highlight topological defects
in meshes, including some widely believed to be “clean.”

1 Introduction
The Reeb graph [Reeb 1946] is a fundamental data structure that
encodes the topology of a shape. It is obtained by contracting
to a point the connected components of the level-sets (also called
contours) of a function defined on a mesh. The Reeb graph has
been used extensively in a wide range of applications such as
shape matching [Hilaga et al. 2001] and encoding [Shinagawa et al.
1991; Lazarus and Verroust 1999; Takahashi et al. 1997], com-
pression [Biasotti et al. 2000], surface parameterization [Steiner
and Fischer 2002], and iso-surface remeshing [Wood et al. 2000]
and simplification [Wood et al. 2004]. Reeb graphs can determine
whether a surface has been reconstructed correctly, indicate prob-
lem areas, and can be used to encode and animate a model. Topo-
logical concepts such as the Reeb graph are especially useful in
processing massive models like those generated by high-resolution
laser range scans. However, we are aware of only two gener-

ACM Transactions on Graphics, Vol. 26, No. 3, Article 58, Publication date: July 2007.

Valerio Pascucci, Giorgio Scorzelli, Peer-Timo Bremer, Ajith Mascarenhas: Robust on-
line computation of Reeb graphs: simplicity and speed. ACM TOG. 26(3): 58 (2007)



Scalar field topology:  
merge and contour trees



Contour and merge trees

Join (Merge) trees - Bremer et al. Interactive Exploration and Analysis of Large Scale  
Simulations Using Topology-based Data Segmentation, IEEE TVCG 2011 

Bajaj et al. The Contour Spectrum. IEEE Vis 97
Carr et al. Computing Contour Trees in All Dimensions.  

Computational Geometry, 2003.

- simplified Reeb graphs of scalar fields, range is “height” 
- split and merge(join) trees correspond to ascending or descending value 
- contour tree: the “intersection” of merge and split trees (using union-find)



Joint Contour Nets for multifields

A contour “net” for two (or more)-field data

D. Duke et al. Visualizing Nuclear Scission through a Multifield Extension of Topological Analysis. IEEE Vis 2012 



Jacobi fiber surfaces - topology of multifields

• Construct a multifield Reeb space 
on top of range (joint histogram) 

• Classify complex, multifield data 
into “Jacobi edges” — simplifying 
structures showing extrema and 
saddles in range space.  

• “Scatterplot peeling” — use 
jacobi fiber surfaces to semi-
automatically segment both range 
and domain.

J. Tierny and H. Carr.“Jacobi Fiber Surfaces for Bivariate Reeb Space Computation”.  
IEEE Vis 2016 (best paper).



Gradient-field topology:  
the Morse-Smale complex



Flow Visualization

Morse-Smale Complex-2D



Flow Visualization

Morse-Smale Complex-2D



Flow Visualization

Morse-Smale Complex-2D



Flow Visualization

Morse-Smale Complex-2D



Flow Visualization

Morse-Smale Complex-2D



Flow Visualization

Morse-Smale Complex-2D

Decomposition into monotonic regions



Flow Visualization

Combinatorial Structure 2D

• Nodes of the MS complex are 
exactly the critical points of the 
Morse function

• Saddles have exactly four arcs 
incident on them

All regions are quads
• Boundary of a region 

alternates between saddle-
extremum

• 2k minima and maxima

3D MS Complex cell



Flow Visualization

Applications

Rayleigh-Taylor 
turbulence analysis



Flow Visualization

Morse-Smale complex

[P.-T Bremer, H. Edelsbrunner, B. Hamann and V. Pascucci. A Multi-resolution
Data Structure for Two-dimensional Morse-Smale Functions. 2003]

Edelsbrunner et al. Hierarchical Morse-Smale Complexes for  
Piecewise-linear 2D Manifolds. SOCG, 2001



Flow Visualization

Total Run Time 23h 15m 22s
∇ + MS-complex on parcel 2h 9m 45s

merging parcels 2h 38m 52s
5% simplification 18h 12m 41s

# cancellations 51,004,765
# parcels 1,000

# merge operations 1,000
# remaining critical points 957,560

# remaining arcs 6,320,506

Fig. 5. A single timestep of a dataset of a simulated Raleigh-Taylor instability simulating the
mixing of two fluids. This timestep has a resolution of 1152× 1152× 1000 and is an early
timestep of the simulation. The data is noisy, therefore we perform a 5% persistence sim-
plification to remove “excess features.” We compute the complex for the entire dataset, and
the inset shows a small subsection of the data with selected nodes and arcs of the com-
plex. Minima and maxima (blue and red spheres) and their saddle connections trace out the
bubble structure in the data. The maxima represent isolated pockets of high-density fluid
that have crossed the boundary between the two fluids. The structural complexity is over-
whelming, but our prototype allows interactive exploration and visualization, and selective
inclusion/omission of user-specified components of the MS complex.

constant-time processing. The discrete gradient computation on a par-
cel with n cells uses a sorted ordering provided by the parcel, which
is of complexity O(nlogn). The computation of the MS complex on a
parcel performs a depth-first search from each critical cell which will
cover its entire ascending manifold. Since the ascending manifolds
can merge, if there are O(n) critical cells, in the worst case, this step
can require O(n2) time. However, in practice, the number of critical
points can be modeled as a constant k, and tracing the ascending and
descending manifolds requires O(n) time. Merging two parcels with
m cells on the interface is accomplished in O(mlogm) time, as the gra-
dient computatation again requires O(nlogn), and the merging of the
complexes requires O(m) time. The cancellation of a pair of nodes
where the number of neighbors of each is bounded by some value i
requires at most O(i2) time. Therefore, removing the artifacts intro-
duced in a merge operation requires O(k i2).

We analyze the run time for the particular implementation used for
generating the results, where slices are attached to a growing base for
regular data. Let n be the total size of the data. For each of n1/3 slices,
a slice is read from the data, and cells are created and initialized in a
traversal of the slice taking n2/3 time. The gradient and complex are
computed on the slice taking n2/3logn2/3 + n2/3 time. Each slice is
then merged in n2/3logn2/3 +n2/3 time, and simplified in i k2 time for
a total run time of O(nlogn)+n1/3i k2. We do not remove the constant
final term, since in the worst case this can lead to a total number of n2

operations.
The memory requirements of our method are determined mainly by

Data set Size (a) (b)
Neghip 64×64×64 8s 7s
Hydrogen 128×128×128 47s 27s
Aneurism 256×256×256 5m 1s 3m 51s
Instability 1152×1152×1000 23h 15m 22s ∞

Table 1. An MS complex is computed for well-known datasets. We com-
pare the run time of our algorithm (a) to the fastest previously published
algorithm presented in [17] (b).

two parts: the overhead required for storing the gradient on a parcel,
and the storage required for the computed MS complex. Once the
MS complex has been computed on a parcel, the interior cells can be
removed from memory. In fact, a parcel, with its boundary gradient,
external cells, and MS complex, only needs to be kept in memory
during a merge operation. Let a parcel P have n interior cells and m
boundary cells. During computation of the discrete gradient field, the
total footprint of P is (n+m)× |α|+ |K|+ |Γ|, where |α| is the size of
a single cell, |K| is the memory overhead of the data structures storing
the CW complex, and |Γ| is the size of the MS complex computed
on the parcel. During the merging of two parcels P1 and P2, the total
amount of memory required is (m1 +m2)× |α|+ |K1|+ |K2|+ |Γ1|+
|Γ2|. The MS complexes Γ1 and Γ2 can be simplified independently
prior to the merging operation to reduce their sizes. For regular data,
the mesh connectivity is defined implicitly, therefore K = 0. In the
particular implementation we used for generating the results, given a
dataset of size x× y× z, each parcel is a slice of the data requiring
x×y×8× |α| space, and only two parcels (the base and the new slice)
were kept in memory.

Implications of Divide-and-Conquer The discrete gradient is
first computed on the boundary of a parcel and then in the interior,
and the restriction of the flow on the boundary potentially creates dif-
ferent MS complexes for the same data if the data is divided in dif-
ferent ways. In simulation of simplicity, order-dependence determines
the structures identified whenever degeneracies are encountered, such
as flat regions and multi-saddles. The augmented function and the
flexible ordering of the pairing of cells allow us to pick a particular
ordering such that the flow can be fixed first on the boundary, then on
the interior of a parcel, while maintaining consistency. In practice, a
subset of the cells of the d−1-dimensional MS complex restricted to
the boundary of a parcel form the intersection of the cells of the d-
dimensional MS complex with the boundary. As a result, after merg-
ing parcels and simplifying the artifacts introduced in the process, the
choices made in dividing the data result in only slight geometrical dif-
ferences in the computed MS complexes. Most significantly, however,
the complexes extracted are consistent, which means that they repre-
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Total Run Time 23h 15m 22s
∇ + MS-complex on parcel 2h 9m 45s

merging parcels 2h 38m 52s
5% simplification 18h 12m 41s

# cancellations 51,004,765
# parcels 1,000

# merge operations 1,000
# remaining critical points 957,560

# remaining arcs 6,320,506

Fig. 5. A single timestep of a dataset of a simulated Raleigh-Taylor instability simulating the
mixing of two fluids. This timestep has a resolution of 1152× 1152× 1000 and is an early
timestep of the simulation. The data is noisy, therefore we perform a 5% persistence sim-
plification to remove “excess features.” We compute the complex for the entire dataset, and
the inset shows a small subsection of the data with selected nodes and arcs of the com-
plex. Minima and maxima (blue and red spheres) and their saddle connections trace out the
bubble structure in the data. The maxima represent isolated pockets of high-density fluid
that have crossed the boundary between the two fluids. The structural complexity is over-
whelming, but our prototype allows interactive exploration and visualization, and selective
inclusion/omission of user-specified components of the MS complex.

constant-time processing. The discrete gradient computation on a par-
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operations.
The memory requirements of our method are determined mainly by

Data set Size (a) (b)
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Instability 1152×1152×1000 23h 15m 22s ∞

Table 1. An MS complex is computed for well-known datasets. We com-
pare the run time of our algorithm (a) to the fastest previously published
algorithm presented in [17] (b).
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on the parcel. During the merging of two parcels P1 and P2, the total
amount of memory required is (m1 +m2)× |α|+ |K1|+ |K2|+ |Γ1|+
|Γ2|. The MS complexes Γ1 and Γ2 can be simplified independently
prior to the merging operation to reduce their sizes. For regular data,
the mesh connectivity is defined implicitly, therefore K = 0. In the
particular implementation we used for generating the results, given a
dataset of size x× y× z, each parcel is a slice of the data requiring
x×y×8× |α| space, and only two parcels (the base and the new slice)
were kept in memory.

Implications of Divide-and-Conquer The discrete gradient is
first computed on the boundary of a parcel and then in the interior,
and the restriction of the flow on the boundary potentially creates dif-
ferent MS complexes for the same data if the data is divided in dif-
ferent ways. In simulation of simplicity, order-dependence determines
the structures identified whenever degeneracies are encountered, such
as flat regions and multi-saddles. The augmented function and the
flexible ordering of the pairing of cells allow us to pick a particular
ordering such that the flow can be fixed first on the boundary, then on
the interior of a parcel, while maintaining consistency. In practice, a
subset of the cells of the d−1-dimensional MS complex restricted to
the boundary of a parcel form the intersection of the cells of the d-
dimensional MS complex with the boundary. As a result, after merg-
ing parcels and simplifying the artifacts introduced in the process, the
choices made in dividing the data result in only slight geometrical dif-
ferences in the computed MS complexes. Most significantly, however,
the complexes extracted are consistent, which means that they repre-
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Fig. 1. A carbon nanosphere anode material is simulated with an annealing process using classical molecular dyanmics (left). To
understand the efficacy of this material in battery design, we seek to understand the adsorption of lithium. In graphitic carbon, lithium
motion is governed by the arrangement of carbon rings: while 6-member rings block lithium diffusion through layers of graphene,
higher valence rings permit it. Our approach turns to topological analysis of the distance function, constructing explicit triangulations
to represent carbon rings, classifying them as blocking or non-blocking (middle left). We use our representation to quantify both
the portions of the nanosphere that are accessible from the exterior (middle right), as well as studying the effects of defects on the
diffusion distance needed to saturate the nanosphere (right).

Abstract— Large-scale molecular dynamics (MD) simulations are commonly used for simulating the synthesis and ion diffusion of
battery materials. A good battery anode material is determined by its capacity to store ion or other diffusers. However, modeling
of ion diffusion dynamics and transport properties at large length and long time scales would be impossible with current MD codes.
To analyze the fundamental properties of these materials, therefore, we turn to geometric and topological analysis of their structure.
In this paper, we apply a novel technique inspired by discrete Morse theory to the Delaunay triangulation of the simulated geometry
of a thermally annealed carbon nanosphere. We utilize our computed structures to drive further geometric analysis to extract the
interstitial diffusion structure as a single mesh. Our results provide a new approach to analyze the geometry of the simulated carbon
nanosphere, and new insights into the role of carbon defect size and distribution in determining the charge capacity and charge
dynamics of these carbon based battery materials.

Index Terms—materials science, morse-smale, topology, Delaunay, computational geometry

1 INTRODUCTION

Materials science studies a wide range of phenomena at various scales,
using different computational codes for different purposes. Molecu-
lar dynamics (MD) are the main computational technique to simulate
chemical-physical systems in large spatio-temporal scale at the atom-
istic level. General computational studies must trade between compu-
tational cost and physical accuracy. At small spatio-temporal scales
in Ångströms and femtoseconds, first-principles ab initio molecular
dynamics (AIMD) codes, e.g., employing density functional theory,
(DFT) can accurately simulate electronic structure and bonding en-
ergetics. For larger systems on the order of millions of atoms over
nanoseconds, material scientists employ classical MD codes with ap-
proximate atomic potential or force-field. As the underlying structure
and assumptions of simulations change, so too must techniques for
visualizing and analyzing them.

Carbon nanospheres are promising anode materials for a new gen-
eration of lithium ion-based battery technologies. These novel struc-
tures can be synthesized through autogenic pressure reactions by the
recycling of wasted plastic materials [47]. To optimize the design and
synthesis of these novel carbon materials, one has to understand their
basic structural properties and lithium storage capability at the funda-
mental atomistic level. To model this computationally, we have the
choice of precise small-scale models (hundreds of atoms over fem-
toseconds using DFT) and less accurate large-scale models (thouands
or millions of atoms over nanoseconds, using MD). DFT simulations

produce electronic structure properties: the electronic wavefunction
of the system, or all-electron density can be used in scalar-field analy-
sis. In real world application, experimentally synthesized nanospheres
would be on the order of 100 nm to 1 µm, consisting of hundreds of
thousands to billions of carbon atoms. Classical MD must be used
for phenomena at this scale, however the simulations produced with
time-dependent atomic motion in trajectories produce neither the cor-
rect electronic structure properties nor a scalar field that is required for
topological analysis.

Moreover, with both AIMD and classical MD methods we can sim-
ulate thermal annealing of various-sized nanospheres, but we can-
not accurately model the complex diffusion dynamics of lithium ions
within these structures. While the physical properties of such systems
(e.g. sp2/sp3 ratio of carbon bonds of the carbon structure) are gener-
ally understood, the long time scale of the ion diffusion and transport
process (charging the battery) occurs over the course of microseconds
or longer, which would be too costly and inaccurate to compute with
current MD techniques. However, the basic diffusion characteristics
of nanospheres can be understood via topological and geometric anal-
ysis of the local atomic structures. For DFT data, it is possible to
use Morse-Smale decomposition of the wavefunction to determine the
paths that diffusing ions may take [25]. This analysis sheds light on
the interstitial and interlayer structure of the nanosphere, and provides
metrics for assessing theoretical performance of the battery anode.

Topological analysis would be desirable for larger data from clas-
sical dynamics as well. However, we are faced with two challenges:
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