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The traditional “branches” of 
visualization (IEEE Visweek)

• Scientific (spatial) Visualization 

• Information Visualization 

• Visual Analytics



Scientific visualization
• Data have spatial context (usually from simulation or scan) 

• Map spatial quantities to colors or geometry,  
f(space, time) -> rgba 

• 2D or 3D graphics for visualization.

Volume rendering
Flow visualization

Tensor field visualization Molecular visualizationMap and GIS visualization



Information visualization
• Spatial position is secondary or non-existent.  

• Illustrate relationships between abstract attributes. 

• Plots, charts, graphs, diagrams.

Graph and network visualization 

Scatterplots

Parallel coordinates Treemaps

Charts



Visual Analytics
• More about interactive user interfaces for data analysis.  

• Uses techniques from both scientific visualization and information visualization, as well as statistics, perception, 
cognition. 

• D3+Javascript, R, Matlab 

• “Putting it all together”

Genomics (Meyer et al. “Mizbee”) 
Management Information Systems  (SAS)

Security visualization (Centrifuge) 





Scientific Visualization
• “Sci-vis" is about interpreting and rendering spatial data.

• Today:  

• where do spatial data come from? (science domains) 

• how are they represented (grids) 

• what can we do with them (direct and indirect vis) 

• interpolation 

• Tues, Nov 17: Volumes 
Tues, Nov 29: Isosurfaces  
Thurs, Dec 1: Advanced topics: Vector and Tensor Fields



Scientific Visualization
• Data sources 

• Data representation 

• fields 

• grids 

• Data interpretation 

• The scientific visualization pipeline 

• Interpolation



Data sources



Computational Data

• Nuclear physics 

• Quantum chemistry 

• Molecular dynamics 

• Computational fluid dynamics 

• Rigid-body and structural mechanics 

• Coarse-grained dynamics, agents simulations 

• Meteorology 

• Astrophysics 

• Cosmology

kilobytes

petabytes

The output of scientific computing: 
physics, chemistry, blood flow, 
neurophysiology, meteorology, 

climatology, astronomy…



Scanned data

• X-ray crystallography 

• Synchrotron / radiation light sources 

• Transmission electron microscopy 

• Confocal microscopy 

• Camera imagery 

• Ultrasound 

• Magnetic resonance imaging 

• X-ray tomography 

• Satellite 

• Telescope

Angstroms

Megaparsecs

The output of instruments in medical 
imaging, microscopy, telescopy, GIS



Data representation 
(grids)



Fields
• Mathematically, a field is a set of elements with 

addition, multiplication operators that satisfy the 
field axioms 
 
 
 
 

• Intuitively, a field is a varying quantity defined 
continuously over space.

wolfram.com

http://wolfram.com


Fields

scalar field vector field

with a 2D domain

tensor field



Multifields

Radiation hydrodynamics in Enzo: Joe Insley (ANL), Rick Wagner (SDSC) 
https://vimeo.com/17771397

https://vimeo.com/17771397


Multifields

8	molecular	orbitals	of	a	LiAlH2O	DFT	simula8on,	courtesy	Aiichiro	Nakano,	University	of	Southern	California	
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Data Representation

• Discrete representations
– The objects we want to visualize are often ‘continuous’
– But in most cases, the visualization data is given only at 

discrete locations in space and/or time
– Discrete structures consist of samples, from which 

grids/meshes consisting of cells are generated

• Primitives in different dimensions
dimension cell mesh

0D
1D
2D
3D

points
lines (edges)
triangles, quadrilaterals (rectangles)
tetrahedra, prisms, hexahedra

polyline(–gon)
2D mesh
3D mesh

21

- objects we want to visualize are continuous 
- but, data only given at discrete locations 
- grids (meshes) consist of cells generated from data points 
!
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Data Representation
• Classification of visualization techniques according to

– Dimension of the domain of the problem 
(independent params)

– Type and dimension of the data to be visualized 
(dependent params)

m D

3D

2D

1D

0D

1D      2D      3D      n D

dimension 
of domain

                G

C      D

A      B

         F

E      

        H

Examples:

A: gas station along a road
B: map of cholera in London
C: temperature along a rod
D: height field of a continent
E: 2D air flow
F: 3D air flow in the atmosphere
G: stress tensor in a mechanical
    part
H: ozone concentration in the
    atmosphere

dimension of 
data type

22

Types and Classification of Field Data
- dimension of domain (the field) 
- dimension of the data to visualize (the geometry)
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Multifields

Infovis



Grids

• Continuous fields are an illusion 

• All data are discrete 

• Meshes are chosen based on what  
is computationally efficient for the 

• Visualization software must implement 
data models to handle a wide range of  
field and non-field data

tet mesh

AMR

particles

regular grid



Structured vs Unstructured
• In general, from the relational database world: 

• Structured data are data that are indexed, and can be accessed via a hash, array, or other 
query.  

• I.e., search time O(1) or O(log N).  

• Unstructured data are not indexed — you have to brute-force search to find them. 

• I.e. search time O(N) 

• In information/data visualization: 

• structured means data you’ve already indexed, organized (for example, in D3). 

• unstructured is everything else (i.e. text, imagery, video, foo) you have to search through. 

• In scientific visualization, this can get a bit confusing… 

• First we need to differentiate between geometry and topology.



Geometry vs Topology
• Geometry 

• Position of vertices in Euclidean space 

• Can be uniform, structured or unstructured. 

• Topology 

• Defines the “cells”, or connectivity of the vertices. 

• Can also be structured or unstructured.



Uniform grid geometry
• Uniform spacing along the axes, also known as “raster data”. 

• Most volume data look like this; structured data usually means this. 

• You still need metadata to know the size of the axes!
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Volume Visualization

• Representation of scalar 
3D data set

• Analogy: pixel (picture element)
• Voxel (volume element), with two interpretations:

– Values between grid points are resampled by 
interpolation

• Collection of voxels
• Uniform grid 

� ⇥ R3 � R



Arecibo Message
• Way of understanding 

mechanics of raster image 
representation 

• Radio telecope in Puerto Rico 
• built in 1964, renovated in 

1974 
• To celebrate: Frank Drake and 

Carl Sagan (Cornell 
University)  sent message to 
M13 in Hercules (25,000 light 
years away) 

• 1679 bits, frequency 
modulate 2380 MHz

http://en.wikipedia.org/wiki/Arecibo_message



The Message http://www.physics.utah.edu/~cassiday/p1080/lec06.html

0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 1 1 0 0 1 0 1 0 1 
0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 0 0 0 1 1 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 1 0 0 1 0 0 0 0 1 1 0 1 0 0 0 1 1 0 0 0 1 1 0 0 0 0 1 1 0 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 1 0 0 0 1 1 0 
0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1 0 0 0 0 1 1 0 0 0 1 1 1 0 0 1 1 0 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 
0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 
0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 
0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 1 0 1 0 0 1 0 1 1 0 1 1 0 0 0 0 0 0 1 0 0 1 1 1 0 0 1 0 0 1 1 1 1 1 1 1 0 
1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 1 1 0 1 1 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 1 1 1 1 1 0 0 1 0 0 
0 0 0 0 1 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 
1 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 1 1 0 
0 1 1 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 
0 1 1 1 1 0 0 1 1 1 1 1 0 1 0 0 1 1 1 1 0 0 0

1679 bits were encoded as 2380MHz plus and minus some frequency

This is a 1-D sequence of bits in time 
How will an alien understand this list of bits? 
    (will have different symbols than “0” “1”) 
No meta-information!



Understanding the message
•  Perhaps some “visual” representation of bits!

!

• (what is black vs white?) !
• Aliens notice 1679 = 23 x 73      (product of two primes)!

• Perhaps its not a linear sequence: 2-D array

•Two ways of sequencing values in 2D array

•Various ways of laying them out in 2D space

•Then: have to decipher it!



73 x 23

23 x 73: what was different?

compare to: 
http://en.wikipedia.org/wiki/Arecibo_message



Structured (rectilinear) grid geometry
• Still structured, but with non-uniform spacing along the axes. 

• Positions can still be computed procedurally 

• Some meteorology, climate CFD data like this.

Turbulence in the Ionosphere - Greg Foss, TACC



Unstructured geometry
• Raw, unstructured point data. 

• You actually need to store the x,y,z positions of vertices.  

• Some of the largest computational and scanned data 

• LiDAR, RGB-D point clouds, range scans 

• n-body codes — molecular dynamics, cosmology 

• Note: this is unstructured topology, too!

30-billion particle “Cosmic Web” data — Paul Shapiro, University of Texas at Austin  
I Wald, A Knoll, G.P. Johnson, W. Usher, V. Pasccci & M.E. Papka: “CPU Ray Tracing Large Particle Data 

with P-k-d Trees” IEEE Visualization 2015



Structured grid topology
• You can have unstructured geometry but structured topology 

• Implicit definition of cells 

• Implicit connectivity between vertices 

• More exotic options with structured grid topology: 

• Finite elements, finite differences on curvilinear grids 

• spectral F/E, some spline-based finite elements simulations 

• Good for precision-critical flow computations (blood flow, CFD)



Curvilinear grids

Image:T.U. Graz



Spectral/hp finite elements 

Data: George Karniadakis, Brown University. Visualization: Joe Insley, ANL



Spectral/hp finite elements 

Data: George Karniadakis, Brown University. Visualization: Joe Insley, ANL



Unstructured grid topology
• Both uniform elements and “mixed elements” (allowing any cell type) 

• Need to store vertices and indices separately 

• mixed elements: vertices, indices and count 

• Many, many finite elements codes.  

• solid mechanics, CAD 

• bioelectric modeling



Finite elements

Visualization: Steve Owen, using Cubit



Geometry vs topology



Colloquially

• In spatial (scientific) vis we usually talk about 
geometry, and: 

• structured means rectilinear grid (usually, but not 
always uniform). 

• unstructured means everything else (curvilinear 
grids, tetrahedra, hexahedra, points, etc.)



Is it (geometrically) 
structured or unstructured?



Is it (geometrically) 
structured or unstructured?



Is it (geometrically) 
structured or unstructured?



Is it (geometrically) 
structured or unstructured?



Non-field and other data
• In addition to structured/unstructured field data, you can 

have non-field geometry. 

• Boundary surface meshes 

• Atom positions, bonds, ribbons 

• Non-geometric annotations 

• Especially in GIS. 

• Visualization data models  
are complex!



What do we do with these data?

• In computer graphics, life is “easy” 

• Have a triangle mesh, render it! 

• Visualization is more than just rendering. 

• Two approaches: 

• direct visualization:  
i.e. render from a (usually 3D) field directly 

• indirect visualization: 
i.e. convert the field to triangles and render those (usually 
with GPU rasterization)



Indirect visualization

Data Filter Render

0" 4" 8" 0"

4" 14" 9" 0"

6" 11" 1" 0"

2" 1" 0" 0"



Direct visualization

Data Filter + Render

0" 4" 8" 0"

4" 14" 9" 0"

6" 11" 1" 0"

2" 1" 0" 0"



The indirect-direct spectrum
• Most data must be processed somewhere after acquisition 

• Direct/Indirect are not “absolute”, but relative.  

• Direct = less processing prior to rendering 

• Indirect = more processing prior to rendering 

• Multiple questions: 

• how do the data need to be transformed for the desired analysis? 

• what does the target rendering engine / API require? 

• There is no such thing as pure “direct” or “indirect” visualization;  
only “more direct” or “more indirect”.



Data Filter Render

0" 4" 8" 0"

4" 14" 9" 0"

6" 11" 1" 0"

2" 1" 0" 0"

Data Filter + Render

0" 4" 8" 0"

4" 14" 9" 0"

6" 11" 1" 0"

2" 1" 0" 0"

Indirect Direct

The indirect-direct spectrum

volume rendering 
from raw data

splatting

isosurface extraction (marching cubes) 
+ rasterization

segmentation+filtering+  
classification+rasterization pipeline

polygonal 

direct isosurface ray casting



The visualization pipeline
• Even if we merge filtering and rendering, it is still helpful to think of 

them as a chain of operations.

Data Filter Render

• Visualization workflows take the form of a flow chart, tree or network…



SCIRun



ParaView



VisTrails



VTK
• http://www.vtk.org, open-source, developed and maintained by Kitware. 

• The standard-bearer API for general-purpose scientific visualization 

• Full-fledged data model for structured, unstructured, particle data  

• Marching cubes, cut/clip planes, streamlines, etc. 

• Hundreds of other analysis filters 

• Numerous readers for common scientific formats 

• Call as a library from C++, Java, Python, Tcl/Tk 

• Limitations: 

• no UI  — you need to code (or at least, script) your workflows. 

• data model can be “heavy”, memory-inefficient — but it nearly always works!

http://www.vtk.org


Cell types in VTK

S. Bruckner, “Data Structures in the Visualization Toolkit.”



Attribute types in VTK

S. Bruckner, “Data Structures in the Visualization Toolkit.”



Simple data flow in VTK

S. Bruckner, “Data Structures in the Visualization Toolkit.”



Interpolation



Interpolation
• Converting from discrete to continuous — i.e. grid to field.  

• How do we find the values of points “inside” a grid/mesh? 

• Indirect visualization: how to find vertices of triangles 

• Direct visualization: how to find the value of samples in space 

• i.e., from an explicit grid, we want to evaluate a field f at some 
point x

• The way we do this interpolation is called the filter kernel of 
the field f.



Mesh Choice Impacts How the 
Continuous Data is Interpreted

• Two key questions: 

• Sampling, or the choice of where attributes are measured 

• Interpolation, or how to model the attributes in the rest of space

Interpolate HereInterpolate Here Interpolate Here
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Interpolation
• Continuous reconstruction of               

discrete input data

• Depends on grid structure (when available)
• Interpolation vs. approximation

position

value

F : IRn � IRm

(xi, fi)
⇥i � {1, .., n}, F (xi) = fi



Nearest Neighbor 
Interpolation

• Consider a 1-dimensional, grayscale image I spread horizontally

• What value is I[1.3] ?

I[0] I[1] I[2] I[3] I[4]
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Nearest Neighbor 
Interpolation

• Consider a 1-dimensional, grayscale image I spread horizontally

• What value is I[1.3] ?

• I[1.3] = I[round(1.3)] = I[1]
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Linear Interpolation
• Consider a 1-dimensional, grayscale image I spread horizontally

• What value is I[1.3] ?

I[0] I[1] I[2] I[3] I[4]



Linear Interpolation
• Consider a 1-dimensional, grayscale image I spread horizontally

• What value is I[1.3] ?

I[0] I[1] I[2] I[3] I[4]

I[1.3]



Linear Interpolation
• Consider a 1-dimensional, grayscale image I spread horizontally

• What value is I[1.3] ?

I[0] I[1] I[2] I[3] I[4]

I[1.3]



Linear Interpolation
• Consider a 1-dimensional, grayscale image I spread horizontally

• What value is I[1.3] ?

I[0] I[1] I[2] I[3] I[4]

I[1.3]



Linear Interpolation
• Consider a 1-dimensional, grayscale image I spread horizontally

• What value is I[1.3] ?
• Let s = 1.3 - round(1.3)

I[0] I[1] I[2] I[3] I[4]

I[1.3]



Linear Interpolation
• Consider a 1-dimensional, grayscale image I spread horizontally

• What value is I[1.3] ?
• Let s = 1.3 - round(1.3)
• I[1.3] = 0.7*I[1] + 0.3*I[2] = (1-s)*I[1] + s*I[2]
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Linear Interpolation
• Consider a 1-dimensional, grayscale image I spread horizontally

• What value is I[1.3] ?
• Let s = 1.3 - round(1.3)
• I[1.3] = 0.7*I[1] + 0.3*I[2] = (1-s)*I[1] + s*I[2]

I[0] I[1] I[2] I[3] I[4]

I[1.3]



Linear interpolation

#define lerp(a,b,t)  (1-t) * a + t*b



Bilinear interpolation
Just 3 linear interpolations

#define lerp(a,b,t)  (1-t) * a + t*b 

//Given voxel vertices cXX and the (tx,ty) position within the voxel [0,1]^2  
  

  //lerp along y direction 
  float c00_y = lerp(c00, c01, ty); 
  float c10_y = lerp(c10, c11, ty); 

  //lerp along x direction 
  return lerp(c00_y, c10_y, tx);



Bilinear interpolation



Trilinear interpolation
Just 7 linear interpolations!

#define lerp(a,b,t)  (1-t) * a + t*b 

//Given voxel vertices cXXX and the (tx,ty,tz) position within the voxel [0,1]^3  
  

  //lerp along z direction. 
  float c000_z = lerp(c000, c001, tz); 
  float c010_z = lerp(c010, c011, tz); 
  float c100_z = lerp(c100, c101, tz); 
  float c110_z = lerp(c110, c111, tz); 

  //lerp along y direction 
  float c000_yz = lerp(c000_z, c010_z, ty); 
  float c100_yz = lerp(c100_z, c110_z, ty); 

  //lerp along x direction 
  return lerp(c000_yz, c100_yz, tx);



Isosurfaces from trilinear 
filter kernels



Another formula for trilinear 
interpolation (3D)

Figure 4: The implicit BVH can be heuristically pruned using the preintegrated transfer
function, resulting in a smaller subtree. Similarly, it can detect constant subvolumes and
perform less expensive DVR integration.

built implicit BVH. These optimizations are illustrated in Figure 4,
and detailed in the subsections below.

5.2.1 Empty Space Skipping

The choice of transfer function defines a subtree of the implicit
BVH, which can be used to identify and prune empty regions out-
side the classification. Similarly to how an isosurface lies between
minimum and maximum values of each node of the subtree, in DVR
we can check whether the transfer function contains nonzero opac-
ity for any scalar field value in the min-max range. This is already
encoded in the lookup table of the preintegrated transfer function,
which estimates the integral over a min/max interval. To evaluate
node_is_empty() in Listing 1, we check

ra ( f , f ) > dc, (5)

where f , f denote the minimum and maximum, respectively; ra
is the opacity of the preintegrated transfer function (Equation 4)
over f , f ; and dc is a culling threshold (dc < 1e-3 works well).

5.2.2 Pruning Heuristic

Always traversing to the deepest leaf nodes in the static BVH can
be wasteful. A transfer function can convolve low-frequency trans-
parent regions into high-frequency opaque ones, and vice-versa. In
low-frequency and mostly transparent regions, it is desirable to use
larger bounding boxes, as early termination is less likely and ad-
ditional intersections are redundant. Conversely, in high-frequency
regions we wish to fully traverse the BVH, subdividing as far as
possible and exploiting early termination. To measure this fre-
quency, we divide the average opacity ra of a node by its relative
size. To determine node_is_leaf() in Listing 1, we measure

ra ( f , f )|~Dvolume|/|~Dbox| > dp (6)

where |~Dvolume| is the diagonal diameter of the whole volume,
and |~Dbox| is the diameter of the node. In general, it is best to prune
at one or two levels higher than the original leaf level of the tree.
Aggressive pruning (dp = 1.5) is best for noisy or entropic regions,
while traversing further down (dp = 6) is faster for scenes with
smooth features and surfaces. Choosing multiples of 1.5 roughly
corrects for the diagonal length. While we allow the user to adjust
this value, dp = 1.5 works well as a default.

5.2.3 Constant Subvolume Heuristic

We can also use preintegratation to determine regions of the volume
that are sufficiently low-variance (convolved by the transfer func-
tion) to be treated as constant blocks. This subvolume can then be
integrated by using a far less expensive routine, with neither per-
voxel lookup nor interpolation, and using fast, vertical structure of
array (SOA) SSE operations on 4 rays at a time (per packlet). Since
constant regions have undefined gradient, one can forgo lighting.
When used, this method delivers significant speedup.

Like the pruning metric, the metric for constant subvolume as-
sumption is intrinsic to the transfer function and the min-max val-
ues of the node. We compute the variances in preintegrated opac-
ity as follows, choosing a constant Lb conservatively to prevent

loss of quality. We then evaluate the following heuristic, using the
constant-block integration when it succeeds and the standard DVR
routine when it fails, as shown with constant_subvolume() in Listing 1:

sup{|ra ( f , f )�ra ( f , f )|, |ra ( f , f )�ra ( f , f )|} < dsv (7)

Relatively small dsv < 1e-4 consistently produce good results
without removing visible features. This metric can be precomputed
and queried alongside the preintegrated table, though it is inexpen-
sive to compute on the fly as well.

This optimization improves efficiency in scenes with homoge-
neous space, such as the uniform regions in Figure 1. When ho-
mogeneous regions are nonexistent or smaller than BVH leaves,
one could still employ adaptive sampling, either per-node [11] or
per-sample [14]. Such approaches are left outside the scope of this
work, but are a promising avenue for performance gains.

6 SSE DVR INTEGRATION

Most SIMD-optimized ray tracers, including our coherent BVH
system, store vectors as vertical structures of arrays (SOA), where
direction vectors for a packlet (4 rays) are represented as three
SSE registers, and computations are performed for that packlet in
SIMD. This approach is efficient for most geometric primitives, in-
cluding our constant subvolumes, in which numerous rays inter-
sect the same object. However, DVR frequently projects multiple
voxels to the same pixel, causing SIMD under-utilization with the
SOA paradigm. Fortunately, DVR integration operates primarily
on 4-vector positions ({x,y,z,t}) and colors ({r,g,b,a}). We thus em-
ploy horizontal SSE vector arithmetic operating on one ray at a
time, using the array of structures (AOS) paradigm. From coherent
BVH traversal, we simply convert from vertical SOA to individual
rays using 4 SSE swizzle operations, computing a mask indicating
which rays in the packlet are active. Then we iterate over the pack-
let, performing DVR for each active ray. Explicit C++ code is given
in Listing 2 in the appendix.

6.1 Memory Layout and Interpolation

Reducing the computational and memory access costs of interpola-
tion is the first target for optimization in DVR integration. Trilinear
Lagrangian interpolation takes the form:

f (x,y,z) = Â
i, j,k={0,1}

xiy jzk vi jk, (8)

where (i, j,k) is the coordinate of the voxel vertex, vi jk is the
value at the vertex, x0 = i+1�x, x1 = x� i, and similarly for y and
z with respect to j,k. Naive implementation requires over 32 muls,
34 adds, 3 casts, and 8 voxel address translations. Many of these
computations are redundant or can be optimized with SIMD.

To mitigate cache thrashing and decouple performance from axis
alignment, we employ a simple bricking scheme described in [16],
which decomposes the volume into blocks aligned to match page
(64 byte) and L1 cache (32K) sizes. This yields chunks of 43 vox-
els, which are convenient for multiples of L = 4. We store pointers
to the X,Y and Z tables of this structure (ls. 53-55) and index into
these tables given the 6 lower and upper voxel indices (ls. 83-89).
We permutatively add these indices to retrieve the 8 voxel vertices,
storing them in two integer SSE registers (ls. 91-92).

Rather than employ successive linear interpolations [9], we
achieve 15% faster performance by exploiting SSE swizzling to
generate the xiy jzk permutations with only 3 mul_ps operations and
one add_ps. We combine common y,z terms to get a single SSE vec-
tor with the summed x0 and x1 components. With an SSE4.1 dot
product instruction we can accomplish both multiplication and hor-
izontal addition in a single instruction, followed by an SSE integer
cast (ls.98-100). On older CPU’s, we use an SSE multiplication, an
SSE integer cast and 3 scalar int additions. Though an approxima-
tion, it is as fast as the dot product and yields no loss in quality.
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perform less expensive DVR integration.

built implicit BVH. These optimizations are illustrated in Figure 4,
and detailed in the subsections below.

5.2.1 Empty Space Skipping

The choice of transfer function defines a subtree of the implicit
BVH, which can be used to identify and prune empty regions out-
side the classification. Similarly to how an isosurface lies between
minimum and maximum values of each node of the subtree, in DVR
we can check whether the transfer function contains nonzero opac-
ity for any scalar field value in the min-max range. This is already
encoded in the lookup table of the preintegrated transfer function,
which estimates the integral over a min/max interval. To evaluate
node_is_empty() in Listing 1, we check

ra ( f , f ) > dc, (5)

where f , f denote the minimum and maximum, respectively; ra
is the opacity of the preintegrated transfer function (Equation 4)
over f , f ; and dc is a culling threshold (dc < 1e-3 works well).

5.2.2 Pruning Heuristic

Always traversing to the deepest leaf nodes in the static BVH can
be wasteful. A transfer function can convolve low-frequency trans-
parent regions into high-frequency opaque ones, and vice-versa. In
low-frequency and mostly transparent regions, it is desirable to use
larger bounding boxes, as early termination is less likely and ad-
ditional intersections are redundant. Conversely, in high-frequency
regions we wish to fully traverse the BVH, subdividing as far as
possible and exploiting early termination. To measure this fre-
quency, we divide the average opacity ra of a node by its relative
size. To determine node_is_leaf() in Listing 1, we measure

ra ( f , f )|~Dvolume|/|~Dbox| > dp (6)

where |~Dvolume| is the diagonal diameter of the whole volume,
and |~Dbox| is the diameter of the node. In general, it is best to prune
at one or two levels higher than the original leaf level of the tree.
Aggressive pruning (dp = 1.5) is best for noisy or entropic regions,
while traversing further down (dp = 6) is faster for scenes with
smooth features and surfaces. Choosing multiples of 1.5 roughly
corrects for the diagonal length. While we allow the user to adjust
this value, dp = 1.5 works well as a default.

5.2.3 Constant Subvolume Heuristic

We can also use preintegratation to determine regions of the volume
that are sufficiently low-variance (convolved by the transfer func-
tion) to be treated as constant blocks. This subvolume can then be
integrated by using a far less expensive routine, with neither per-
voxel lookup nor interpolation, and using fast, vertical structure of
array (SOA) SSE operations on 4 rays at a time (per packlet). Since
constant regions have undefined gradient, one can forgo lighting.
When used, this method delivers significant speedup.

Like the pruning metric, the metric for constant subvolume as-
sumption is intrinsic to the transfer function and the min-max val-
ues of the node. We compute the variances in preintegrated opac-
ity as follows, choosing a constant Lb conservatively to prevent

loss of quality. We then evaluate the following heuristic, using the
constant-block integration when it succeeds and the standard DVR
routine when it fails, as shown with constant_subvolume() in Listing 1:

sup{|ra ( f , f )�ra ( f , f )|, |ra ( f , f )�ra ( f , f )|} < dsv (7)

Relatively small dsv < 1e-4 consistently produce good results
without removing visible features. This metric can be precomputed
and queried alongside the preintegrated table, though it is inexpen-
sive to compute on the fly as well.

This optimization improves efficiency in scenes with homoge-
neous space, such as the uniform regions in Figure 1. When ho-
mogeneous regions are nonexistent or smaller than BVH leaves,
one could still employ adaptive sampling, either per-node [11] or
per-sample [14]. Such approaches are left outside the scope of this
work, but are a promising avenue for performance gains.

6 SSE DVR INTEGRATION

Most SIMD-optimized ray tracers, including our coherent BVH
system, store vectors as vertical structures of arrays (SOA), where
direction vectors for a packlet (4 rays) are represented as three
SSE registers, and computations are performed for that packlet in
SIMD. This approach is efficient for most geometric primitives, in-
cluding our constant subvolumes, in which numerous rays inter-
sect the same object. However, DVR frequently projects multiple
voxels to the same pixel, causing SIMD under-utilization with the
SOA paradigm. Fortunately, DVR integration operates primarily
on 4-vector positions ({x,y,z,t}) and colors ({r,g,b,a}). We thus em-
ploy horizontal SSE vector arithmetic operating on one ray at a
time, using the array of structures (AOS) paradigm. From coherent
BVH traversal, we simply convert from vertical SOA to individual
rays using 4 SSE swizzle operations, computing a mask indicating
which rays in the packlet are active. Then we iterate over the pack-
let, performing DVR for each active ray. Explicit C++ code is given
in Listing 2 in the appendix.

6.1 Memory Layout and Interpolation

Reducing the computational and memory access costs of interpola-
tion is the first target for optimization in DVR integration. Trilinear
Lagrangian interpolation takes the form:

f (x,y,z) = Â
i, j,k={0,1}

xiy jzk vi jk, (8)

where (i, j,k) is the coordinate of the voxel vertex, vi jk is the
value at the vertex, x0 = i+1�x, x1 = x� i, and similarly for y and
z with respect to j,k. Naive implementation requires over 32 muls,
34 adds, 3 casts, and 8 voxel address translations. Many of these
computations are redundant or can be optimized with SIMD.

To mitigate cache thrashing and decouple performance from axis
alignment, we employ a simple bricking scheme described in [16],
which decomposes the volume into blocks aligned to match page
(64 byte) and L1 cache (32K) sizes. This yields chunks of 43 vox-
els, which are convenient for multiples of L = 4. We store pointers
to the X,Y and Z tables of this structure (ls. 53-55) and index into
these tables given the 6 lower and upper voxel indices (ls. 83-89).
We permutatively add these indices to retrieve the 8 voxel vertices,
storing them in two integer SSE registers (ls. 91-92).

Rather than employ successive linear interpolations [9], we
achieve 15% faster performance by exploiting SSE swizzling to
generate the xiy jzk permutations with only 3 mul_ps operations and
one add_ps. We combine common y,z terms to get a single SSE vec-
tor with the summed x0 and x1 components. With an SSE4.1 dot
product instruction we can accomplish both multiplication and hor-
izontal addition in a single instruction, followed by an SSE integer
cast (ls.98-100). On older CPU’s, we use an SSE multiplication, an
SSE integer cast and 3 scalar int additions. Though an approxima-
tion, it is as fast as the dot product and yields no loss in quality.
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built implicit BVH. These optimizations are illustrated in Figure 4,
and detailed in the subsections below.

5.2.1 Empty Space Skipping

The choice of transfer function defines a subtree of the implicit
BVH, which can be used to identify and prune empty regions out-
side the classification. Similarly to how an isosurface lies between
minimum and maximum values of each node of the subtree, in DVR
we can check whether the transfer function contains nonzero opac-
ity for any scalar field value in the min-max range. This is already
encoded in the lookup table of the preintegrated transfer function,
which estimates the integral over a min/max interval. To evaluate
node_is_empty() in Listing 1, we check

ra ( f , f ) > dc, (5)

where f , f denote the minimum and maximum, respectively; ra
is the opacity of the preintegrated transfer function (Equation 4)
over f , f ; and dc is a culling threshold (dc < 1e-3 works well).

5.2.2 Pruning Heuristic

Always traversing to the deepest leaf nodes in the static BVH can
be wasteful. A transfer function can convolve low-frequency trans-
parent regions into high-frequency opaque ones, and vice-versa. In
low-frequency and mostly transparent regions, it is desirable to use
larger bounding boxes, as early termination is less likely and ad-
ditional intersections are redundant. Conversely, in high-frequency
regions we wish to fully traverse the BVH, subdividing as far as
possible and exploiting early termination. To measure this fre-
quency, we divide the average opacity ra of a node by its relative
size. To determine node_is_leaf() in Listing 1, we measure

ra ( f , f )|~Dvolume|/|~Dbox| > dp (6)

where |~Dvolume| is the diagonal diameter of the whole volume,
and |~Dbox| is the diameter of the node. In general, it is best to prune
at one or two levels higher than the original leaf level of the tree.
Aggressive pruning (dp = 1.5) is best for noisy or entropic regions,
while traversing further down (dp = 6) is faster for scenes with
smooth features and surfaces. Choosing multiples of 1.5 roughly
corrects for the diagonal length. While we allow the user to adjust
this value, dp = 1.5 works well as a default.

5.2.3 Constant Subvolume Heuristic

We can also use preintegratation to determine regions of the volume
that are sufficiently low-variance (convolved by the transfer func-
tion) to be treated as constant blocks. This subvolume can then be
integrated by using a far less expensive routine, with neither per-
voxel lookup nor interpolation, and using fast, vertical structure of
array (SOA) SSE operations on 4 rays at a time (per packlet). Since
constant regions have undefined gradient, one can forgo lighting.
When used, this method delivers significant speedup.

Like the pruning metric, the metric for constant subvolume as-
sumption is intrinsic to the transfer function and the min-max val-
ues of the node. We compute the variances in preintegrated opac-
ity as follows, choosing a constant Lb conservatively to prevent

loss of quality. We then evaluate the following heuristic, using the
constant-block integration when it succeeds and the standard DVR
routine when it fails, as shown with constant_subvolume() in Listing 1:

sup{|ra ( f , f )�ra ( f , f )|, |ra ( f , f )�ra ( f , f )|} < dsv (7)

Relatively small dsv < 1e-4 consistently produce good results
without removing visible features. This metric can be precomputed
and queried alongside the preintegrated table, though it is inexpen-
sive to compute on the fly as well.

This optimization improves efficiency in scenes with homoge-
neous space, such as the uniform regions in Figure 1. When ho-
mogeneous regions are nonexistent or smaller than BVH leaves,
one could still employ adaptive sampling, either per-node [11] or
per-sample [14]. Such approaches are left outside the scope of this
work, but are a promising avenue for performance gains.

6 SSE DVR INTEGRATION

Most SIMD-optimized ray tracers, including our coherent BVH
system, store vectors as vertical structures of arrays (SOA), where
direction vectors for a packlet (4 rays) are represented as three
SSE registers, and computations are performed for that packlet in
SIMD. This approach is efficient for most geometric primitives, in-
cluding our constant subvolumes, in which numerous rays inter-
sect the same object. However, DVR frequently projects multiple
voxels to the same pixel, causing SIMD under-utilization with the
SOA paradigm. Fortunately, DVR integration operates primarily
on 4-vector positions ({x,y,z,t}) and colors ({r,g,b,a}). We thus em-
ploy horizontal SSE vector arithmetic operating on one ray at a
time, using the array of structures (AOS) paradigm. From coherent
BVH traversal, we simply convert from vertical SOA to individual
rays using 4 SSE swizzle operations, computing a mask indicating
which rays in the packlet are active. Then we iterate over the pack-
let, performing DVR for each active ray. Explicit C++ code is given
in Listing 2 in the appendix.

6.1 Memory Layout and Interpolation

Reducing the computational and memory access costs of interpola-
tion is the first target for optimization in DVR integration. Trilinear
Lagrangian interpolation takes the form:

f (x,y,z) = Â
i, j,k={0,1}

xiy jzk vi jk, (8)

where (i, j,k) is the coordinate of the voxel vertex, vi jk is the
value at the vertex, x0 = i+1�x, x1 = x� i, and similarly for y and
z with respect to j,k. Naive implementation requires over 32 muls,
34 adds, 3 casts, and 8 voxel address translations. Many of these
computations are redundant or can be optimized with SIMD.

To mitigate cache thrashing and decouple performance from axis
alignment, we employ a simple bricking scheme described in [16],
which decomposes the volume into blocks aligned to match page
(64 byte) and L1 cache (32K) sizes. This yields chunks of 43 vox-
els, which are convenient for multiples of L = 4. We store pointers
to the X,Y and Z tables of this structure (ls. 53-55) and index into
these tables given the 6 lower and upper voxel indices (ls. 83-89).
We permutatively add these indices to retrieve the 8 voxel vertices,
storing them in two integer SSE registers (ls. 91-92).

Rather than employ successive linear interpolations [9], we
achieve 15% faster performance by exploiting SSE swizzling to
generate the xiy jzk permutations with only 3 mul_ps operations and
one add_ps. We combine common y,z terms to get a single SSE vec-
tor with the summed x0 and x1 components. With an SSE4.1 dot
product instruction we can accomplish both multiplication and hor-
izontal addition in a single instruction, followed by an SSE integer
cast (ls.98-100). On older CPU’s, we use an SSE multiplication, an
SSE integer cast and 3 scalar int additions. Though an approxima-
tion, it is as fast as the dot product and yields no loss in quality.

is the value of the voxel at that vertex.



General interpolation (3D)

Where the B(x) is a general basis function, v is 
the voxel.

f(x, y, z) =
X

i,j,k

Bi(x)Bj(y)Bk(z)vijk



Trilinear vs B-spline filtering 
for volume rendering

trilinear tri - cubic-B-spline



Next Tuesday lecture

• Volume rendering.


