CS-5630 / CS-6630 Uisualization Design Guidelines; Tasks

Alexander Lex <u>alex@sci.utah.edu</u>

Design Guidelines

Rule #1: Use the Best Uisual Channel Available for the Most Important Aspect of your Data

Book Recommendation

Great book with simple design guidelines

Not a "Visualization" book, but a "charting" book

Edward Tufte

graphical integrity and excellence

(d) We want to subtract Class of the definition of the second state of the definition of the second state of the second second state of the second state of the second state of the second second state of the second state of the second state of the second second state of the second state of the second state of the second second state of the second state of the second state of the second state second state of the second state of the second state of the second state second state of the second state of the second state of the second state second state of the second state second state of the second sta

Design Excellence

"Well-designed presentations of interesting data are a matter of substance, of statistics, and of design."

Tufte: SparklinesTM

Where the Race Has Shifted

To understand what is driving the national trend, it's worth taking a look at the states where the winning probabilities have changed most over the last two weeks:

every time you make a powerpoint

Graphical Integrity

Magnitude in data must correspond to magnitude of mark

Flowing Data

Scale Distortions

Viele Bezieher mit "ungeklärter Staatsbürgerschaft"

Die größte Gruppe in der Liste der Mindestsicherungsbezieher ist aber jene der "ungeklärten Staatsbürgerschaft". Dass es sich bei den 16.712 Personen um

Viele Bezieher mit "ungeklärter Staatsbürgerschaft"

Die größte Gruppe in der Liste der Mindestsicherungsbezieher ist aber jene der "ungeklärten Staatsbürgerschaft". Dass es sich bei den 16.712 Personen um

Viele Bezieher mit "ungeklärter Staatsbürgerschaft" Die größte Gruppe in der Liste der Mindestsicherungsbezieher ist aber jene der

Stre

Mes

Abe

"ungeklärten Staatsbürgerschaft". Dass es sich bei den 16.712 Personen um

Grafik der Kronenzeitung

Zusätzlich geht die Mindestsicherung in Wien auch an 1314 Deutsche, 369 Italiener, 66 Schweden, 59 Schweizer, zehn Kanadier, dazu an einen Liechtensteiner, einen Isländer sowie an einen Bürger von Andorra.

Viele Bezieher mit "ungeklärter Staatsbürgerschaft" Die größte Gruppe in der Liste der Mindestsicherungsbezieher ist aber jene der "ungeklärten Staatsbürgerschaft". Dass es sich bei den 16.712 Personen um

Start Scales at 0?

A. Kriebel, VizWiz

Scales at 0

Global Warming?

Global Warming?

Temperature Anomaly -- Annual Mean (°C)

Global Warming - Frame the Data

Temperature Anomaly -- Annual Mean (°C)

HOW 2012 STACKS UP

THE WARMEST YEARS ON RECORD

CONTIGUOUS U.S.

Scale Distortions

Temporal Data

EL BY RANDOM QUARTER																
								_	_	_	_	_	-	-	•	
1	•	-	~													
8	- 60-1	109	y-09 -	- 60 v	1001	- 60 6	- 69.1	69	+ 60-A	- 8	n-10 -	> 10 -	- 01-1	610 -	10+	A.10.

The Lie Factor Size of effect shown in graphic

Size of effect in data

Tufte,VDQI

The Lie Factor $\frac{5.3 - 0.6}{0.6} / \frac{27.5 - 18}{18} = 14.8$ (Size of effect in graphic)/(size of effect in data)

This line, representing 18 miles per gallon in 1978, is 0.6 inches long.

This line, representing 27.5 miles per gallon in 1985, is 5.3 inches long.

Tufte's Integrity Principles

- Show data variation, not design variation
- Clear, detailed, and thorough labeling and appropriate scales
- Size of the graphic effect should be directly proportional to the numerical quantities ("lie factor")

Death to Pie Charts

" 'I hate pie charts. I mean, really hate them."

www.storytellingwithdata.com/2011/07/death-to-pie-charts.html

Share of coverage on TechCrunch

Cole Nussbaumer

Redesign

TechCrunch Coverage: 2005 - 2011

A slightly better pie?

TechCrunch Coverage: 2005 - 2011 Bars are best!

	General Consumer Web		23%
Cleantech, 1%	Social Networks	12%	
	Search	10%	
	Mobile	9%	
	Softward	8%	
	Entertainment	6%	
	Hardware	6%	
%	E-Commerce	5%	
	Advertising	3%	
	Video	3%	
orks, 12%	No Category	3%	
	Enterprise	2%	
	Other	2%	
	News	2%	
10	Music	1%	
	Network/Hosting	1%	
	Investor	1%	
	PR	1%	
	Cleantech	1%	

Can you spot the differences?

Can you spot the differences?

в

С

My favorite pie chart

Sunny side of pyramid

Shady side of pyramid

My second favorite pie chart

So, what to use instead?

science?

imagine you just completed a pilot summer learning program on science aimed at improving perceptions of the field among 2nd and 3rd grade elementary children

http://www.storytellingwithdata.com/blog/2014/06/alternatives-to-pies

Alternative #1: Show the Number(s) Directly

After the pilot program,

of kids expressed interest towards science,

compared to 44% going into the program.

Alternative #2: Simple Bar Graph

How do you feel about science?

BEFORE program, the majority of children felt just *OK* about science

Alternative #3: 100% Stacked Horizontal Bar Graph

How do you feel about science?

OK		Kind of	interes	Excited			
%	50%	60%	70%	80%	90%	100%	
Alternative #4: Slopegraph

How do you feel about science?

Uisualization Design Principles

Maximize Data-Ink Ratio

0-\$24,999

\$25,000+

Maximize Data-Ink Ratio

Females

\$25,000+

Avoid Chartjunk Extraneous visual elements that distract from the message

ongoing, Tim Brey

ongoing, Tim Brey

Which is better?

[Bateman et al. 2010]

Which is better?

[Bateman et al. 2010]

https://eagereyes.org/criticism/chart-junk-considered-useful-after-all

Useful Junk? The Effects of Visual Embellishment on Comprehension and Memorability of Charts

Scott Bateman, Regan L. Mandryk, Carl Gutwin, Aaron Genest, David McDine, Christopher Brooks

Department of Computer Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada scott.bateman@usask.ca, regan@cs.usask.ca, gutwin@cs.usask.ca, aaron.genest@usask.ca, dam085@mail.usask.ca, cab938@mail.usask.ca

ABSTRACT

Guidelines for designing information charts often state that Despite these minimalist guidelines, many designers the presentation should reduce 'chart junk' - visual include a wide variety of visual embellishments in their embellishments that are not essential to understanding the charts, from small decorations to large images and visual data. In contrast, some popular chart designers wrap the backgrounds. One well-known proponent of visual presented data in detailed and elaborate imagery, raising the embellishment in charts is the graphic artist Nigel Holmes, questions of whether this imagery is really as detrimental to whose work regularly incorporates strong visual imagery understanding as has been proposed, and whether the visual into the fabric of the chart [7] (e.g., Figure 1). embellishment may have other benefits. To investigate MONSTROUS COSTS these issues, we conducted an experiment that compared Total House and Senate embellished charts with plain ones, and measured both campaign expenditures, in millions interpretation accuracy and long-term recall. We found that people's accuracy in describing the embellished charts was no worse than for plain charts, and that their recall after a two-to-three-week gap was significantly better. Although we are cautious about recommending that all charts be produced in this style, our results question some of the premises of the minimalist approach to chart design.

Author Keywords

Charts, information visualization, imagery, memorability.

ACM Classification Keywords

H5.m. Information interfaces and presentation (e.g., HCI): Miscellaneous.

General Terms

Design, Human Factors

INTRODUCTION

Many experts in the area of chart design, such as Edward Tufte, criticize the inclusion of visual embellishment in charts and graphs; their guidelines for good chart design often suggest that the addition of *chart junk*, decorations and other kinds of non-essential imagery, to a chart can make interpretation more difficult and can distract readers from the data [22]. This *minimalist* perspective advocates data-ink - or the ink in the chart used to represent data.

EXPERIMENTAL RESULTS

- 1. No difference for interpretation accuracy
- 2. No difference in recall accuracy after a five-minute gap
- 3. Significantly **better recall for Holmes charts** of both the chart topic and the details (categories and trend) **after long-term gap** (2-3 weeks).
- 4. Participants **saw value messages** in the Holmes charts significantly more often than in the plain charts.
- 5. Participants found the Holmes charts more attractive, most enjoyed them, and found that they were easiest and fastest to remember.

Use Chart Junk? It depends!

PROS persuasion memorability engagement CONS unbiased analysis trustworthiness interpretability space efficiency

Don't

matplotlib gallery

Excel Charts Blog

- White: 6584
- Black: 2356
- Asian: 1161
- Mixed Race: 508
- NS (Not Stated): 1046
- Other: 124

Don't

Convictions in England and Wales for class A drug supply.

Alignment Matters

Who Lies More: A Comparison

PolitiFact, an independent fact-checking website, has graded more than 50 statements since 2007 from each of these candidates. Here is how they rank.

No Unjustified 3D Depth judgment is bad N = 0.67 Sensation=Intensity^N Occlusion **Perspective Distortion** Color: Lighting / Shadows / Shading Tilted Text illegible

Steven's Psychophysical Power Law: S= I^N

Example: Hierarchy Visualization

[F. van Ham ; J.J. van Wijk, 2002]

Eyes Beat Memory

Don't make people memorize: Show them

USA and Japan Fertility Over Time

Creator: Stephen Holzman

http://www.randalolson.com/2015/08/23/small-multiples-vs-animated-gifs-for-showing-changes-in-fertility-rates-over-time/

Source: Human Fertility Database

Eyes Beat Memory: Small Multiples

A lot of charts Do we need all of them?

Eyes Beat Memory: Small Multiples

Author: Randy Olson (randalolson.com / @randal_olson)

Simplify!

Data source: Human Fertility Database (humanfertility.org) Author: Randy Olson (randalolson.com / @randal_olson) Data source: Human Fertility Database (humanfertility.org) Author: Randy Olson (randalolson.com / @randal_olson)

Design Critique / Redesign

https://goo.gl/IHWp4x

Sunday Star Times, 2012

Quantity encoded by diameter, not area! Fixing that:

2011

But is this visual encoding appropriate in the first place?

2011

Tasks Why are we using Visualization?

Domain and Abstract Tasks

Infinite numbers of domain tasks Can be broken down into simpler abstract tasks We know how to address the abstract tasks!

Identify task - data combination: solutions probably exist

Tasks

Analyze high-level choices consume vs produce Search find a known/unknown item Query find out about characteristics of item by itself or relative to others

Example 1

Find good universities with a high faculty student ratio.

- Identify high-ranked universities
- In this subset: **compare** universities & **identify** high faculty student ratio
- OR
 - **Derive** a ranking with a high weight for faculty student ratio

Example 2

- Contrast Harvard's reputation scores with MIT's
- Match up Harvard with Yale
 - First, **find** Harvard and Yale, then **compare** their (two) reputation scores

Example 3

Find a combination of weights and parameters where Harvard is better than MIT

Produce a new dataset by **deriving** from the input parameters

		World University Ranking						5.0			
R	ank	School Name	Country	Academic reputation	Empl	Faculty/stu	Citations p	In	In	QS Stars	۵
		Filter: <none></none>	Filter: <none></none>		h.	L	I		l.		
	1.	Massachusetts Institute of Technology (M	United States							*****	2
	2.	Harvard University	United States							*****	2
	3.	University of Cambridge	United Kingdom							*****	r
	4.	UCL (University College London)	United Kingdom								
	5.	Imperial College London	United Kingdom								
	6.	University of Oxford	United Kingdom							*****	2
	7.	Stanford University	United States							*****	2
	8.	Yale University	United States							*****	2
	9.	University of Chicago	United States							*****	r
	10.	Princeton University	United States							*****	2
	11.	California Institute of Technology (Caltech	United States							*****	r
	12.	ETH Zurich (Swiss Federal Institute of Te	Switzerland								
	13.	University of Pennsylvania	United States							*****	r
	14.	Columbia University	United States							*****	2
	15.	Cornell University	United States							*****	2

Result

High-level actions: Analyze

 \rightarrow Consume discover vs present classic split: explore vs explain enjoy: casual, social **Produce** Annotate, record Derive: crucial design choice

Analyze

→ Discover

- → Produce
 - → Annotate

→ Record → Derive

Example: Annotate

Example: Derive

Boston Snow Accumulation Distribution by Month

Example: Derive

	Country	Club	Club Continent
Ronaldo	Portugal	Real Madrid	Europe
Lahm	Germany	Bayern München	Europe
Robben	Netherlands	Bayern München	Europe
Khedira	Germany	Real Madrid	Europe
Phogba	Italy	Juventus	Europe
Messi	Argentina	Barcelona	Europe

Actions: Mid-level search, lowlevel query Search (\rightarrow) what does user know? target, location

how much of the data matters?

one, some, all

	Target known	Target unkno
Location known	• • • Lookup	• • • Brows
Location unknown	Coco Locate	C O Explo

Example Compare (& Derive)

Greece's GDP

Economist.com

Why: Targets

- → Many
 - → Dependency

 \rightarrow Correlation

Examples

Trends: How did the job market develop since the recession overall?

Outliers: Looking at real estate related jobs

A Long Housing Bust

Home prices have rebounded from their crisis lows, but home building remains at historically low levels. Overall, industries connected with construction and real estate have lost 19 percent of their jobs since the recession began — hundreds of thousands more than health care has added. NEXT »

How? A Preview

