CS-5630 / CS-6630 Visualization Graphs Alexander Lex alex@sci.utah.edu

Applications of Graphs

Deutschland

/erwandte Suchbegriffe Mehr Text

Bill Gates
ent - Like
unway, · Comment
s awesome? Like
e a tampon.

	Sales and	orburt per
	.xpz	TONE
and a second		
)
1	Tarrent.	(arrest)
	10	The second
	in the second	BATHER, S
	ST.	ALL
CLANDONC .	(140440)	a.free, c.e.
Line .	-	
1. mer -	AUTOR	CROMINES GA
THE OF	5	
s *	100	
- Hits	E	-[-
dels date	- says	36C 36C
	6.000	
lő.		
All in the second second	- 2-	Ē
		ed a tax

-	1.7	洞	644	n,Bjo
/	/		1	
1			Ç44	다른다
		10	F	-
	iller:	-FE V	57	n E.o
2		1	257	175
- Ar		And in case		

	Contract,			
200375		-	1412	7 -202
	A			T.
ered	ъ÷_		5.4	1
	-	-	Contraction of	10 100
	-	- 1	100	

ACCREDING .

10

ana 2, an	Parimeters.	
÷.		AUTON E
N.		Su an
times.	- F	L.
- Al		

Graph Visualization Case Study

Graph Theory Fundamentals

Hypergraph

Bipartite Graph

Königsberg Bridge Problem (1736)

Want to make \$1 million? Find an O(n^k) algorithm to find Hamiltonian Paths (path that visits each vertex exactly once) - example of P vs. NP problem.

Graph Terms (1)

A graph **G(V,E)** consists of a set of **vertices V** (also called nodes) and a

set of **edges E** connecting these vertices.

Graph Terms (2)

A simple graph G(V,E) is a graph which contains **no multi-edges** and **no loops**

Not a simple graph!→ A *general graph*

Graph Terms (3)

A directed graph (digraph) is a graph that discerns between the edges $A \rightarrow B$ and $A \rightarrow B$.

A hypergraph is a graph with edges connecting any number of vertices.

Hypergraph Example

Graph Terms (4)

Independent Set G contains no edges

Clique G contains all possible edges

Independent Set

Clique

Graph Terms (5)

Path G contains only edges that can be consecutively traversed

Tree G contains no cycles

Network G contains cycles

Path

Graph Terms (6)

Unconnected graph An edge traversal starting from a given vertex cannot reach any other vertex.

Articulation point

Vertices, which if deleted from the graph, would break up the graph in multiple sub-graphs.

Unconnected Graph

Articulation Point (red)

Graph Terms (7)

Biconnected graph A graph without articulation points.

Bipartite graph The vertices can be partitioned in two independent sets.

Bipartite Graph

Tree A graph with no cycles - or: **A collection of nodes** contains a root node and 0-n subtrees subtrees are connected to root by an edge

Binary Trees Contains no nodes, or Is comprised of three disjoint sets of nodes: a root node, a binary tree called its left subtree, and a binary tree called its right subtree

Different Kinds of Graphs

Over 1000 different graph classes

A. Brandstädt et al. 1999

Graph Measures

Node degree deg(x) The number of edges being incident to this node. For

Diameter of graph G The longest shortest path within G.

Pagerank

count number & quality of links

directed graphs indeg/outdeg are considered separately.

Graph Algorithms (1)

Traversal: Breadth First Search, Depth First Search

- generates neighborhoods
- hierarchy gets rather wide than deep
- solves single-source shortest paths (SSSP)

- classical way-finding/back-tracking strategy
- tree serialization
- topological ordering

Hard Graph Algorithms (NP-Complete)

- Longest path
- Largest clique
- Maximum independent set (set of vertices in a graph, no two of which are adjacent)
- Maximum cut (separation of vertices in two sets that cuts most edges)
- Hamiltonian path/cycle (path that visits all vertexes once)
- Coloring / chromatic number (colors for vertices where no adjacent v. have same color)
- Minimum degree spanning tree

Graph and Tree Visualization

Setting the Stage

How to decide which **representation** to use for which **type of** graph in order to achieve which kind of goal?

Different Kinds of Tasks/Goals

- **Localize** find a single or multiple nodes/edges that fulfill a given property • ABT: Find the edge(s) with the maximum edge weight.
 - TBT: Find all adjacent nodes of a given node.

Quantify – count or estimate a numerical property of the graph

- ABT: Give the number of all nodes.
- TBT: Give the indegree (the number of incoming edges) of a node.

- Sort/Order enumerate the nodes/edges according to a given criterion • ABT: Sort all edges according to their weight.
 - TBT: Traverse the graph starting from a given node.

Two principal types of tasks: attribute-based (ABT) and topology-based (TBT)

Three Types of Graph Representations

Explicit (Node-Link)

Matrix

Implicit

Explicit Graph Representations

Node-link diagrams: vertex = point, edge = line/arc

Criteria for Good Node-Link Layout

Minimized edge crossings Minimized **distance** of neighboring nodes Minimized drawing area Uniform edge length Minimized edge **bends** Maximized angular distance between different edges Aspect ratio about 1 (not too long and not too wide) Symmetry: similar graph structures should look similar

list adapted from Battista et al. 1999

Conflicting Criteria

Minimum number of edge crossings

VS.

Uniform edge length

Schulz 2004

Force Directed Layouts

Physics model: edges = springs, vertices = repulsive magnets in practice: damping

Computationally ^{Expander} (pushing nodes apart) expensive: O(n³) Limit (interactive): ~1000 nodes

(pulling nodes together)

Giant Hairball

Adress Computational Scalability: Multilevel Approaches

[Schulz 2004]

Abstraction/Aggregation

30k nodes

Collapsible Force Layout

Supernodes: aggregate of nodes

manual or algorithmic clustering

HOLA: Human-like Orthogonal Layout Study how humans lay-out a graph Try to emulate layout

Left: human, middle: conventional algo, right new algo

Graph 1

Initial

 $\bar{\mu}_1 = 0.00$

 $\tilde{\mu}_1=0.00$

 $\bar{\mu}_1 = 0.00$

Graph 2

 $\bar{\mu}_1 = 0.02$

 $\bar{\mu}_1 = 0.02$

 $\bar{\mu}_1 = 0.09$

Graph 3

 $P_1 = 0.00$

 $\mu_1 = 0.00$

 $\mu_1 = 0.00$

 $\bar{\mu}_1 = 0.00$

Graph 5

Human 2nd

Human 1st

yFiles

HOLA

 $\hat{\mu}_2 = 0.48$

 $\bar{\mu}_1=0.51,\,\bar{\mu}_2=0.41$

 $\bar{\mu}_1=0.25,\,\bar{\mu}_2=0.21$

 $\bar{\mu}_2 = 0.49$

 $P_1 = 0.59$

 $\hat{\mu}_1 = 0.58$

 $\mu_1=0.33,\,\mu_2=0.10$

 $\hat{\mu}_1 = 0.59$, $\hat{\mu}_2 = 0.59$

 $\bar{\mu}_1=0.21,\,\bar{\mu}_2=0.11$

Styled / Restricted Layouts

Circular Layout Node ordering **Edge Clutter**

ca. 3% of all possible edges

ca. 6,3% of all possible edges
Example: MizBee

[Meyer et al. 2009]

Reduce Clutter: Edge Bundling

Bundling Strength

Holten et al. 2006

Fixed Layouts

Can't vary position of nodes Edge routing important

Bundling Strength

tension: -

mbostock.github.com/d3/talk/20111116/bundle.html

Michael Bostock

Explicit Tree Visualization

Reingold– Tilford layout

http://billmill.org/pymagtrees/

Tree Interaction, Tree Comparison

Multivariate Graphs

Node Attributes

Coloring Glyphs -> Limited in scalability

Small Multiples

Cerebral [Barsky, 2008] Each dimension in its own window

Data-driven node positioning

GraphDice Nodes are laid out according to attribute values

[Bezerianos et al, 2010]

Path Extraction & Multiple Views

Experimental Data and

Pathways

[Partl, BioVis '12]

real-world data mutation, etc.

- **Cannot account for variation found in**
- **Branches can be (in)activated due to**

 - changed gene expression,
 - modulation due to drug treatment,

How to visualize experimental data on pathways?

Many Node Attributes

Node	Sample 1	Sample 2	Sample 3	•••
Α	0.55	0.95	0.83	•••
В	0.12	0.42	0.16	•••
С	0.33	0.65	0.38	•••
•••	•••	•••	•••	

Node	Sample 1	Sample 2	Sample 3	•••
Α	low	low	very high	•••
В	normal	low	high	•••
С	high	very low	normal	•••
•••	•••	•••	•••	

F

Good Old Color Coding

- 4.2 5.1 4.2 -3.4 Α
- 1.8 1.3 1.1 B 2.8
- -2.2 2.4 2.2 3.1 С
- -3 -2.8 1.6 1.0 D
- 0.3 -1.1 1.3 Ε 0.5
 - 0.3 1.8 -0.3 0.3

Challenge: Data Scale & Heterogeneity

Large number of experiments Large datasets have more than 500 experiments **Multiple groups/conditions Different** types of data

Challenge: Supporting Multiple Tasks

Two central tasks:

- **Explore topology of pathway**
- **Explore the attributes of the nodes** (experimental data)
- **Need to support both!**

	Sample 1	Sample 2	Sample 3
Gene 1	1	1.1	0.4
Gene 2	2	0.5	1.2
Gene 3	1.4	0.2	0.5
Gene 4	0.3	0.5	0.7

Concept

enRoute

F Entourage 🛙
Pathways
Pathway
Filter:
<none></none>
1 C donor
2-Oxocarboxylic acid
ABC transporters
ABC-family proteins
ACE Inhibitor Pathwa
Acetylcholine Synthes
Acute myeloid leukem
Adherens junction
Adipocyte TarBase
Adipocytokine signali
Adipogenesis
Advanced glycosylatio
Aflatoxin B1 metaboli
African trypanosomias
AGE/RAGE pathway
AhR pathway
Alanine and aspartate
Alanine, aspartate an
Alcoholism
Aldosterone-regulated
Allograft rejection
Allograft rejection
Alpha 6 Beta 4 signal
alpha-Linolenic acid
Alzheimer's disease
Alzheimers Disease
amino acid conjugatio
amino acid conjugatio
Amino auto conjugatio
Amino sugar and nucl
Amoehiasis
Amphetamine addicti
AMPK eignaling
Amyotrophic lateral ec
Androgen recentor el
Angiogeneeie
Angiogenesis
angiogenesis querula
Antioen processing on
ARC/C modiated doors
Anontonio
Apoptosis
Apoptosis Mate Dath
Apoptosis Meta Path
Apoptosis Modulation
Apoptosis Modulation
rupopuosia, anumia an

2

🔡 🗶 🐔 😗 🖓 🗖 Selected Path

ErbB signaling pathway Pathways Commo Pathway Filter: <None> ErbB signaling pathw Signaling of Hepatocy ERBB SIGNALING PATHWAY Endometrial cancer Acute myeloid leukem Melanoma Calcium signaling pathway Chronic myeloid leuk CAMK CAMK Cellular targets Glioma IP3 F PLCy Non-small cell lung c (EGFR) ErbB-1 Cellular targets PKC DG IL-5 signaling pathwa EGF ErbB-+p Col --- Receptor -- + Degradation Focal adhesion TGFα VEGF signaling path AR. p STATS ErbB-1 Prostate cancer ErbB- Adhesion Migration Src FAK GnRH signaling path IL-3 Signaling Pathwa Crk Abl (HER2) ErbB-2 BTC Bladder cancer ErbB-2 HB-EGE Nck PAK --> JNKK INR JNR Renal cell carcinoma EPR Activation by ErbB2 Chemokine signaling MAPK signaling pathway overexpression (cancers) ErbB-Alpha 6 Beta 4 signal No signaling ErbB-3 Proteoglycans in canc Gtb2 Sos Ras Raf The MEK The ERK Shc Thyroid cancer ** Insulin signaling path ErbB-2 Grb2 NRG1 ErbB-Kit receptor signaling STATS NRG2 Prolactin Signaling P 7 p70S6K Estrogen signaling pa Protein synthesis n mTOR ErbB-4 ErbB-4 GAB1 elF-4EBF Fc epsilon RI signali mTOR signaling pathway Bad — Cell survival Colorectal cancer NRG3 PI3K PKB/Ah Neurotrophin signalin NRG4 PIP3 Oncostatin M Signali ErbB p27 PI3K-Akt 🖕 Cell cycle Cell cycle Dorso-ventral axis for signaling pathway progression Prolactin signaling pa Pancreatic cancer 04012 5/30/13 (c) Kanehisa Laboratories B cell receptor signal T cell receptor signal Gap junction

Case Study: CCLE Data

b		
nib		
_		
2		
,		
_		

Design Critique

Connected China

https://goo.gl/YXkWYX

http://china.fathom.info/

Instead of node link diagram, use adjacency matrix

Examples:

Well suited for neighborhood-related TBTs

Not suited for path-related TBTs

van Ham et al. 2009 Shen et al. 2007

Order Critical!

Pros:

can represent all graph classes except for hypergraphs puts focus on the edge set, not so much on the node set simple grid -> no elaborate layout or rendering needed well suited for ABT on edges via coloring of the matrix cells well suited for neighborhood-related TBTs via traversing rows/columns

Cons:

quadratic screen space requirement (any possible edge takes up space) not suited for path-related TBTs

Special Case: Genealogy

Hybrid Explicit/Matrix

NodeTrix [Henry et al. 2007]

Implicit Layouts

Explicit (Node-Link)

Matrix

Implicit

Explicit vs. Implicit Tree Vis

Fig. 2. (a) Explicit, node-link layout, (b) Implicit layout by inclusion, (c) Implicit Layout by overlap, (d) Implicit layout by adjacency.

Johnson and Shneiderman 1991

Zoomable Treemap

HEALTH AND HUMAN SE	RVICES							
Administration for Children an		Administration f	Cent Hea	ItCen	In			
	Substance Abus Food and Dat	EXPLAINT Provider	hiddon 1980	A Could	- desc			
SOCIAL SECURITY ADMINISTRATION								
Social Security Administration								

Example: Interactive TreeMap of a Million Items

Fekete et al. 2002

Sunburst: Radial Layout

[Sunburst by John Stasko, Implementation in Caleydo by Christian Partl]

Icicle Plot

http://hci.stanford.edu/jheer/files/zoo/ex/hierarchies/icicle.html

NodeLinkTreeL	.ayo Radi	alTreeL ay	outincia	PackingLayo	Labeler sertyEn: Encoder adialLabeliedAreat JorEnco apelinos		Strings		Shapes		Haths		Interpolat interinterp /Enter iorEnterp ctInte	or Enter ^{T‡} nter	ter Transitioner	
CircleLayout	Stacked	AreaLayou	eTreeLa	OirectedLayol yndrogramLa	Distortion theyeOistort UperatorSep		rt OperatorList	Oisplays	Geometry		SparseMatr DenseMatri	Mati	Amays	Easing		Transition
TreeHapLayou	Axela	yout lea	Edge	ntedTreeL: m PieLayout	icyaTreal	isbNtyFR hDistance	aratorSvOperato	ColorPalette	FibsnacciHeap of		Dates	Stats		Tween Sch		er Parallel
	T			TooltipCo	ntrol inZos	mCont O	antrolListilickContr	ePale tapeFale Materie	Co	lors	Sort	Fitt	er lenta ilueP ad au	PunctionSequence	Sequent	stion ^{thedul}
Data DataList Selec		SelectionC	IonControl HoverContro DragContro Contro Ion		angs mr. gte ste mu it div eg add gt mo: dio korter Sub fise get som som		Query	facFlow	faxFlowHinChortestFat				TimeScale santitativeSc			
NoteSpr	rite	ScaleB	inding	Leg	jend		Axis	Expression C	Comparison	DateUtil	Jnk Dista	ne Spann	ingTre Aspec	tRatioBanke ^r Or	dinalScal Si	icaleHa potSca caleTypenearSc
DataSprite	, dg	eRender ^D	eRenti W I NI	LegendRa	nge sgend	R Car	rtesianAxes Axes	StringUtil A spositeExpre aryE	Arithmetic xpres 1	Match If IsA	aphMLCa	ted"	TextDo Conver	NBodyForce		TextSprite
TreeBuilde	r	Tree	igeSpr		Visualization		JataEvel JulipE JactionE1 Izatio	pressionEter gates En Ran	nos Not Exp Xor ge And v	Ultera lariat Or nim xin stinc erag Sumiou	n DataSeu n DataSeu	ince Data til. ata	iSchem Re ^{taTa} Parti	Simulation Spring 2/ttyF	Orty	Sprite LineSprit Harevis

http://hci.stanford.edu/jheer/files/zoo/ex/hierarchies/treemap.html

http://hci.stanford.edu/jheer/files/zoo/ex/hierarchies/pack.html Source: The Flare Toolkit http://flare.prefuse.org

http://hci.stanford.edu/jheer/files/zoo/ex/hierarchies/sunburst.html

Implicit Representations

Pros:

in most cases well suited for ABTs on the node set depending on the spatial encoding also useful for TBTs Cons:

can only represent trees

(e.g., to reflect geographical positions)

useless to pursue any task on the edges

spatial relations such as overlap or inclusion lead to occlusion

- space-efficient because of the lack of explicitly drawn edges: scale well up to very large graphs

since the node positions are used to represent edges, they can no longer be freely arranged

Tree Visualization Reference

Munzner 2014

Graph Tools & Applications

Gephi http://gephi.org

The Open Graph Viz Platform

Gephi is a visualization and exploration platform for all kinds of networks and complex systems, dynamic and hierarchical graphs.

Runs on Windows, Linux and Mac OS X. Gephi is open-source and free.

Download FREE

Gephi 0.7 alpha

Release Notes | System Requirements

Features

Quick start

Learn More on Gephi Platform »

Screenshots

Videos

Gephi has been accepted again for Google Summer of Code! The program is the best way for students around the world to start contributing to an open-source project. Students, apply now for Gephi proposals. Come to the GSOC forum section and say Hi! to this topic.

Learn More »

Cytoscape

Open source pla

http://www.cytoscape.org/

Cytoscape Web http://cytoscapeweb.cytoscape.org/

• • • • •	Feature Showcase Demo						
Cytoscape web	This is a separate demo application, built around the Cytoscape V Because this showcase is complex, you may experience issues, s						
Save file Open file S	Style ▼ Layout ▼						

NetworkX https://networkx.github.io/

NetworkX

NetworkX Home | Documentation | Download | Developer (Github)

High-productivity software for complex networks

NetworkX is a Python language software package for the creation, manipulation, and study of the structure, dynamics, and functions of complex networks.

Documentation all documentation

Examples using the library

Features

- Python language data structures for graphs, digraphs, and multigraphs.
- Nodes can be "anything" (e.g. text, images, XML records)
- Edges can hold arbitrary data (e.g. weights, time-series)
- Generators for classic graphs, random graphs, and synthetic networks
- Standard graph algorithms
- Network structure and analysis measures
- Open source BSD license
- Well tested: more than 1800 unit tests, >90% code coverage
- Additional benefits from Python: fast prototyping, easy to teach, multi-platform

Reference all functions and methods Versions

Latest Release

1.8.1 - 4 August 2013 downloads | docs | pdf

Development

1.9dev github | docs | pdf build passing coverage 83%

Contact

Mailing list Issue tracker Developer guide

