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Recap from last sci-vis
lecture

 |sosurfaces
« implicit vs explicit surfaces
« contours, isosurfaces and level sets
* Marching cubes
 How it works: 15-case lookup table
* Improvements to marching cubes, and particle isosurface extraction methods
« What are strengths / limitations of these approaches?
» Direct isosurface visualization
» splatting
» ray casting
« What are advantages of direct vs indirect approaches?

 When are isosurfaces better than volume rendering, and visa versa?
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loaay

* “Advanced Topics in Visualization™ in one lecture!
* Topology

 Critical Points

* Reeb Graphs and Contour Trees

* Morse-Smale Complexes

 Flow and Vector Field Visualization

Fluid dynamics and a bit of math

Geometric methods: streamlines, streaklines, timelines, pathlines

Image-based methods: spot noise, LIC

Physically-based methods: Schlieren photography, Virtual Rheoscopic Fluids

Finite-Time Lyapunov Exponent
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lopology



What is Topology"

* Field of mathematics which studies properties
which are preserved under continuous
transformations.

e Stretching, bending = continuous changes.

* Jearing, gluing = discontinuous changes.
* Also called: "Rubber sheet” geometry.

e Studies the connectedness of a space.



http://simonkneebone.files.wordpress.com/2011/11/konigsberg-puzzle.jpg
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http://math.arizona.edu/~models/Topology/source/2.html




1D Case

* Let us get back to the simple 1D case
A




1D Case

* Let us find out the local minimum/maximum

o Zero derivatives
O minimum

ik




1D Case

* They partition the domain into monotonic regions
A

O minimum
@ maximum




How About 2D Case?




We Want to Extract Similar Information




Topology

These local minimum and maximum are called “critical
points” of the scalar functions.

Their connection forms the topology of the scalar field,

which provides a partition scheme of the spatial
domain.

Each segment has the equivalent homogeneous
behavior, e.g. monotonic for 1D case.

This is similar for 2D and 3D scalar fields



Scalar Field Analysis

* Hereis a more formal definition

* Given a scalar field f

— @Gradient vector

Vf = o df I
ox dy 0z

* When not zero
— Points in the direction of quickest ascend
— Always perpendicular to the iso-contours (or level sets) of f

— pisacritical point
— f(p) is a critical value



Scalar Field Analysis

A critical point p is isolated if there exists a

neighborhood of p such that p is the only critical
point in the neighborhood

* Classification of fundamental critical points in 2D

Local minima

Local maxima




Detection of Critical Points

3D saddles can have two distinct configurations

1-saddle 2-saddle



Scalar Field Analysis

* A function is a Morse function if it is smooth and all
of its critical points are isolated and non-degenerate
— Typically a good assumption for scientific data

— A non-Morse function can be made Morse by adding small
but random noise



| evel-Set Topology
Reeb Graphs, Contour
Trees, and Merge Irees



Example — dunking a doughnut

* f(p) = z (height function)

Shape analysis is a special
case of scalar field analysis
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Example — dunking a doughnut
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Example — dunking a doughnut
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Example — dunking a doughnut
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Example — dunking a doughnut
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Example — dunking a doughnut
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How Does it Work?




How Does it Work?

Level sets obtaining by sweeping along Z direction
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Reeb Graph




Reeb Graph

* Vertices of the graph are
critical points

* Arcs of the graph are
connected components
(cylinders in domain)of the
level sets of f, contracted to
points

* Two-step algorithm
* Locate critical points
* Connect critical points




Reeb Graph

* Vertices of the graph are
critical points

* Arcs of the graph are
connected components
(cylinders in domain)of the
level sets of f, contracted to
points

* Two-step algorithm
* Locate critical points
* Connect critical points
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Figure 1: (Top row) Simplified Reeb graphs of the Dancer, Malaysian Goddess, Happy Buddha; and David together with two close-ups
showing a tiny tunnel at the base of David’s leg. The pseudo-colored surfaces show the function used for computing the Reeb graph. The
transparent models show the structure of the Reeb graph and its embedding. (Bottom row) The Heptoroid model and two levels of resolution
for the Reeb graph of the Asian Dragon model.

Valerio Pascucci, Giorgio Scorzelli, Peer-Timo Bremer, Ajith Mascarenhas: Robust on-
line computation of Reeb graphs: simplicity and speed. ACM TOG. 26(3): 58 (2007)



Contour and merge trees

Bajaj et al. The Contour Spectrum. IEEE Vis 97
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Figure 4: Augmented join and split trees merge to form the contour tree

Carr et al. Computing Contour Trees in All Dimensions.
Computational Geometry, 2003.

- Join (Mefge) trees - Bremer et al. Interactive Exploration and Analys‘is of ‘Large Scale
Simulations Using Topology-based Data Segmentation, IEEE TVCG 2011
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Morse and Morse-Smale Complexes



Morse-Smale Complex-2D




Morse-Smale Complex-2D




Morse-Smale Complex-2D




Morse-Smale Complex-ZD
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Morse-Smale Complex-2D
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Morse-Smale Complex-2D

Decomposition into monotonic regions



Combinatorial Structure 2D

* Nodes of the MS complex are All regions are quads
exactly the critical points of the + Boundary of a region
Morse function alternates between saddle-

* Saddles have exactly four arcs extremum
incident on them * 2k minima and maxima

®
(\ 3D MS Complex cell
P
@\( . Maximum
O e 2-Saddle
O /-saddle

O Minimum




Applications
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Figure 11: (Upper-left) Puget Sound data after topological noise removal. (Upper-right) Data at persistence of 1.2% of the maximum height.
(Lower-left) Data at persistence 20% of the maximum height. (Lower-right) View-dependent re nement (purple: view frustum).



Fig. 5. A single timestep of a dataset of a simulated Raleigh-Taylor instability simulating the
mixing of two fluids. This timestep has a resolution of 1152 x 1152 x 1000 and is an early
timestep of the simulation. The data is noisy, therefore we perform a 5% persistence sim-
plification to remove “excess features.” We compute the complex for the entire dataset, and
the inset shows a small subsection of the data with selected nodes and arcs of the com-
plex. Minima and maxima (blue and red spheres) and their saddle connections trace out the
bubble structure in the data. The maxima represent isolated pockets of high-density fluid
that have crossed the boundary between the two fluids. The structural complexity is over-
whelming, but our prototype allows interactive exploration and visualization, and selective
inclusion/omission of user-specified components of the MS complex.

Gyulassy, Bremer,
Hamann, Pascucci, 2008



Morse-Smale Battery Analysis

wavefunction of carbon  classify carbon chains

nanosphere with MS complex identify defect sites MS complex

Gyulassy et al. Morse-Smale Analysis of lon Diffusion in Ab Initio Battery
Materials Simulations. TopolnVis 2015
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New finding: most ion
movement occurs through

atom geometry (LAMMPS)  classified blocking and Li-accessible Li diffusion distance .
non-blocking defect sites regions of nanosphere for saturation large faults in the structure.
Gyulassy et al. Interstitial and Interlayer lon Diffusion Geometry Extraction in S 'r \
Graphitic Nanosphere Battery Materials. IEEE Visualization 2015 40/
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Flow Visualization



Vector fields

e Vector data on a 2D or 3D grid

scattered

—

i

uniform

N

rectilinear structured unstructured

o Additional scalar data may be defined per grid point

 Example on aregular grid (a) or scattered data points (b)
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More formally

scalar field vector field
g - IE'I‘I, — R Vv IE"IL N R'I‘)‘l.
m=n usually — but not always.

The vector is the element of the field
(in contrast to multifields)

A simple 2D steady vector field

Typically, the vector field can be expressed as an e e REo N N DR W W K
ordinary differential equation (ODE), e.qg., e e e e e e e, e, W, W Ty W W

d(p(x)_ P N N N N T a a a a w » N
———— V(x) B o ol b St P ol 4
dt A A O g i d d G A & i
A et G R o s oA /o

L . . . il gt a2 O S
Solving (integrating) this ODE results in = e » Y, f
flow, i.e. the set of particle trajectories in this field. bl crasana el ol
» L I S N N e T T U U R N w » »
. R T U U G G U U U U S U B
F/O.W vis IS about how we select and show these L v e B e RS N e e N N A X
trajectories. v v w W N W RN N N N N R




 Main application of vector field visualization 1s

flow visualization

— Motion of fluids (gas, liquids)

— Geometric boundary conditions

— Velocity (flow) field v(x,t)

— Pressure p

— Temperature T

— Vorticity Vxv

— Density p

— Conservation of mass, energy, and momentum
— Navier-Stokes equations

— CFD (Computational Fluid Dynamics) :



Experimental flow
visualization
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Milestones in Flight History
Dryden Flight Research Center

L-1011

Airliner Wing Vortice Tests at Langley
Circa 1970s
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Smoke angel = }
A C-17 Globemaster Il from 1€ '} hAift Squadron,
flares over the Atlantic Ocean mear Chafleston, S.C., d
'smoke angel’ is caused by th@ VOrtex from the englnes.
(U.S. Air Force photo/Tech. Sgt. Russell E. Cooley IV)
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\ir Force Base, S.C. flies off after releasing
tTr aining mission on Tuesday, May 16, 2006. The
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A wind tunnel model of a Cessna 182 showing a wingtip vortex.
Tested in the RPI (Rensselaer Polytechnic Institute) Subsonic Wind Tunnel.
By Ben FrantzDale (2007).




Flow Visualization: Problems and Concepts

http://autospeed.com/cms/A 108677 /article.html

http://autospeed.com/cms/A_108677/article.html

Wool Tufts



http://autospeed.com/cms/A_108677/article.html
http://autospeed.com/cms/A_108677/article.html

pr—

http://autospeed.com/cms/A 108677 /article.html

Smoke Nozzles

[INASA, J. Exp. Biol.

| M

http://autospeed.com/cms/A 108677 /article.html



http://autospeed.com/cms/A_108677/article.html
http://autospeed.com/cms/A_108677/article.html

http://de.wikipedia.org/wiki Bild:AirIa‘ne vortex_edit.|pg



http://de.wikipedia.org/wiki/Bild:Airplane_vortex_edit.jpg

Streaklines in Experimental Flow Vis
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@/ NASA Dryden Flight Research Center Photo Collection

i

http://www.dfrc.nasa.gov/gallery/photo/index.html
NASA Photo: ECN-33298-03 Date: 1985

1/48-scale model of an F-18 aircraft in Flow Visualization Facility (FVF)

Dryden Flight Research Center ECN 33298-47 Photographed 1985 %
F-18 water tunnel test in Flow Visualization Facility NASA/Dryden .2



Computational fluid dynamics



Fluld dynamics

Navier-Stokes equations: a set of PDE’'s modeling the behavior of fluids.
Example for compressible fluids:

2
Yy )—glt(v'u)llﬁ 1?

1 3

) - -
p (ﬂ +u - Vu) = ~Vp+ V- (u(Vu+ (Vu)’
\\.,—/ N

where u is the fluid velocity, p is the fluid pressure, p is the fluid density, and y is the viscoscity.
Conservation of mass, momentum, energy (relate to 2nd law of thermodynamics).

Viscosity is the measure of the fluid’s resistance to deformation, from shear or tensile stress.
(A stress tensor with 9 degrees of freedom!)

Flow can be steady (time derivative % = 0) or unsteady (or transient, i.e. high time derivative)

Also laminar (flows in predictable, parallel layers) or turbulent (eddies, vortices, random chaos).

Reynolds number indicates the turbulence of flow = inertial forces / viscous forces.

inertial forces pvL vL
e = — = —
viscous forces 7 v

https://www.comsol.com/multiphysics/navier-stokes-equations

https://en.wikipedia.org/wiki/Navier—-Stokes equations
https://en.wikipedia.org/wiki/Fluid_dynamics
https://en.wikipedia.org/wiki/Chaos_theory

dp .

N +V-(pu)=20
Jl

Continuity equation

9

Laminar flow

Turbulent flow

www.sciutah.edu


https://en.wikipedia.org/wiki/Fluid_dynamics
https://en.wikipedia.org/wiki/Navier%E2%80%93Stokes_equations
https://www.comsol.com/multiphysics/navier-stokes-equations
https://en.wikipedia.org/wiki/Chaos_theory

Pijush K. Kundu Ira M. Cohen David R. Dowling
with contributions by P.S. Ayyaswamy and H.H. Hu

Flul
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http://www3.nd.edu/~fthomas/Kundu_Fluid_Mechanics.pdf %Q%ﬁ



http://www3.nd.edu/~fthomas/Kundu_Fluid_Mechanics.pdf

Vector Fields in Engineering and Science

Automotive design
[Chen et al. TVCGO7,TVCGO8]

Oil spill trajectories [Tao et al. EMI2010]



Automotive body CFD simulations

Extreme Simulotion Softwore

Flow visualization in Ensight
http://gallery.ensight.com/keyword/external
%20aero:simulation
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Michael Waltrip NASCAR Jaguar Land Rover External Aerodynamic
flow analysis in CD-adapco Star-CCM CFD tools Simulation by Exa's PowerFLOW Software


http://gallery.ensight.com/keyword/external%20aero;simulation/
http://www.symscape.com/blog/car-design-cfd

Aerospace

A simulation of the Hyper-X scramjet vehicle in operation at Mach-7. http://www.airports-worldwide.com/articles/article0523.php

FAST, http://www.openchannelfoundation.org http://www.cesc.zju.edu.cn/learningcenter.htm



http://en.wikipedia.org/wiki/Hyper-X
http://www.airports-worldwide.com/articles/article0607.php
http://www.airports-worldwide.com/articles/article0523.php
http://www.cesc.zju.edu.cn/learningcenter.htm
http://www.openchannelfoundation.org

Flow visualization



Approaches to flow vis

o “How?”

- Characteristic curves of the vector field (streamlines, pathlines, streaklines, timelines,
Lagrangian coherent structures / FTLE)

* Texture-based (LIC, spot noise)

* Direct + geometry-based (hedehogs, glyphs)

* Direct + heuristic (magnitude, Laplacian, FTLE)

* Physically-based (Schlieren imaging, virtual rheoscopic fluids)
* “Where?”

* Flow in 2D

* Flow on surfaces

* Flow in 3D space

SN
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Characteristic Curves of a
Vector Field

Streamlines: curve parallel (tangent) to the vector
field in each point for a fixed time

Pathlines: describes motion of a particles over
time through a vector field

Streaklines: trace of dye that is released into the
flow at a fixed position

Timelines: describes motion of particles set out on
a line over time through a vector ftield



Characteristic Curves of a
Vector Field

Streamlines: curve parallel (tangent) to the vector
field in each point for a fixed time

integrate over space
s(t) = so + /0 o Vstw) du the “continuous” static velocity field

Pathlines: describes motion of a particles over
time through a vector field

Streaklines: trace of dye that is released into the
flow at a fixed position

Timelines: describes motion of particles set out on
a line over time through a vector ftield



Characteristic Curves of a
Vector Field

Streamlines: curve parallel (tangent) to the vector
field in each point for a fixed time

integrate over space
s(t) = so + /0 o Vstw) du the “continuous” static velocity field

Pathlines: describes motion of a particles over
time through a vector field

S(t) = so + / V(s(u). 1) du integrate over time and space
0<u<t each point is like a new seed

Streaklines: trace of dye that is released into the
flow at a fixed position

Timelines: describes motion of particles set out on
a line over time through a vector ftield



Characteristic Curves of a
Vector Field

Streamlines: curve parallel (tangent) to the vector
field in each point for a fixed time

integrate over space
s(t) = so + /0 o Vstw) du the “continuous” static velocity field

Pathlines: describes motion of a particles over
time through a vector field

integrate over time and space
s(t) = so + /O o Visu),u) du each point is like a new seed

Streaklines: trace of dye that is released into the
flow at a fixed position e
Integrate over tiime ana space

s(t) = so + /0 o V(s(u),u) du seed(s) stay in the same place
Timelines: describes motion of particles set out on
a line over time through a vector ftield



Characteristic Curves of a
Vector Field

Streamlines: curve parallel (tangent) to the vector
field in each point for a fixed time

integrate over space
s(t) = so + /0 o Vstw) du the “continuous” static velocity field

Pathlines: describes motion of a particles over
time through a vector field

integrate over time and space
s(t) = so + /O o Visu),u) du each point is like a new seed

Streaklines: trace of dye that is released into the
flow at a fixed position
integrate over time and space
s(t) = so + /0 o V(s(u),u) du seed(s) stay in the same place
Timelines: describes motion of particles set out on
a line over time through a vector ftield

s(t) = so + / V(s(u),u) du same as streaklines, but a “burst” in time
0<u<t
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2D time-dependent vector field
particle visualization



streamlines

curve parallel to the vector field
in each point for a fixed time

describes motion of a massless
particle in an steady flow field

$(1) = 59+ locu, V5(w) du

pathlines

curve parallel to the vector field in
each point over time

describes motion of a massless
particle in an unsteady flow field

$(1) = 55+ Jocus Vis(u), 1) du



streamlines

curve parallel to the vector field
iIn each point for a fixed time

describes motion of a massless
particle in an steady flow field

$(1) = 59 + locue, Vs(w) du

pathlines

curve parallel to the vector field in
each point over time

describes motion of a massless
particle in an unsteady flow field

$(t) = 8y + locue, VIs(w), 1) du

Weinkauf and Theisel, TVCG 2010



Other feature curve

e Timelines

— Union of the current positions
of particles released at the
same time in space

(a) Coloring fixed rows in the array {b) Coloring fixed columns in the array
reveals streak lines. reveals time lines.

Source: doi.ieeecomputersociety.org



e Stream and Path lines:

e Through all non-critical points (x,t) in space-time there is exactly one
stream/path line passing through it.

e Streak and Time lines:
e Many streak/time lines through every point (of the spatial domain)

e = makes it difficult to describe streak/time lines as tangent curves of
some vector field

e But it is possible. We may discuss it in a later session.

e Stream, Path, and Streak lines In a steady vector
field.




e Stream and Path lines:

e Through all non-critical points (x,t) in space-time there is exactly one
stream/path line passing through it.

e Streak and Time lines:
e Many streak/time lines through every point (of the spatial domain)

e = makes it difficult to describe streak/time lines as tangent curves of
some vector field

e But it is possible. We may discuss it in a later session.

e Stream, Path, and Streak lines coincide in a steady vector
field.



Integration Techniques



Numerical Integration

First Order Euler method:
x(t) = x(t-dt) + v(x(t-dt)) * dt

O

- Not very accurate, but fast

- Other higher order methods are avilable: Runge-Kutta
second and fourth order integration methods (more

popular due to their accuracy)



AX
ft-d 1) S f S

AX = dt* f(t-dt)

flow = f(t)




Numerical Integration (2)

Second Runge-Kutta Method

X(t) = x(t-dt) + ¥ * (K1 + K2)
k1l = dt * v(x(t-dt))
k2 = dt * v(x(t-dt)+k1)

X(t+dt)

”O,A‘”{

Y5 * [v(x(t))+v(x(t)+dt*v(x(t))]




Runge-Kutta 2

Assume flow = 1(t)

-

AX

Like Trapezoid Method.



Numerical Integration (3)

Standard Method: Runge-Kutta fourth order

ki =dt * v(t-dt); k2 =dt * v(x(t-dt) + k1/2)

k3 = dt * v(x(t-dt) + k2/2); ka =dt * v(x(t-dt) + k3)






e Numerical integration of stream lines:

e approximate streamline by polygon Xx;

e Testing example:
o V(x,y) = (-y, XI2)"T
e exact solution: ellipses
e starting integration from (0,-1)




Euler Integration — Example

2D model data:
v, =dx/dt=-y
v, =dy/dt= x/2

Sample arrows: €

ellipses.

True ‘l'
solution: \




Euler Integration — Example

"Seed point :
current flow vector v(s,) = (110)T;
dt = 12

v, =dx/dt=-y
—
v, = dy/dt = x/2



Euler Integration — Example

"New point s, =8, + V(S,) - df = ;
current flow vector v(s,) = (111/4)T;

v, =dx/dt=-y

V. = dyldt = /2 P \
v
A\



Euler Integration — Example

"New point s, =8, + v(s,) - di = ;
current flow vector v(s,) = (7/811/2)T;

v, =dx/dt=-y

RN
\l 7/



Euler Integration — Example

— = ~ ,
v(s.) =(5/8123/32)T ~(0.6310.72)T;

v, = dx/dt= -y

v, = dy/dt = x/2 \
-



Euler Integration — Example

(17/6417/8)T = (0.2710.88)T:
!
[ \l N

|



Euler Integration — Example

(0.2011.69)T;
(-1.6910.10)T:

=\
MR

V(Ssgg)

L



Euler Integration — Example

(-3.221-0.10)T:
(0.101-1.61)T;

P anina N\
=4

—

ug
14
V(Si,)

[



Euler Integration — Example

"s. = (0.751-3.02)"; v(s,,) = (3.0210.37)T;
clearly: large mtegratlon error, dt too large,
19 steps




Euler Integration — Example

'dtsmaller (1/4): more steps, more exact.
=~ (0.041-1.74)"; v(s,) = (1.7410.02)T;

'36 steps




Comparison Euler, Step Sizes

Euler
quality is : ' ’
proportional
to dt

— Euler dt=1/100

—a—Euler dt=1/10

—e— Euler dt=1/4

-1 —¢—Euler dt=172




Euler Example — Error Table

at #steps  error
1/2 19 ~200%
1/4 36 ~135%
1/10 89 ~25%
1/100 889 ~2%

1/1000 8889 ~0.2%



RK-2 — A Quick Round

RK-2: even with di= 1 (9 steps)
better , . ;
than Euler
with df=1/8
(72 steps)

.....................

.......................

~&—RK-2, dt=1 —

o ——Euler, dt=1/8 -

I




RK-4 vs. Euler, RK-2

Even better: fourth order RK:
* four vectorsa, b, ¢, d

* one step is a convex combination:
S,.1=S;+(@+2:b+2:c+d)6

* vectors:
a =dtv(s) ... original vector
b=dtv(s+a/2) ... RK-2 vector
c =dtv(s+b/2) ... use RK-2 ...
(

=dtv(s+c) ... and again



Euler vs. Runge-Kutta

RK-4: pays off only with comp

ex flows

Here
approx.
like

RK-2

~<o—Euler, dt=1/2, 19 Schr.
~—&—Euler, dt=1/4, 38 Schritte
—o—RK-2, dt=1/2, 18"2 Schritte
~=Euler, dt=1/8, 72 Schritte
—o—RK4, dt=1/2, 18"4 Schritte




Integration, Conclusions

Summary:
* analytic determination of streamlines usually not possible
* hence: numerical integration

* various methods available
(Euler, Runge-Kutta, etc.)

* Euler: simple, imprecise, esp. with small dt
* RK: more accurate in higher orders

* furthermore: adaptive methods, implicit methods, etc.



Streamline Placement
(In 2D)



e Seeding of integral lines:

e which stream/path/streak/time lines to visualize?
e too few: important details get lost

e too many: overload, visual clutter

e simple approaches:
e start on regular grid points
e start randomly

® |t has to be the right number at the right places!!!




of Seed Points

Problem: Choice
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Turk and Banks, 1996
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Streamline seeding
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Main idea: the distribution of ink on the screen should be
even [ Turk and Bank 96]

Figure 2: (a) Short streamlines with  Figure 3: (a) Short streamlines with  Figure 4: (a) Short streamlines placed

centers placed on a regular grid (top);  centers placed on a jittered gnd (top): by optimization (top): (b) filtered ver-

(b) filtered version of same (bottom). (b) filtered version showing bright and  sion showmg fairly even gray value (bot-
dark regions (bottom). tom).



Results

Tapering at streamline ends Optimized arrow plots

[Turk and Bank "96]



Different Streamline Densities

Variations of d,, relative to image width:
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Streamline Seeding in 3D

* Evenly-spaced does not make sense

e Start on uniform grid

Weinkauf 2003



Streamline Seeding in 3D

* Evenly-spaced does not make sense

e Start in regions of high vector field curvature (i.e., close to critical points):

Weinkauf 2003



Li and Shen, TVCG 2007

Seeds in Image Space

® Need to un-project the seeds back to 3D object
space for streamline integration

o Ultilize depth maps generated from other
visualization techniques

Stream surface "~ Slicing plane Isosurface



Streamline Bundling

[Yu et al. 2012]



Streamline Bundling

[Yu et al. 2012]



Opacity Optimization for 3D Line Fields

Figure 1: Applications of our interactive, global line selection algorithm. Our bounded linear optimization for the opacities reveals user-
defined important features, e.g., vortices in rotorcraft flow data, convection cells in heating processes (Rayleigh-Bénard cells), the vortex core
of a tornado and field lines of decaying magnetic knots (from left to right).

% \

~— ——
(a) Given is a set of polylines. (b) Discretize polylines into n seg- (¢) Compute per-segment opacity (d) Interpolate opacities between adja-
ments (here: n = 6). «; by energy minimization. cent segments for final rendering.

|dea: make less important sections of streamlines transparent to fix occlusion, remove clutter.
SIGGRAPH 2013!

[Gunthe et al. 2013]



llluminated Streamlines

Use lighting to improve spatial perception of lines
in 3D.

This can to some extend reduce the 3D cluttering
issue.

Figure 1: Flow in a Francis draft tube visualized by streamlines regu-
larly seeded on a cone and colored by speed. Streamlines are illumi
nated based on cylinder averaging. In the vertical part of the tube,
a vortex rope is visible.

Open Source: http://www.scivis.ethz.ch/research/projects/illuminated_streamlines

[Zockler et al. 96, Mallo et al. 2005]



Rendering of stream surfaces

lllustrative visualization

e Using transparency and
surface features such as
silhouette and feature

curves.

[Hummel et al. 2010]

Abraham/Shaw’s illustration, 1984 [Born et al. Vis2010]



Where to put seeds to start the integration?

Seeding along a straight-line Seeding along the direction that is
Allow user exploration perpendicular to the flow leads to

[Weiskopf et al. 2007] stream surface with large coverage
[Edmunds et al. EuroVis2012]



Time and streak surfaces

http://www.vacet.org/gallery/images_video/Krishnan_TimeStreakSurfaces.mp4

Hari Krishnan, Christoph Garth, Ken Joy. Time and Streak Surfaces for Flow Visualization in Large Time-Varying Data Sets.

IEEE Visualization 2009. ‘S‘gtr /\r

www.sclutah.edu


http://www.vacet.org/gallery/images_video/Krishnan_TimeStreakSurfaces.mp4

Approaches to flow vis

o “How?”

* Characteristic curves of the vector field (streamlines, pathlines, streaklines, timelines,
Lagrangian coherent structures / FTLE)

- Texture-based (LIC, spot noise)

* Direct + geometry-based (hedehogs, glyphs)

* Direct + heuristic (magnitude, Laplacian, FTLE)

* Physically-based (Schlieren imaging, virtual rheoscopic fluids)
* “Where?”

* Flow in 2D

* Flow on surfaces

* Flow in 3D space

SN

www.sciutah.edu



Overview — Texture-Based Methods
» Spot Noise

<> One of the first texture-based techniques (Van Wijk, Siggraph1991).

<> Basic idea: distribute a set of intensity function, or spot, over the domain, that is wrapped
by the flow over a small step.

<> Pro: mimic the smear effect of oil; encode magnitude; can be applied for both steady and
unsteady flow.

<> Con: tricky to implement; low quality; computationally expensive.

[De Leeuw and Van Liere]





http://homepages.cwi.nl/~robertl/movies/flow1.mpg

LIC — Line Integral Convolution

« (Cabral/Leedom, Siggraph 1993)

* A global method to visualize vector fields

2D vector field vector field on surface 3D vector field
(often called 2.5D)



|dea of LIC

* Global visualization technique; not only one particle path

e Start with a random texture

« Smear out this texture along the path lines in a vector field, results in
 Low correlation of intensity values between neighboring lines,

« But high correlation along them
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|dea of LIC
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Algorithm for 2D LIC

Convolve a
random texture
along the
streamlines
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Filter length influences the quality of LIC images 2D flow behind a cylinder
filter length = 100




Filter length influences the quality of LIC images 2D flow behind a cylinder
filter length = 50




Filter length influences the quality of LIC images 2D flow behind a cylinder
filter length = 25




Filter length influences the quality of LIC images 2D flow behind a cylinder
filter length = 10




Filter length influences the quality of LIC images 2D flow behind a cylinder
filter length = 1




| |C Color Coding

e Usually, LIC does not use the color channel
 Could use color to encode scalar gquantities

Velocity magnitude encoded
using color

2D flow behind a cylinder



LIC and color coding of
velocity magnitude




LIC for 3D Flows

e LIC concept easily extendable to 3D
e Problem: rendering!

3D LIC can only reveal
interesting structures if some
data is discarded.

Images courtesy of
[Rezk-Salama et al. 99]



Overview — Texture-Based Methods

» Unsteady Flow LIC (UFLIC)

<> The first texture-based unsteady flow visualization method (by Han-Wei Shen

and David Kao, IEEE Visualization 97 & IEEE TVCG 98).
<> Basic idea: Time-accurately scatters particle values of successively fed-forward textures along
pathlines over several time steps to convey the footprint / contribution that a particle leaves at
downstream locations as the flow runs forward.
<> Pro: High temporal coherence & high spatial coherence & hardware-independent.
<> Con: Low computational performance due to multi-step (= 100) pathline integration.




GPU-accelerated U

|C on arbitrary surfaces

Flow Charts: Visualization of Vector Fields on Arbitrary Surfaces. G Li, X Tricoche, D Weiskopf, C Hansen.
IEEE TVCG 2008.



Overview — Texture-Based Methods

> Image-Based Flow Visualization (IBFV)

<> One of the most versatile and the easiest-to-implement hardware-based methods
(by Jarke J. van Wijk, SIGGRAPHO?2).

<> Basic idea: Designs a sequence of temporally-spatially low-pass filtered noise textures
and cyclically blends them with an iteratively advected (using forward single-step pathline
integration) image (which is initially a BLACK rectangle).

<> Pro: Interactive frame rates and easy simulation of many visualization techniques.

<> Con: Good temporal coherence and insufficient spatial coherence (noisy or blurred).
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IBFV: Image-Based Flow Visualization
(Advect Dye in Image-Space)

background images
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http://www.win.tue.nl/~vanwijk/ibfv/ http://www.win.tue.nl/~vanwijk/ibfvs/




Recent Advances in 3D Texture-based Method

without illumination with illumination Gradient-based illumination
Codimension-2 illumination

Dense (white noise) Sparse noise

Feature enhancement

Different seeding strategies
[Falk and Weikopf 2008]



Approaches to flow vis

o “How?”

* Characteristic curves of the vector field (streamlines, pathlines, streaklines, timelines,
Lagrangian coherent structures / FTLE)

* Texture-based (LIC, spot noise)

- Direct + geometry-based (hedehogs, glyphs)

* Direct + heuristic (magnitude, Laplacian, FTLE)

* Physically-based (Schlieren imaging, virtual rheoscopic fluids)
* “Where?”

* Flow in 2D

* Flow on surfaces

* Flow in 3D space

SN

www.sciutah.edu



e also called hedgehog plots

e Arrow plots:
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e Arrows visualize
— Direction of vector field

— Orientation

— Magnitude:

* Length of arrows N \
e Color coding
N\

L




e [Kirby et al 99]. multiple values of 2d flow data by layering
concept related to painting process of artists
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Figure 1: Typical visualization methods for 2D flow past a cylinder at Reynolds number 100. On the left, we show only the velocity field.

On the right, we simultaneously show velocity and vorticity. Vorticity represents the rotational component of the flow. Clockwise vorticity 1s
blue, counterclockwise yellow.



3D

18

Arrows

Vector arrows




 Advantages and disadvantages of glyphs
and arrows:
+ Simple
+ 3D effects

- Inherent occlusion effects

- Poor results 1f magnitude of velocity changes
rapidly
(Use arrows of constant length and color code
magnitude)



Approaches to flow vis

o “How?”

* Characteristic curves of the vector field (streamlines, pathlines, streaklines, timelines,
Lagrangian coherent structures / FTLE)

* Texture-based (LIC, spot noise)

* Direct + geometry-based (hedehogs, glyphs)

- Direct + heuristic (magnitude, Laplacian, FTLE)

* Physically-based (Schlieren imaging, virtual rheoscopic fluids)
* “Where?”

* Flow in 2D

* Flow on surfaces

* Flow in 3D space

SN

www.sciutah.edu



e \Volume illustration for flow visualization [Svakine et al 09]

(a)

Figure 3: Volume illustrations of flow around the X38 spacecraft. (a) is an
illustration of density flow and shock around the bow, while (b) highlights the
vortices created above the fins of the spacecraft.

(c) (d)

Figure 6: Use of two-dimensional transfer function with the Laplacian op-
erator and other flow quantities. (a) shows heat inflow (red) and outflow
(blue). (b) shows all values of the Laplacian of velocity magnitude in the tor-
nado dataset. (c) visualizes the cloud TKE using the Laplacian to highlight
boundaries (white) and velocity for silhouetting. (d) highlights emerging flow
structures in the convection dataset using banding of the second derivative
magnitude of the temperature field.



Finite-Time Lyapunov Exponent

* Some observation
— Observe particle trajectories

— Measure the divergence between trajectories, i.e.
how much flow stretch

[Shadden]



Finite-Time Lyapunov Exponent

* Description

— Lyapunov exponents describe rate of separation or
stretching of two infinitesimally close points over
time in a dynamical system

— FTLE refers to the largest Lyapunov exponent for
only a limited time and is measured locally

— Largest exponent is governing the behavior of the
system, smaller ones can be neglected

Ridge lines of FTLE correspond to
“Lagrangian Coherent Structures” (LCS)
- I.e., sources and sinks



Finite-Time Lyapunov Exponent

A computation framework

Input vector field
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FTLE volumes - sources and sinks

Efficient Computation and Visualization of Coherent
Structures in Fluid Flow Applications

C Garth, F Gerhardt, X Tricoche, H Hagen. IEEE
Visualization 2007.

http://www.vacet.org/gallery/images_video/jet4-ftle-0.012.mp4 m

www.sciutah.edu



http://www.vacet.org/gallery/images_video/jet4-ftle-0.012.mp4

Approaches to flow vis

o “How?”

* Characteristic curves of the vector field (streamlines, pathlines, streaklines, timelines,
Lagrangian coherent structures / FTLE)

* Texture-based (LIC, spot noise)

* Direct geometry-based (hedehogs, glyphs)

* Direct heuristic (magnitude, Laplacian, FTLE)

- Physically-based (Schlieren imaging, virtual rheoscopic fluids)
* “Where?”

* Flow in 2D

* Flow on surfaces

* Flow in 3D space

SN

www.sciutah.edu



Virtual Rheoscopic Fluids

Barth et al. Virtual Rheoscopic Fluids for
Flow Visualization, IEEE Vis 2007

Hecht et al. Virtual Rheoscopic Fluids, IEEE Vis 2008

e Simulates the orientation of virtual microscope gold plate particles swimming in the vector field.

N\
« Determine rheoscopic particle orientation via eigenvalues of the Jacobian (gradient tensor) .S/gtr//h

www.sclutah.edu



Vector field topology preview

Repellor and Attractor Manifolds




ector field tOpOlOgy preVieW Levine, Jadhayv, Bhatia, Pascucci, Bremer, CGF 31(3) 2012

Stab\e I\/\amfo\ds of Ocean Data
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Non-vector field flow
visualization



Schlieren imaging

Image displacement

. from inhomogeneity
Inhomogeneity causes an increase
[ Lgns ordecrease in [
illumination

Len

* Not really vector field visualization... but can show similar effects
* Uses precomputed index of refraction, and physically-based light transport (path tracing) to illustrate flow
T
www.‘s.éi.uﬁ\ N

* Brownlee et al. Physically-Based Interactive Schlieren Flow Visualization. IEEE Pacific Visualization 2010. .S}:
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Using multi-field volume rendering to
| | ke tlow

visualize FTLE-

(a) postclassification Ar = 2, 5fps (b) postclassification At = 0.5, 0.36fps (c) peak finding (ray march, chord) At = 2, 4.3fps

Classitying vorticity and normalized helicity, compare with FTLE computation.

Kotava et al. Volume Rendering with Multidimensional Peak Finding. IEEE Pacific Vis 2012




