
Scientific Visualization: 
Topology, Flow and Vectors

CS 6630, Fall 2015 — Alex Lex
Aaron Knoll, guest lecturer

Slides thanks to:  
Joshua Levina, Clemson University  

Guoning Chen, University of Texas at Houston
Gordon Kindlmann, University of Chicago 

Robert Laramee, Swansea University
Christoph Garth, University of Kaiserslautern

Recap from last sci-vis
lecture

• Isosurfaces

• implicit vs explicit surfaces

• contours, isosurfaces and level sets

• Marching cubes

• How it works: 15-case lookup table

• Improvements to marching cubes, and particle isosurface extraction methods

• What are strengths / limitations of these approaches?

• Direct isosurface visualization

• splatting

• ray casting

• What are advantages of direct vs indirect approaches?

• When are isosurfaces better than volume rendering, and visa versa?

Today
• “Advanced Topics in Visualization” in one lecture!

• Topology

• Critical Points

• Reeb Graphs and Contour Trees

• Morse-Smale Complexes

• Flow and Vector Field Visualization

• Fluid dynamics and a bit of math

• Geometric methods: streamlines, streaklines, timelines, pathlines

• Image-based methods: spot noise, LIC

• Physically-based methods: Schlieren photography, Virtual Rheoscopic Fluids

• Finite-Time Lyapunov Exponent

Topology

Topology

What is Topology?
• Field of mathematics which studies properties

which are preserved under continuous
transformations.
• Stretching, bending = continuous changes.
• Tearing, gluing = discontinuous changes.

• Also called: “Rubber sheet” geometry.

• Studies the connectedness of a space.

Topology

http://simonkneebone.files.wordpress.com/2011/11/konigsberg-puzzle.jpg

http://math.arizona.edu/~models/Topology/source/2.html

http://talklikeaphysicist.com/wp-content/uploads/2008/09/image-497.jpg

Topology

1D Case

• Let us get back to the simple 1D case

Flow Visualization

1D Case

• Let us find out the local minimum/maximum
Zero derivatives

Flow Visualization

1D Case

• They partition the domain into monotonic regions

Flow Visualization

How About 2D Case?
Pre-image of an iso-value: Iso-contours

Flow Visualization

We Want to Extract Similar Information
Q: Which iso-contours are interesting?
Q: Summarize the evolution of iso-contours?

Flow Visualization

Topology
• These local minimum and maximum are called “critical

points” of the scalar functions.

• Their connection forms the topology of the scalar field,
which provides a partition scheme of the spatial
domain.

• Each segment has the equivalent homogeneous
behavior, e.g. monotonic for 1D case.

• This is similar for 2D and 3D scalar fields

Flow Visualization

Scalar Field Analysis
• Here is a more formal definition
• Given a scalar field f

– Gradient vector

• When not zero
– Points in the direction of quickest ascend
– Always perpendicular to the iso-contours (or level sets) of f

• If (p)=0,
– p is a critical point
– f(p) is a critical value









∂
∂

∂
∂

∂
∂

=∇
z
f

y
f

x
ff

f∇

Flow Visualization

Scalar Field Analysis

• A critical point p is isolated if there exists a
neighborhood of p such that p is the only critical
point in the neighborhood

• Classification of fundamental critical points in 2D

Local minima Saddle Local maxima

Flow Visualization

Detection of Critical Points

3D saddles can have two distinct configurations

Flow Visualization

Scalar Field Analysis

• A function is a Morse function if it is smooth and all
of its critical points are isolated and non-degenerate
– Typically a good assumption for scientific data
– A non-Morse function can be made Morse by adding small

but random noise

Flow Visualization
Level-Set Topology

Reeb Graphs, Contour
Trees, and Merge Trees

Flow Visualization

Example – dunking a doughnut

• f(p) = z (height function)

Shape analysis is a special
case of scalar field analysis

Flow Visualization

Example – dunking a doughnut

Flow Visualization

Example – dunking a doughnut

Flow Visualization

Example – dunking a doughnut

Flow Visualization

Example – dunking a doughnut

Flow Visualization

Example – dunking a doughnut

Flow Visualization

How Does it Work?

Flow Visualization

How Does it Work?
Level sets obtaining by sweeping along Z direction

Flow Visualization

Reeb Graph

Flow Visualization

Reeb Graph
• Vertices of the graph are

critical points
• Arcs of the graph are

connected components
(cylinders in domain)of the
level sets of f, contracted to
points

• Two-step algorithm
• Locate critical points
• Connect critical points

Flow Visualization

Reeb Graph
• Vertices of the graph are

critical points
• Arcs of the graph are

connected components
(cylinders in domain)of the
level sets of f, contracted to
points

• Two-step algorithm
• Locate critical points
• Connect critical points

Flow Visualization

ACM Reference Format
Pascucci, V., Scorzelli, G., Bremer, P., Mascarenhas, A. 2007. Robust On-line Computation of Reeb
Graphs: Simplicity and Speed. ACM Trans. Graph. 26, 3, Article 58 (July 2007), 9 pages. DOI =
10.1145/1239451.1239509 http://doi.acm.org/10.1145/1239451.1239509.

Copyright Notice
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profi t or direct commercial advantage
and that copies show this notice on the fi rst page or initial screen of a display along with the full citation.
Copyrights for components of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any
component of this work in other works requires prior specifi c permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701, fax +1
(212) 869-0481, or permissions@acm.org.
© 2007 ACM 0730-0301/2007/03-ART58 $5.00 DOI 10.1145/1239451.1239509
http://doi.acm.org/10.1145/1239451.1239509

Robust On-line Computation of Reeb Graphs:
Simplicity and Speed⇤

Valerio Pascucci
CASC - LLNL / CS - UC DAVIS

pascucci@acm.org

Giorgio Scorzelli
CASC - LLNL

scrgiorgio@cogesic.it

Peer-Timo Bremer
CASC - LLNL

ptbremer@acm.org

Ajith Mascarenhas
CASC - LLNL

mascarenhas1@llnl.gov

Figure 1: (Top row) Simplified Reeb graphs of the Dancer, Malaysian Goddess, Happy Buddha; and David together with two close-ups
showing a tiny tunnel at the base of David’s leg. The pseudo-colored surfaces show the function used for computing the Reeb graph. The
transparent models show the structure of the Reeb graph and its embedding. (Bottom row) The Heptoroid model and two levels of resolution
for the Reeb graph of the Asian Dragon model.

Abstract
Reeb graphs are a fundamental data structure for understanding and
representing the topology of shapes. They are used in computer
graphics, solid modeling, and visualization for applications ranging
from the computation of similarities and finding defects in complex
models to the automatic selection of visualization parameters.

We introduce an on-line algorithm that reads a stream of elements
(vertices, triangles, tetrahedra, etc.) and continuously maintains the
Reeb graph of all elements already read. The algorithm is robust
in handling non-manifold meshes and general in its applicability to
input models of any dimension.

Optionally, we construct a skeleton-like embedding of the Reeb
graph, and/or remove topological noise to reduce the output size.

⇤For more information about the project see:
http://pascucci.org/research/topology/reeb-graph/

For interactive multi-resolution navigation we also build a hierar-
chical data structure which allows real-time extraction of approxi-
mated Reeb graphs containing all topological features above a given
error threshold.

Our extensive experiments show both high performance and prac-
tical linear scalability for meshes ranging from thousands to hun-
dreds of millions of triangles. We apply our algorithm to the largest,
most general, triangulated surfaces available to us, including 3D,
4D and 5D simplicial meshes. To demonstrate one important appli-
cation we use Reeb graphs to find and highlight topological defects
in meshes, including some widely believed to be “clean.”

1 Introduction
The Reeb graph [Reeb 1946] is a fundamental data structure that
encodes the topology of a shape. It is obtained by contracting
to a point the connected components of the level-sets (also called
contours) of a function defined on a mesh. The Reeb graph has
been used extensively in a wide range of applications such as
shape matching [Hilaga et al. 2001] and encoding [Shinagawa et al.
1991; Lazarus and Verroust 1999; Takahashi et al. 1997], com-
pression [Biasotti et al. 2000], surface parameterization [Steiner
and Fischer 2002], and iso-surface remeshing [Wood et al. 2000]
and simplification [Wood et al. 2004]. Reeb graphs can determine
whether a surface has been reconstructed correctly, indicate prob-
lem areas, and can be used to encode and animate a model. Topo-
logical concepts such as the Reeb graph are especially useful in
processing massive models like those generated by high-resolution
laser range scans. However, we are aware of only two gener-

ACM Transactions on Graphics, Vol. 26, No. 3, Article 58, Publication date: July 2007.

Valerio Pascucci, Giorgio Scorzelli, Peer-Timo Bremer, Ajith Mascarenhas: Robust on-
line computation of Reeb graphs: simplicity and speed. ACM TOG. 26(3): 58 (2007)

Contour and merge trees

Join (Merge) trees - Bremer et al. Interactive Exploration and Analysis of Large Scale  
Simulations Using Topology-based Data Segmentation, IEEE TVCG 2011

Bajaj et al. The Contour Spectrum. IEEE Vis 97 Carr et al. Computing Contour Trees in All Dimensions.
Computational Geometry, 2003.

Flow Visualization
Gradient-Field

Topology
Morse and Morse-Smale Complexes

Flow Visualization

Morse-Smale Complex-2D

Flow Visualization

Morse-Smale Complex-2D

Flow Visualization

Morse-Smale Complex-2D

Flow Visualization

Morse-Smale Complex-2D

Flow Visualization

Morse-Smale Complex-2D

Flow Visualization

Morse-Smale Complex-2D

Decomposition into monotonic regions

Flow Visualization

Combinatorial Structure 2D

• Nodes of the MS complex are
exactly the critical points of the
Morse function

• Saddles have exactly four arcs
incident on them

All regions are quads
• Boundary of a region

alternates between saddle-
extremum

• 2k minima and maxima

3D MS Complex cell

Flow Visualization

Applications

Rayleigh-Taylor
turbulence analysis

Flow Visualization

Morse-Smale complex

[P.-T Bremer, H. Edelsbrunner, B. Hamann and V. Pascucci. A Multi-resolution
Data Structure for Two-dimensional Morse-Smale Functions. 2003]

Flow Visualization

Total Run Time 23h 15m 22s
∇ + MS-complex on parcel 2h 9m 45s

merging parcels 2h 38m 52s
5% simplification 18h 12m 41s

cancellations 51,004,765
parcels 1,000

merge operations 1,000
remaining critical points 957,560

remaining arcs 6,320,506

Fig. 5. A single timestep of a dataset of a simulated Raleigh-Taylor instability simulating the
mixing of two fluids. This timestep has a resolution of 1152× 1152× 1000 and is an early
timestep of the simulation. The data is noisy, therefore we perform a 5% persistence sim-
plification to remove “excess features.” We compute the complex for the entire dataset, and
the inset shows a small subsection of the data with selected nodes and arcs of the com-
plex. Minima and maxima (blue and red spheres) and their saddle connections trace out the
bubble structure in the data. The maxima represent isolated pockets of high-density fluid
that have crossed the boundary between the two fluids. The structural complexity is over-
whelming, but our prototype allows interactive exploration and visualization, and selective
inclusion/omission of user-specified components of the MS complex.

constant-time processing. The discrete gradient computation on a par-
cel with n cells uses a sorted ordering provided by the parcel, which
is of complexity O(nlogn). The computation of the MS complex on a
parcel performs a depth-first search from each critical cell which will
cover its entire ascending manifold. Since the ascending manifolds
can merge, if there are O(n) critical cells, in the worst case, this step
can require O(n2) time. However, in practice, the number of critical
points can be modeled as a constant k, and tracing the ascending and
descending manifolds requires O(n) time. Merging two parcels with
m cells on the interface is accomplished in O(mlogm) time, as the gra-
dient computatation again requires O(nlogn), and the merging of the
complexes requires O(m) time. The cancellation of a pair of nodes
where the number of neighbors of each is bounded by some value i
requires at most O(i2) time. Therefore, removing the artifacts intro-
duced in a merge operation requires O(k i2).

We analyze the run time for the particular implementation used for
generating the results, where slices are attached to a growing base for
regular data. Let n be the total size of the data. For each of n1/3 slices,
a slice is read from the data, and cells are created and initialized in a
traversal of the slice taking n2/3 time. The gradient and complex are
computed on the slice taking n2/3logn2/3 + n2/3 time. Each slice is
then merged in n2/3logn2/3 +n2/3 time, and simplified in i k2 time for
a total run time of O(nlogn)+n1/3i k2. We do not remove the constant
final term, since in the worst case this can lead to a total number of n2

operations.
The memory requirements of our method are determined mainly by

Data set Size (a) (b)
Neghip 64×64×64 8s 7s
Hydrogen 128×128×128 47s 27s
Aneurism 256×256×256 5m 1s 3m 51s
Instability 1152×1152×1000 23h 15m 22s ∞

Table 1. An MS complex is computed for well-known datasets. We com-
pare the run time of our algorithm (a) to the fastest previously published
algorithm presented in [17] (b).

two parts: the overhead required for storing the gradient on a parcel,
and the storage required for the computed MS complex. Once the
MS complex has been computed on a parcel, the interior cells can be
removed from memory. In fact, a parcel, with its boundary gradient,
external cells, and MS complex, only needs to be kept in memory
during a merge operation. Let a parcel P have n interior cells and m
boundary cells. During computation of the discrete gradient field, the
total footprint of P is (n+m)× |α|+ |K|+ |Γ|, where |α| is the size of
a single cell, |K| is the memory overhead of the data structures storing
the CW complex, and |Γ| is the size of the MS complex computed
on the parcel. During the merging of two parcels P1 and P2, the total
amount of memory required is (m1 +m2)× |α|+ |K1|+ |K2|+ |Γ1|+
|Γ2|. The MS complexes Γ1 and Γ2 can be simplified independently
prior to the merging operation to reduce their sizes. For regular data,
the mesh connectivity is defined implicitly, therefore K = 0. In the
particular implementation we used for generating the results, given a
dataset of size x× y× z, each parcel is a slice of the data requiring
x×y×8× |α| space, and only two parcels (the base and the new slice)
were kept in memory.

Implications of Divide-and-Conquer The discrete gradient is
first computed on the boundary of a parcel and then in the interior,
and the restriction of the flow on the boundary potentially creates dif-
ferent MS complexes for the same data if the data is divided in dif-
ferent ways. In simulation of simplicity, order-dependence determines
the structures identified whenever degeneracies are encountered, such
as flat regions and multi-saddles. The augmented function and the
flexible ordering of the pairing of cells allow us to pick a particular
ordering such that the flow can be fixed first on the boundary, then on
the interior of a parcel, while maintaining consistency. In practice, a
subset of the cells of the d−1-dimensional MS complex restricted to
the boundary of a parcel form the intersection of the cells of the d-
dimensional MS complex with the boundary. As a result, after merg-
ing parcels and simplifying the artifacts introduced in the process, the
choices made in dividing the data result in only slight geometrical dif-
ferences in the computed MS complexes. Most significantly, however,
the complexes extracted are consistent, which means that they repre-

1625GYULASSY ET AL: A PRACTICAL APPROACH TO MORSE-SMALE COMPLEX COMPUTATION: SCALABILITY AND GENERALITY

Total Run Time 23h 15m 22s
∇ + MS-complex on parcel 2h 9m 45s

merging parcels 2h 38m 52s
5% simplification 18h 12m 41s

cancellations 51,004,765
parcels 1,000

merge operations 1,000
remaining critical points 957,560

remaining arcs 6,320,506

Fig. 5. A single timestep of a dataset of a simulated Raleigh-Taylor instability simulating the
mixing of two fluids. This timestep has a resolution of 1152× 1152× 1000 and is an early
timestep of the simulation. The data is noisy, therefore we perform a 5% persistence sim-
plification to remove “excess features.” We compute the complex for the entire dataset, and
the inset shows a small subsection of the data with selected nodes and arcs of the com-
plex. Minima and maxima (blue and red spheres) and their saddle connections trace out the
bubble structure in the data. The maxima represent isolated pockets of high-density fluid
that have crossed the boundary between the two fluids. The structural complexity is over-
whelming, but our prototype allows interactive exploration and visualization, and selective
inclusion/omission of user-specified components of the MS complex.

constant-time processing. The discrete gradient computation on a par-
cel with n cells uses a sorted ordering provided by the parcel, which
is of complexity O(nlogn). The computation of the MS complex on a
parcel performs a depth-first search from each critical cell which will
cover its entire ascending manifold. Since the ascending manifolds
can merge, if there are O(n) critical cells, in the worst case, this step
can require O(n2) time. However, in practice, the number of critical
points can be modeled as a constant k, and tracing the ascending and
descending manifolds requires O(n) time. Merging two parcels with
m cells on the interface is accomplished in O(mlogm) time, as the gra-
dient computatation again requires O(nlogn), and the merging of the
complexes requires O(m) time. The cancellation of a pair of nodes
where the number of neighbors of each is bounded by some value i
requires at most O(i2) time. Therefore, removing the artifacts intro-
duced in a merge operation requires O(k i2).

We analyze the run time for the particular implementation used for
generating the results, where slices are attached to a growing base for
regular data. Let n be the total size of the data. For each of n1/3 slices,
a slice is read from the data, and cells are created and initialized in a
traversal of the slice taking n2/3 time. The gradient and complex are
computed on the slice taking n2/3logn2/3 + n2/3 time. Each slice is
then merged in n2/3logn2/3 +n2/3 time, and simplified in i k2 time for
a total run time of O(nlogn)+n1/3i k2. We do not remove the constant
final term, since in the worst case this can lead to a total number of n2

operations.
The memory requirements of our method are determined mainly by

Data set Size (a) (b)
Neghip 64×64×64 8s 7s
Hydrogen 128×128×128 47s 27s
Aneurism 256×256×256 5m 1s 3m 51s
Instability 1152×1152×1000 23h 15m 22s ∞

Table 1. An MS complex is computed for well-known datasets. We com-
pare the run time of our algorithm (a) to the fastest previously published
algorithm presented in [17] (b).

two parts: the overhead required for storing the gradient on a parcel,
and the storage required for the computed MS complex. Once the
MS complex has been computed on a parcel, the interior cells can be
removed from memory. In fact, a parcel, with its boundary gradient,
external cells, and MS complex, only needs to be kept in memory
during a merge operation. Let a parcel P have n interior cells and m
boundary cells. During computation of the discrete gradient field, the
total footprint of P is (n+m)× |α|+ |K|+ |Γ|, where |α| is the size of
a single cell, |K| is the memory overhead of the data structures storing
the CW complex, and |Γ| is the size of the MS complex computed
on the parcel. During the merging of two parcels P1 and P2, the total
amount of memory required is (m1 +m2)× |α|+ |K1|+ |K2|+ |Γ1|+
|Γ2|. The MS complexes Γ1 and Γ2 can be simplified independently
prior to the merging operation to reduce their sizes. For regular data,
the mesh connectivity is defined implicitly, therefore K = 0. In the
particular implementation we used for generating the results, given a
dataset of size x× y× z, each parcel is a slice of the data requiring
x×y×8× |α| space, and only two parcels (the base and the new slice)
were kept in memory.

Implications of Divide-and-Conquer The discrete gradient is
first computed on the boundary of a parcel and then in the interior,
and the restriction of the flow on the boundary potentially creates dif-
ferent MS complexes for the same data if the data is divided in dif-
ferent ways. In simulation of simplicity, order-dependence determines
the structures identified whenever degeneracies are encountered, such
as flat regions and multi-saddles. The augmented function and the
flexible ordering of the pairing of cells allow us to pick a particular
ordering such that the flow can be fixed first on the boundary, then on
the interior of a parcel, while maintaining consistency. In practice, a
subset of the cells of the d−1-dimensional MS complex restricted to
the boundary of a parcel form the intersection of the cells of the d-
dimensional MS complex with the boundary. As a result, after merg-
ing parcels and simplifying the artifacts introduced in the process, the
choices made in dividing the data result in only slight geometrical dif-
ferences in the computed MS complexes. Most significantly, however,
the complexes extracted are consistent, which means that they repre-

1625GYULASSY ET AL: A PRACTICAL APPROACH TO MORSE-SMALE COMPLEX COMPUTATION: SCALABILITY AND GENERALITY

Gyulassy, Bremer,
Hamann, Pascucci, 2008

Morse-Smale Battery Analysis

Online Submission ID: 229

Interstitial and Interlayer Ion Diffusion Geometry Extraction in
Graphitic Nanosphere Battery Materials

Category: Application

Fig. 1. A carbon nanosphere anode material is simulated with an annealing process using classical molecular dyanmics (left). To
understand the efficacy of this material in battery design, we seek to understand the adsorption of lithium. In graphitic carbon, lithium
motion is governed by the arrangement of carbon rings: while 6-member rings block lithium diffusion through layers of graphene,
higher valence rings permit it. Our approach turns to topological analysis of the distance function, constructing explicit triangulations
to represent carbon rings, classifying them as blocking or non-blocking (middle left). We use our representation to quantify both
the portions of the nanosphere that are accessible from the exterior (middle right), as well as studying the effects of defects on the
diffusion distance needed to saturate the nanosphere (right).

Abstract— Large-scale molecular dynamics (MD) simulations are commonly used for simulating the synthesis and ion diffusion of
battery materials. A good battery anode material is determined by its capacity to store ion or other diffusers. However, modeling
of ion diffusion dynamics and transport properties at large length and long time scales would be impossible with current MD codes.
To analyze the fundamental properties of these materials, therefore, we turn to geometric and topological analysis of their structure.
In this paper, we apply a novel technique inspired by discrete Morse theory to the Delaunay triangulation of the simulated geometry
of a thermally annealed carbon nanosphere. We utilize our computed structures to drive further geometric analysis to extract the
interstitial diffusion structure as a single mesh. Our results provide a new approach to analyze the geometry of the simulated carbon
nanosphere, and new insights into the role of carbon defect size and distribution in determining the charge capacity and charge
dynamics of these carbon based battery materials.

Index Terms—materials science, morse-smale, topology, Delaunay, computational geometry

1 INTRODUCTION

Materials science studies a wide range of phenomena at various scales,
using different computational codes for different purposes. Molecu-
lar dynamics (MD) are the main computational technique to simulate
chemical-physical systems in large spatio-temporal scale at the atom-
istic level. General computational studies must trade between compu-
tational cost and physical accuracy. At small spatio-temporal scales
in Ångströms and femtoseconds, first-principles ab initio molecular
dynamics (AIMD) codes, e.g., employing density functional theory,
(DFT) can accurately simulate electronic structure and bonding en-
ergetics. For larger systems on the order of millions of atoms over
nanoseconds, material scientists employ classical MD codes with ap-
proximate atomic potential or force-field. As the underlying structure
and assumptions of simulations change, so too must techniques for
visualizing and analyzing them.

Carbon nanospheres are promising anode materials for a new gen-
eration of lithium ion-based battery technologies. These novel struc-
tures can be synthesized through autogenic pressure reactions by the
recycling of wasted plastic materials [47]. To optimize the design and
synthesis of these novel carbon materials, one has to understand their
basic structural properties and lithium storage capability at the funda-
mental atomistic level. To model this computationally, we have the
choice of precise small-scale models (hundreds of atoms over fem-
toseconds using DFT) and less accurate large-scale models (thouands
or millions of atoms over nanoseconds, using MD). DFT simulations

produce electronic structure properties: the electronic wavefunction
of the system, or all-electron density can be used in scalar-field analy-
sis. In real world application, experimentally synthesized nanospheres
would be on the order of 100 nm to 1 µm, consisting of hundreds of
thousands to billions of carbon atoms. Classical MD must be used
for phenomena at this scale, however the simulations produced with
time-dependent atomic motion in trajectories produce neither the cor-
rect electronic structure properties nor a scalar field that is required for
topological analysis.

Moreover, with both AIMD and classical MD methods we can sim-
ulate thermal annealing of various-sized nanospheres, but we can-
not accurately model the complex diffusion dynamics of lithium ions
within these structures. While the physical properties of such systems
(e.g. sp2/sp3 ratio of carbon bonds of the carbon structure) are gener-
ally understood, the long time scale of the ion diffusion and transport
process (charging the battery) occurs over the course of microseconds
or longer, which would be too costly and inaccurate to compute with
current MD techniques. However, the basic diffusion characteristics
of nanospheres can be understood via topological and geometric anal-
ysis of the local atomic structures. For DFT data, it is possible to
use Morse-Smale decomposition of the wavefunction to determine the
paths that diffusing ions may take [25]. This analysis sheds light on
the interstitial and interlayer structure of the nanosphere, and provides
metrics for assessing theoretical performance of the battery anode.

Topological analysis would be desirable for larger data from clas-
sical dynamics as well. However, we are faced with two challenges:

1

atom geometry (LAMMPS) classified blocking and 
 non-blocking defect sites

Li-accessible 
regions of nanosphere

Li diffusion distance  
for saturation

Gyulassy et al. Interstitial and Interlayer Ion Diffusion Geometry Extraction in  
Graphitic Nanosphere Battery Materials. IEEE Visualization 2015

New finding: most ion
movement occurs through
large faults in the structure.

wavefunction of carbon  
nanosphere

classify carbon chains  
with MS complex identify defect sites MS complex

Gyulassy et al. Morse-Smale Analysis of Ion Diffusion in Ab Initio Battery  
Materials Simulations. TopoInVis 2015

Flow Visualization

Vector fields
• Vector data on a 2D or 3D grid 
 
 
 

• Additional scalar data may be defined per grid point

• Example on a regular grid (a) or scattered data points (b)

Grids (Meshes)
• Meshes combine positional information (geometry) with

topological information (connectivity).

• Mesh type can differ substantial depending in the way mesh
cells are formed.

From Weiskopf, Machiraju, Möller© Weiskopf/Machiraju/Möller

Data Structures

• Grid types
– Grids differ substantially in the cells (basic

building blocks) they are constructed from and
in the way the topological information is given

scattered uniform rectilinear structured unstructured

scalar field vector field tensor field

More formally

• m=n usually — but not always.

• The vector is the element of the field  
(in contrast to multifields)

• Typically, the vector field can be expressed as an
ordinary differential equation (ODE), e.g., 

• Solving (integrating) this ODE results in  
flow, i.e. the set of particle trajectories in this field.

• Flow vis is about how we select and show these
trajectories.

© Weiskopf/Machiraju/Möller 5

Problem Setting

• Main application of vector field visualization is
flow visualization
– Motion of fluids (gas, liquids)
– Geometric boundary conditions
– Velocity (flow) field v(x,t)
– Pressure p
– Temperature T
– Vorticity !"v
– Density #
– Conservation of mass, energy, and momentum
– Navier-Stokes equations
– CFD (Computational Fluid Dynamics)

Experimental flow
visualization

Smoke angel
A C-17 Globemaster III from the 14th Airlift Squadron, Charleston Air Force Base, S.C. flies off after releasing
flares over the Atlantic Ocean near Charleston, S.C., during a training mission on Tuesday, May 16, 2006. The
"smoke angel" is caused by the vortex from the engines.  
(U.S. Air Force photo/Tech. Sgt. Russell E. Cooley IV)

A wind tunnel model of a Cessna 182 showing a wingtip vortex.  
Tested in the RPI (Rensselaer Polytechnic Institute) Subsonic Wind Tunnel.  

By Ben FrantzDale (2007).

http://autospeed.com/cms/A_108677/article.html
http://autospeed.com/cms/A_108677/article.html

Wool Tufts

Flow Visualization: Problems and Concepts

http://autospeed.com/cms/A_108677/article.html
http://autospeed.com/cms/A_108677/article.html

Smoke Injection http://autospeed.com/cms/A_108677/article.html

http://autospeed.com/cms/A_108677/article.html

Smoke Nozzles

[NASA, J. Exp. Biol.]

http://autospeed.com/cms/A_108677/article.html
http://autospeed.com/cms/A_108677/article.html

http://de.wikipedia.org/wiki/Bild:Airplane_vortex_edit.jpg

http://de.wikipedia.org/wiki/Bild:Airplane_vortex_edit.jpg

Streaklines in Experimental Flow Vis

Computational fluid dynamics

Fluid dynamics
• Navier-Stokes equations: a set of PDE’s modeling the behavior of fluids.  

Example for compressible fluids:  
 
 
 
 
 
 
where u is the fluid velocity, p is the fluid pressure, ρ is the fluid density, and μ is the viscoscity.

• Conservation of mass, momentum, energy (relate to 2nd law of thermodynamics).

• Viscosity is the measure of the fluid’s resistance to deformation, from shear or tensile stress. 
(A stress tensor with 9 degrees of freedom!)

• Flow can be steady (time derivative) or unsteady (or transient, i.e. high time derivative)

• Also laminar (flows in predictable, parallel layers) or turbulent (eddies, vortices, random chaos).

• Reynolds number indicates the turbulence of flow = inertial forces / viscous forces.

https://en.wikipedia.org/wiki/Fluid_dynamics
https://en.wikipedia.org/wiki/Navier–Stokes_equations

Continuity equation

https://www.comsol.com/multiphysics/navier-stokes-equations

@⇢

@t
= 0 Laminar flow

https://en.wikipedia.org/wiki/Chaos_theory

Turbulent flow

https://en.wikipedia.org/wiki/Fluid_dynamics
https://en.wikipedia.org/wiki/Navier%E2%80%93Stokes_equations
https://www.comsol.com/multiphysics/navier-stokes-equations
https://en.wikipedia.org/wiki/Chaos_theory

http://www3.nd.edu/~fthomas/Kundu_Fluid_Mechanics.pdf

http://www3.nd.edu/~fthomas/Kundu_Fluid_Mechanics.pdf

Vector Fields in Engineering and Science

Automotive design
[Chen et al. TVCG07,TVCG08]

Weather study [Bhatia and Chen et al. TVCG11]

4Oil spill trajectories [Tao et al. EMI2010] Aerodynamics around missiles [Kelly et al. Vis06]

Automotive body CFD simulations

Michael Waltrip NASCAR  
flow analysis in CD-adapco Star-CCM CFD tools

Jaguar Land Rover External Aerodynamic
Simulation by Exa's PowerFLOW Software

Flow visualization in Ensight  
http://gallery.ensight.com/keyword/external

%20aero;simulation/

F1 RANS simulation 
http://www.symscape.com/blog/car-design-cfd

http://gallery.ensight.com/keyword/external%20aero;simulation/
http://www.symscape.com/blog/car-design-cfd

Aerospace

A simulation of the Hyper-X scramjet vehicle in operation at Mach-7. http://www.airports-worldwide.com/articles/article0523.php

http://www.cesc.zju.edu.cn/learningcenter.htmFAST, http://www.openchannelfoundation.org

http://en.wikipedia.org/wiki/Hyper-X
http://www.airports-worldwide.com/articles/article0607.php
http://www.airports-worldwide.com/articles/article0523.php
http://www.cesc.zju.edu.cn/learningcenter.htm
http://www.openchannelfoundation.org

Flow visualization

Approaches to flow vis
• “How?”

• Characteristic curves of the vector field (streamlines, pathlines, streaklines, timelines,
Lagrangian coherent structures / FTLE)

• Texture-based (LIC, spot noise)

• Direct + geometry-based (hedehogs, glyphs)

• Direct + heuristic (magnitude, Laplacian, FTLE)

• Physically-based (Schlieren imaging, virtual rheoscopic fluids)

• “Where?”

• Flow in 2D

• Flow on surfaces

• Flow in 3D space

Characteristic Curves of a
Vector Field

• Streamlines: curve parallel (tangent) to the vector
field in each point for a fixed time

• Pathlines: describes motion of a particles over
time through a vector field

• Streaklines: trace of dye that is released into the
flow at a fixed position

• Timelines: describes motion of particles set out on
a line over time through a vector field

Characteristic Curves of a
Vector Field

• Streamlines: curve parallel (tangent) to the vector
field in each point for a fixed time

• Pathlines: describes motion of a particles over
time through a vector field

• Streaklines: trace of dye that is released into the
flow at a fixed position

• Timelines: describes motion of particles set out on
a line over time through a vector field

integrate over space
the “continuous” static velocity fields(t) = s0 +

Z

0ut
V (s(u)) du

Characteristic Curves of a
Vector Field

• Streamlines: curve parallel (tangent) to the vector
field in each point for a fixed time

• Pathlines: describes motion of a particles over
time through a vector field

• Streaklines: trace of dye that is released into the
flow at a fixed position

• Timelines: describes motion of particles set out on
a line over time through a vector field

integrate over space
the “continuous” static velocity field

s(t) = s0 +

Z

0ut
V (s(u), u) du

s(t) = s0 +

Z

0ut
V (s(u)) du

integrate over time and space
each point is like a new seed

Characteristic Curves of a
Vector Field

• Streamlines: curve parallel (tangent) to the vector
field in each point for a fixed time

• Pathlines: describes motion of a particles over
time through a vector field

• Streaklines: trace of dye that is released into the
flow at a fixed position

• Timelines: describes motion of particles set out on
a line over time through a vector field

integrate over space
the “continuous” static velocity field

s(t) = s0 +

Z

0ut
V (s(u), u) du

s(t) = s0 +

Z

0ut
V (s(u)) du

integrate over time and space

integrate over time and space

each point is like a new seed

seed(s) stay in the same place

s(t) = s0 +

Z

0ut
V (s(u), u) du

Characteristic Curves of a
Vector Field

• Streamlines: curve parallel (tangent) to the vector
field in each point for a fixed time

• Pathlines: describes motion of a particles over
time through a vector field

• Streaklines: trace of dye that is released into the
flow at a fixed position

• Timelines: describes motion of particles set out on
a line over time through a vector field

integrate over space
the “continuous” static velocity field

s(t) = s0 +

Z

0ut
V (s(u), u) du

s(t) = s0 +

Z

0ut
V (s(u)) du

integrate over time and space

integrate over time and space

same as streaklines, but a “burst” in times(t) = s0 +

Z

0ut
V (s(u), u) du

each point is like a new seed

seed(s) stay in the same place

s(t) = s0 +

Z

0ut
V (s(u), u) du

streamlines pathlines

streak lines timelines

time

y

x

time

y

x

time

y

x

time

y

x

2D time-dependent vector field
particle visualization

curve parallel to the vector field
in each point for a fixed time

describes motion of a massless
particle in an steady flow field

curve parallel to the vector field in
each point over time

describes motion of a massless
particle in an unsteady flow field

streamlines pathlines

Important feature curves:
• Streamline: a curve that is everywhere

tangent to the steady flow (release 1
massless particle)
s(t) = s0 + ³0dudt V(s(u)) du

Interpolation in space

• Pathline: a curve that is everywhere
tangent to an unsteady flow field
(release 1 massless particle)
s(t) = s0 + ³0dudt V(s(u), u) du
Interpolation in space and time!

Unsteady Vector Fields

streamlines

pathlines 4

Important feature curves:
• Streamline: a curve that is everywhere

tangent to the steady flow (release 1
massless particle)
s(t) = s0 + ³0dudt V(s(u)) du

Interpolation in space

• Pathline: a curve that is everywhere
tangent to an unsteady flow field
(release 1 massless particle)
s(t) = s0 + ³0dudt V(s(u), u) du
Interpolation in space and time!

Unsteady Vector Fields

streamlines

pathlines 4

curve parallel to the vector field
in each point for a fixed time

describes motion of a massless
particle in an steady flow field

curve parallel to the vector field in
each point over time

describes motion of a massless
particle in an unsteady flow field

Weinkauf and Theisel, TVCG 2010

streamlines pathlines

Important feature curves:
• Streamline: a curve that is everywhere

tangent to the steady flow (release 1
massless particle)
s(t) = s0 + ³0dudt V(s(u)) du

Interpolation in space

• Pathline: a curve that is everywhere
tangent to an unsteady flow field
(release 1 massless particle)
s(t) = s0 + ³0dudt V(s(u), u) du
Interpolation in space and time!

Unsteady Vector Fields

streamlines

pathlines 4

Important feature curves:
• Streamline: a curve that is everywhere

tangent to the steady flow (release 1
massless particle)
s(t) = s0 + ³0dudt V(s(u)) du

Interpolation in space

• Pathline: a curve that is everywhere
tangent to an unsteady flow field
(release 1 massless particle)
s(t) = s0 + ³0dudt V(s(u), u) du
Interpolation in space and time!

Unsteady Vector Fields

streamlines

pathlines 4

• Timelines
– Union of the current positions
of particles released at the
same time in space

Other feature curve

Source: doi.ieeecomputersociety.org

●Stream and Path lines:
● Through all non-critical points (x,t) in space-time there is exactly one

stream/path line passing through it.

●Streak and Time lines:
●Many streak/time lines through every point (of the spatial domain)
● makes it difficult to describe streak/time lines as tangent curves of

some vector field
●But it is possible. We may discuss it in a later session.

●Stream, Path, and Streak lines coincide in a steady vector
field.

?

●Stream and Path lines:
● Through all non-critical points (x,t) in space-time there is exactly one

stream/path line passing through it.

●Streak and Time lines:
●Many streak/time lines through every point (of the spatial domain)
● makes it difficult to describe streak/time lines as tangent curves of

some vector field
●But it is possible. We may discuss it in a later session.

●Stream, Path, and Streak lines coincide in a steady vector
field.

Integration Techniques

Numerical*Integra/on*

First Order Euler method:
 x(t) = x(t-dt) + v(x(t-dt)) * dt

- Not very accurate, but fast
- Other higher order methods are avilable: Runge-Kutta
 second and fourth order integration methods (more
 popular due to their accuracy)

Result of first order
Euler method

Euler’s(Method(Assume flow = f(t)

ΔX

ΔX "= "d t"*" f(t)d t)

t"d t t

f(t"d t)

flow*= * f(t)

d t

ΔX

Numerical*Integra/on*(2)*

Second*Runge7Ku9a*Method*
*
x(t)*=*x(t7dt)*+**½***(K1*+*K2)**
**************k1*=*dt***v(x(t7dt))*
**************k2*=*dt***v(x(t7dt)+k1)*

½***[v(x(t))+v(x(t)+dt*v(x(t))]*

x(t+dt)*

x(t)*

Runge&Ku(a*2*
Assume flow = f(t)

Like Trapezoid Method.
t"d t t

f(t"d t)

flow*= * f(t)

d t

f(t)

F1
F2

ΔX

Numerical*Integra/on*(3)*

Standard*Method:*Runge:Ku<a*fourth*order**

x(t)*=*x(t:dt)*+*1/6*(k1*+*2k2*+*2k3*+*k4)*
*
k1*=*dt***v(t:dt);**k2*=*dt***v(x(t:dt)*+*k1/2)*
*
k3*=*dt***v(x(t:dt)*+*k2/2);**k4*=*dt***v(x(t:dt)*+*k3)*

Runge&Ku(a*4*
Assume flow = f(t)

t"d t t

f(t"d t)

flow*= *f(t)f(t)

F1
F2 F3 F4

f(t"d t/2)

t"d t/2

ΔX

● Numerical integration of stream lines:

● approximate streamline by polygon xi

● Testing example:
● v(x,y) = (-y, x/2)^T
● exact solution: ellipses
● starting integration from (0,-1)

x

y

Euler Integration – Example
2D model data:

vx = dx/dt = −y
vy = dy/dt = x/2
Sample arrows:

True
solution:
ellipses.

0 1 2 3 4
0

1

2

Euler Integration – Example
Seed point s0 = (0 | -1)T;
current flow vector v(s0) = (1 |0)T;
dt = ½
vx = dx/dt = −y

vy = dy/dt = x/2

0 1 2 3 4
0

1

2

Euler Integration – Example
New point s1 = s0 + v(s0) · dt = (1/2 | -1)T;
current flow vector v(s1) = (1 |1/4)T;
vx = dx/dt = −y

vy = dy/dt = x/2

0 1 2 3 4
0

1

2

Euler Integration – Example
New point s2 = s1 + v(s1) · dt = (1 | -7/8)T;
current flow vector v(s2) = (7/8 |1/2)T;
vx = dx/dt = −y

vy = dy/dt = x/2

0 1 2 3 4
0

1

2

Euler Integration – Example
s3 = (23/16| -5/8)T ≈ (1.44 | -0.63)T;
v(s3) = (5/8 |23/32)T ≈ (0.63 |0.72)T;
vx = dx/dt = −y

vy = dy/dt = x/2

0 1 2 3 4

0

1

2

Euler Integration – Example
s4 = (7/4 | -17/64)T ≈ (1.75 | -0.27)T;
v(s4) = (17/64|7/8)T ≈ (0.27 |0.88)T;

0 1 2 3 4

0

1

2

Euler Integration – Example
s9 ≈ (0.20 |1.69)T;
v(s9) ≈ (-1.69 |0.10)T;

0 1 2 3 4

0

1

2

Euler Integration – Example
s14 ≈ (-3.22 | -0.10)T;
v(s14) ≈ (0.10 | -1.61)T;

0 1 2 3 4

0

1

2

Euler Integration – Example
s19 ≈ (0.75 | -3.02)T; v(s19) ≈ (3.02 |0.37)T;
clearly: large integration error, dt too large,
19 steps

0 1 2 3 4
0

1

2

Euler Integration – Example
dt smaller (1/4): more steps, more exact.
s36 ≈ (0.04 | -1.74)T; v(s36) ≈ (1.74 |0.02)T;
36 steps

0 1 2 3 4
0

1

2

Comparison Euler, Step Sizes
Euler
quality is
proportional
to dt

Euler Example – Error Table

dt #steps error

1/2 19 ~200%
1/4 36 ~75%
1/10 89 ~25%
1/100 889 ~2%
1/1000 8889 ~0.2%



RK-2 – A Quick Round
RK-2: even with dt = 1 (9 steps)

better
than Euler
with dt = 1/8
(72 steps)

RK-4 vs. Euler, RK-2
Even better: fourth order RK:
• four vectors a, b, c, d
• one step is a convex combination:

si+1 = si + (a + 2·b + 2·c + d)/6
• vectors:

a = dt·v(si) … original vector
b = dt·v(si+a/2) … RK-2 vector
c = dt·v(si+b/2) … use RK-2 …
d = dt·v(si+c) … and again

Euler vs. Runge-Kutta
RK-4: pays off only with complex flows

Here
approx.
like
RK-2

Integration, Conclusions
Summary:
• analytic determination of streamlines usually not possible
• hence: numerical integration
• various methods available

(Euler, Runge-Kutta, etc.)
• Euler: simple, imprecise, esp. with small dt
• RK: more accurate in higher orders
• furthermore: adaptive methods, implicit methods, etc.

Streamline Placement
(in 2D)

●Seeding of integral lines:

● which stream/path/streak/time lines to visualize?

● too few: important details get lost

● too many: overload, visual clutter

● simple approaches:
● start on regular grid points
● start randomly

Streamline Seed Placement
• The placement of seeds directly determines the

visualization quality
– Too many: scene cluttering
– Too little: no pattern formed

• It has to be the right number at the right places!!!

Problem: Choice of Seed Points
Streamline placement:
• If regular grid used: very irregular result

Jobard et al., 1997Turk and Banks, 1996

Mebarki et al., 2005 Rosanwo et al., 2009

Streamline seeding
• 2D: evenly spaced stream lines

• Turk/Banks 96:
• Start with “streamlets” (very short stream lines)
• Apply a series of energy-decreasing elementary operations: 

combine, delete, create, lengthen, shorten streamlets
• Energy: difference between low-pass filtered version of current placements and

uniform grey image

Main idea: the distribution of ink on the screen should be
even [Turk and Bank 96]

Results

Tapering at streamline ends Optimized arrow plots

[Turk and Bank ’96]

Different Streamline Densities
Variations of dsep relative to image width:

6% 3% 1.5%

Streamline Seeding in 3D
• Evenly-spaced does not make sense
• Start on uniform grid

Weinkauf 2003

Streamline Seeding in 3D
• Evenly-spaced does not make sense
• Start in regions of high vector field curvature (i.e., close to critical points):

Weinkauf 2003

Seeds in Image Space
• Need to un-project the seeds back to 3D object

space for streamline integration

• Utilize depth maps generated from other
visualization techniques

Stream surface Slicing plane Isosurface

Li and Shen, TVCG 2007

Streamline Bundling

[Yu et al. 2012]

Streamline Bundling

[Yu et al. 2012]

Opacity Optimization for 3D Line Fields

[Gunthe et al. 2013]

Idea: make less important sections of streamlines transparent to fix occlusion, remove clutter.  
SIGGRAPH 2013!

Illuminated Streamlines

[Zockler et al. 96, Mallo et al. 2005]

Open Source: http://www.scivis.ethz.ch/research/projects/illuminated_streamlines

This can to some extend reduce the 3D cluttering
issue.

Use lighting to improve spatial perception of lines
in 3D.

Rendering of stream surfaces

Illustrative visualization
• Using transparency and
surface features such as
silhouette and feature
curves.

[Hummel et al. 2010]

Abraham/Shaw’s illustration, 1984 [Born et al. Vis2010]

Where to put seeds to start the integration?

Seeding along a straight‐line
Allow user exploration
[Weiskopf et al. 2007]

Seeding along the direction that is
perpendicular to the flow leads to
stream surface with large coverage
[Edmunds et al. EuroVis2012]

Time and streak surfaces
http://www.vacet.org/gallery/images_video/Krishnan_TimeStreakSurfaces.mp4

Hari Krishnan, Christoph Garth, Ken Joy. Time and Streak Surfaces for Flow Visualization in Large Time-Varying Data Sets.
IEEE Visualization 2009.

http://www.vacet.org/gallery/images_video/Krishnan_TimeStreakSurfaces.mp4

Approaches to flow vis
• “How?”

• Characteristic curves of the vector field (streamlines, pathlines, streaklines, timelines,
Lagrangian coherent structures / FTLE)

• Texture-based (LIC, spot noise)

• Direct + geometry-based (hedehogs, glyphs)

• Direct + heuristic (magnitude, Laplacian, FTLE)

• Physically-based (Schlieren imaging, virtual rheoscopic fluids)

• “Where?”

• Flow in 2D

• Flow on surfaces

• Flow in 3D space

Texture-based flow vis

• Basic idea: use a texture to represent “all seed points at
once”.

• Then, convolve the texture with the vector field to “streak”
it as it evolves.

Spot Noise
• Idea: distribute a set of intensity functions (spots)

over domain

• Each spot represents a particle warped over a
small time step

• Streak in the direction of local flow from where the
particle is seeded

• Repeat for many spots, and then blend together

Overview — Texture-Based Methods

! Spot Noise
" One of the first texture-based techniques (Van Wijk, Siggraph1991).

" Basic idea: distribute a set of intensity function, or spot, over the domain, that is wrapped
by the flow over a small step.
" Pro: mimic the smear effect of oil; encode magnitude; can be applied for both steady and
unsteady flow.
" Con: tricky to implement; low quality; computationally expensive.

[De Leeuw and Van Liere]

Spot noise

• Image: Wim de Leeuw. http://homepages.cwi.nl/~robertl/movies/flow1.mpg

http://homepages.cwi.nl/~robertl/movies/flow1.mpg

Approaches to flow vis
• “How?”

• Characteristic curves of the vector field (streamlines, pathlines, streaklines, timelines,
Lagrangian coherent structures / FTLE)

• Texture-based (LIC, spot noise)

• Direct geometry-based (hedehogs, glyphs)

• Direct heuristic (magnitude, Laplacian, FTLE)

• Physically-based (Schlieren imaging, virtual rheoscopic fluids)

• “Where?”

• Flow in 2D

• Flow on surfaces

• Flow in 3D space

LIC – Line Integral Convolution

• (Cabral/Leedom, Siggraph 1993)

• A global method to visualize vector fields

2D vector field vector field on surface
(often called 2.5D)

3D vector field

Approaches to flow vis
• “How?”

• Characteristic curves of the vector field (streamlines, pathlines, streaklines, timelines,
Lagrangian coherent structures / FTLE)

• Texture-based (LIC, spot noise)

• Direct geometry-based (hedehogs, glyphs)

• Direct heuristic (magnitude, Laplacian, FTLE)

• Physically-based (Schlieren imaging, virtual rheoscopic fluids)

• “Where?”

• Flow in 2D

• Flow on surfaces

• Flow in 3D space

Idea of LIC
• Global visualization technique; not only one particle path

• Start with a random texture

• Smear out this texture along the path lines in a vector field, results in

• Low correlation of intensity values between neighboring lines,

• But high correlation along them

Approaches to flow vis
• “How?”

• Characteristic curves of the vector field (streamlines, pathlines, streaklines, timelines,
Lagrangian coherent structures / FTLE)

• Texture-based (LIC, spot noise)

• Direct geometry-based (hedehogs, glyphs)

• Direct heuristic (magnitude, Laplacian, FTLE)

• Physically-based (Schlieren imaging, virtual rheoscopic fluids)

• “Where?”

• Flow in 2D

• Flow on surfaces

• Flow in 3D space

Idea of LIC

An Introduction to Flow Visualization

Line Integral Convolution

26

Approaches to flow vis
• “How?”

• Characteristic curves of the vector field (streamlines, pathlines, streaklines, timelines,
Lagrangian coherent structures / FTLE)

• Texture-based (LIC, spot noise)

• Direct geometry-based (hedehogs, glyphs)

• Direct heuristic (magnitude, Laplacian, FTLE)

• Physically-based (Schlieren imaging, virtual rheoscopic fluids)

• “Where?”

• Flow in 2D

• Flow on surfaces

• Flow in 3D space

Algorithm for 2D LIC

• Convolve a
random texture
along the
streamlines

vector field

streamline

input texture

output image

Approaches to flow vis
• “How?”

• Characteristic curves of the vector field (streamlines, pathlines, streaklines, timelines,
Lagrangian coherent structures / FTLE)

• Texture-based (LIC, spot noise)

• Direct geometry-based (hedehogs, glyphs)

• Direct heuristic (magnitude, Laplacian, FTLE)

• Physically-based (Schlieren imaging, virtual rheoscopic fluids)

• “Where?”

• Flow in 2D

• Flow on surfaces

• Flow in 3D space

2D flow behind a cylinderFilter length influences the quality of LIC images
filter length = 100

Approaches to flow vis
• “How?”

• Characteristic curves of the vector field (streamlines, pathlines, streaklines, timelines,
Lagrangian coherent structures / FTLE)

• Texture-based (LIC, spot noise)

• Direct geometry-based (hedehogs, glyphs)

• Direct heuristic (magnitude, Laplacian, FTLE)

• Physically-based (Schlieren imaging, virtual rheoscopic fluids)

• “Where?”

• Flow in 2D

• Flow on surfaces

• Flow in 3D space

2D flow behind a cylinderFilter length influences the quality of LIC images
filter length = 50

Approaches to flow vis
• “How?”

• Characteristic curves of the vector field (streamlines, pathlines, streaklines, timelines,
Lagrangian coherent structures / FTLE)

• Texture-based (LIC, spot noise)

• Direct geometry-based (hedehogs, glyphs)

• Direct heuristic (magnitude, Laplacian, FTLE)

• Physically-based (Schlieren imaging, virtual rheoscopic fluids)

• “Where?”

• Flow in 2D

• Flow on surfaces

• Flow in 3D space

2D flow behind a cylinderFilter length influences the quality of LIC images
filter length = 25

Approaches to flow vis
• “How?”

• Characteristic curves of the vector field (streamlines, pathlines, streaklines, timelines,
Lagrangian coherent structures / FTLE)

• Texture-based (LIC, spot noise)

• Direct geometry-based (hedehogs, glyphs)

• Direct heuristic (magnitude, Laplacian, FTLE)

• Physically-based (Schlieren imaging, virtual rheoscopic fluids)

• “Where?”

• Flow in 2D

• Flow on surfaces

• Flow in 3D space

2D flow behind a cylinderFilter length influences the quality of LIC images
filter length = 10

Approaches to flow vis
• “How?”

• Characteristic curves of the vector field (streamlines, pathlines, streaklines, timelines,
Lagrangian coherent structures / FTLE)

• Texture-based (LIC, spot noise)

• Direct geometry-based (hedehogs, glyphs)

• Direct heuristic (magnitude, Laplacian, FTLE)

• Physically-based (Schlieren imaging, virtual rheoscopic fluids)

• “Where?”

• Flow in 2D

• Flow on surfaces

• Flow in 3D space

2D flow behind a cylinderFilter length influences the quality of LIC images
filter length = 1

Approaches to flow vis
• “How?”

• Characteristic curves of the vector field (streamlines, pathlines, streaklines, timelines,
Lagrangian coherent structures / FTLE)

• Texture-based (LIC, spot noise)

• Direct geometry-based (hedehogs, glyphs)

• Direct heuristic (magnitude, Laplacian, FTLE)

• Physically-based (Schlieren imaging, virtual rheoscopic fluids)

• “Where?”

• Flow in 2D

• Flow on surfaces

• Flow in 3D space

LIC Color Coding
• Usually, LIC does not use the color channel

• Could use color to encode scalar quantities

Velocity magnitude encoded
using color

2D flow behind a cylinder

Approaches to flow vis
• “How?”

• Characteristic curves of the vector field (streamlines, pathlines, streaklines, timelines,
Lagrangian coherent structures / FTLE)

• Texture-based (LIC, spot noise)

• Direct geometry-based (hedehogs, glyphs)

• Direct heuristic (magnitude, Laplacian, FTLE)

• Physically-based (Schlieren imaging, virtual rheoscopic fluids)

• “Where?”

• Flow in 2D

• Flow on surfaces

• Flow in 3D space

LIC and color coding of
velocity magnitude

Approaches to flow vis
• “How?”

• Characteristic curves of the vector field (streamlines, pathlines, streaklines, timelines,
Lagrangian coherent structures / FTLE)

• Texture-based (LIC, spot noise)

• Direct geometry-based (hedehogs, glyphs)

• Direct heuristic (magnitude, Laplacian, FTLE)

• Physically-based (Schlieren imaging, virtual rheoscopic fluids)

• “Where?”

• Flow in 2D

• Flow on surfaces

• Flow in 3D space

LIC for 3D Flows
• LIC concept easily extendable to 3D
• Problem: rendering!

3D LIC can only reveal
interesting structures if some
data is discarded.

Overview — Texture-Based Methods

! Unsteady Flow LIC (UFLIC)
" The first texture-based unsteady flow visualization method (by Han-Wei Shen

and David Kao, IEEE Visualization 97 & IEEE TVCG 98).
" Basic idea: Time-accurately scatters particle values of successively fed-forward textures along
pathlines over several time steps to convey the footprint / contribution that a particle leaves at
downstream locations as the flow runs forward.
" Pro: High temporal coherence & high spatial coherence & hardware-independent.
" Con: Low computational performance due to multi-step (≈ 100) pathline integration.

GPU-accelerated UFLIC on arbitrary surfaces

Flow Charts: Visualization of Vector Fields on Arbitrary Surfaces. G Li, X Tricoche, D Weiskopf, C Hansen.  
IEEE TVCG 2008.

Fig. 11. Engine cylinder. (a) GPUFLIC result showing intake pipes connecting the combustion chamber, and openings of piston (notice small bores
on each pipe). (b) Swirling motions on bottom and side of the combustion chamber depicted in UFAC. (c) A different view in UFAC, augmented with
dye advection. (d) Pistons embedded inside of the combustion chamber.

Fig. 13. ICE train. Left: GPUFLIC result. Middle: patch configurations. Right: charts packing.

Fig. 15. Top (left) and bottom (right) views of Brain dataset.

• Heart (figure 16): The last dataset shows the restriction of the

bioelectric field to the epicardium, as computed using a finite el-

ement simulation initialized with boundary conditions provided

by experimentally acquired values of the electric potential at

sparse locations on the heart surface. The context of this simula-

tion is the study of ischemia. The visualization reveals the com-

plex patterns exhibited by the bioelectric field and is of interest

to investigate its relationship with the underlying heart anatomy.

The image presents two views with slightly different viewing an-

gles, showing consistent patterns in the physical space thank to

the use of surface parameterization.

Fig. 16. Two views of Heart dataset visualization in UFAC with slightly
different viewing angles.

Table 1 shows the basic statistics of the datasets used in our exper-

iments and timing figures of surface segmentation/parameterization.

Overview — Texture-Based Methods

! Image-Based Flow Visualization (IBFV)
" One of the most versatile and the easiest-to-implement hardware-based methods
(by Jarke J. van Wijk, SIGGRAPH02).
" Basic idea: Designs a sequence of temporally-spatially low-pass filtered noise textures
and cyclically blends them with an iteratively advected (using forward single-step pathline
integration) image (which is initially a BLACK rectangle).
" Pro: Interactive frame rates and easy simulation of many visualization techniques.
" Con: Good temporal coherence and insufficient spatial coherence (noisy or blurred).

Approaches to flow vis
• “How?”

• Characteristic curves of the vector field (streamlines, pathlines, streaklines, timelines,
Lagrangian coherent structures / FTLE)

• Texture-based (LIC, spot noise)

• Direct geometry-based (hedehogs, glyphs)

• Direct heuristic (magnitude, Laplacian, FTLE)

• Physically-based (Schlieren imaging, virtual rheoscopic fluids)

• “Where?”

• Flow in 2D

• Flow on surfaces

• Flow in 3D space

IBFV: Image-Based Flow Visualization
(Advect Dye in Image-Space)
IBFV

Image source: van Wijk

http://www.win.tue.nl/~vanwijk/ibfv/

http://www.win.tue.nl/~vanwijk/ibfv/ http://www.win.tue.nl/~vanwijk/ibfvs/

Approaches to flow vis
• “How?”

• Characteristic curves of the vector field (streamlines, pathlines, streaklines, timelines,
Lagrangian coherent structures / FTLE)

• Texture-based (LIC, spot noise)

• Direct geometry-based (hedehogs, glyphs)

• Direct heuristic (magnitude, Laplacian, FTLE)

• Physically-based (Schlieren imaging, virtual rheoscopic fluids)

• “Where?”

• Flow in 2D

• Flow on surfaces

• Flow in 3D space

Recent Advances in 3D Texture‐based Method

Codimension‐2 illumination
without illumination with illumination Gradient‐based illumination

[Falk and Weikopf 2008]
Different seeding strategies

Feature enhancement

Approaches to flow vis
• “How?”

• Characteristic curves of the vector field (streamlines, pathlines, streaklines, timelines,
Lagrangian coherent structures / FTLE)

• Texture-based (LIC, spot noise)

• Direct + geometry-based (hedehogs, glyphs)

• Direct + heuristic (magnitude, Laplacian, FTLE)

• Physically-based (Schlieren imaging, virtual rheoscopic fluids)

• “Where?”

• Flow in 2D

• Flow on surfaces

• Flow in 3D space

Approaches to flow vis
• “How?”

• Characteristic curves of the vector field (streamlines, pathlines, streaklines, timelines,
Lagrangian coherent structures / FTLE)

• Texture-based (LIC, spot noise)

• Direct geometry-based (hedehogs, glyphs)

• Direct heuristic (magnitude, Laplacian, FTLE)

• Physically-based (Schlieren imaging, virtual rheoscopic fluids)

• “Where?”

• Flow in 2D

• Flow on surfaces

• Flow in 3D space

● Arrow plots:

● also called hedgehog plots

● represent velocity as arrows at
regular locations, e.g., place arrows
at grid points

●  overloading possible

● arrows: (scaled) unit length or
encode magnitude

● well-established for 2D

Approaches to flow vis
• “How?”

• Characteristic curves of the vector field (streamlines, pathlines, streaklines, timelines,
Lagrangian coherent structures / FTLE)

• Texture-based (LIC, spot noise)

• Direct geometry-based (hedehogs, glyphs)

• Direct heuristic (magnitude, Laplacian, FTLE)

• Physically-based (Schlieren imaging, virtual rheoscopic fluids)

• “Where?”

• Flow in 2D

• Flow on surfaces

• Flow in 3D space

© Weiskopf/Machiraju/Möller 22

Arrows and Glyphs

• Arrows visualize
– Direction of vector field
– Orientation
– Magnitude:

• Length of arrows
• Color coding

Approaches to flow vis
• “How?”

• Characteristic curves of the vector field (streamlines, pathlines, streaklines, timelines,
Lagrangian coherent structures / FTLE)

• Texture-based (LIC, spot noise)

• Direct geometry-based (hedehogs, glyphs)

• Direct heuristic (magnitude, Laplacian, FTLE)

• Physically-based (Schlieren imaging, virtual rheoscopic fluids)

• “Where?”

• Flow in 2D

• Flow on surfaces

• Flow in 3D space

● [Kirby et al 99]: multiple values of 2d flow data by layering
concept related to painting process of artists

Arrows in 3D

© Weiskopf/Machiraju/Möller 25

Arrows and Glyphs

• Advantages and disadvantages of glyphs
and arrows:
+ Simple
+ 3D effects
- !Inherent occlusion effects
- !Poor results if magnitude of velocity changes

rapidly
(Use arrows of constant length and color code
magnitude)

Approaches to flow vis
• “How?”

• Characteristic curves of the vector field (streamlines, pathlines, streaklines, timelines,
Lagrangian coherent structures / FTLE)

• Texture-based (LIC, spot noise)

• Direct + geometry-based (hedehogs, glyphs)

• Direct + heuristic (magnitude, Laplacian, FTLE)

• Physically-based (Schlieren imaging, virtual rheoscopic fluids)

• “Where?”

• Flow in 2D

• Flow on surfaces

• Flow in 3D space

●Volume illustration for flow visualization [Svakine et al 05]

Finite‐Time Lyapunov Exponent

• Some observation
– Observe particle trajectories
–Measure the divergence between trajectories, i.e.
how much flow stretch

[Shadden]

d d’

Finite‐Time Lyapunov Exponent

• Description
– Lyapunov exponents describe rate of separation or
stretching of two infinitesimally close points over
time in a dynamical system

– FTLE refers to the largest Lyapunov exponent for
only a limited time and is measured locally

– Largest exponent is governing the behavior of the
system, smaller ones can be neglected

- Ridge lines of FTLE correspond to  
“Lagrangian Coherent Structures” (LCS)

- i.e., sources and sinks

Finite‐Time Lyapunov Exponent
A computation framework

Flow map
estimation

Estimate Flow map
distortion

Eigen‐analysis

Individual
pathlines

Cauchy Green
tensor

௠௔௫ߣ

Compute FTLE

Create color plots

Input vector field

FT
LE
 p
ip
el
in
e

߮௧బା்௧బ ܠ

∆ൌ
݀߮௧బା்௧బ ܠ

∗

ܠ݀
݀߮௧బା்௧బ ܠ

ܠ݀

1
|ܶ| ln ௠௔௫ሺ∆ሻߣ

FTLE volumes - sources and sinks

http://www.vacet.org/gallery/images_video/jet4-ftle-0.012.mp4

Efficient Computation and Visualization of Coherent
Structures in Fluid Flow Applications

C Garth, F Gerhardt, X Tricoche, H Hagen. IEEE
Visualization 2007.

http://www.vacet.org/gallery/images_video/jet4-ftle-0.012.mp4

Approaches to flow vis
• “How?”

• Characteristic curves of the vector field (streamlines, pathlines, streaklines, timelines,
Lagrangian coherent structures / FTLE)

• Texture-based (LIC, spot noise)

• Direct geometry-based (hedehogs, glyphs)

• Direct heuristic (magnitude, Laplacian, FTLE)

• Physically-based (Schlieren imaging, virtual rheoscopic fluids)

• “Where?”

• Flow in 2D

• Flow on surfaces

• Flow in 3D space

Virtual Rheoscopic Fluids

• Simulates the orientation of virtual microscope gold plate particles swimming in the vector field.

• Determine rheoscopic particle orientation via eigenvalues of the Jacobian (gradient tensor)

Hecht et al. Virtual Rheoscopic Fluids, IEEE Vis 2008Barth et al. Virtual Rheoscopic Fluids for  
Flow Visualization, IEEE Vis 2007

Tensor Field Visualization

Repellor and Attractor Manifolds
Vector field topology preview

Tensor Field Visualization

Stable Manifolds of Ocean Data
Levine, Jadhav, Bhatia, Pascucci, Bremer, CGF 31(3) 2012Vector field topology preview

Non-vector field flow
visualization

Schlieren imaging

• Not really vector field visualization… but can show similar effects

• Uses precomputed index of refraction, and physically-based light transport (path tracing) to illustrate flow

• Brownlee et al. Physically-Based Interactive Schlieren Flow Visualization. IEEE Pacific Visualization 2010.

Using multi-field volume rendering to
visualize FTLE-like flow

(a) postclassification Dt = 2, 5fps (b) postclassification Dt = 0.5, 0.36fps (c) peak finding (ray march, chord) Dt = 2, 4.3fps

Figure 1: Volume rendering of a 2-channel fluid dynamics data set consisting of vorticity magnitude and normalized helicity. The trans-
fer function (shown in the lower-right corner) is chosen to visualize surfaces of medium vorticity (yellow) and high-vorticity regions (red
and blue). In the latter, normalized helicity is considered as a secondary variable to color strong vortical regions by direction of rotation.
Multidimensional peak finding lets us quickly and accurately render multi-criteria vortex features without explicit mesh extraction.

tion and blending operations, such as maximum-intensity projec-
tion, can equally be used for rendering multifield data [26].

Preintegration [6, 25] integrates transfer function space using a
separate Riemann sum. Irradiance on a ray segment can then be
queried in a 2D lookup table. Multidimensional transfer functions
can be preintegrated and rendered using a summed area table [15].
This is more costly to render, requiring frustum tracing to integrate
over a 2D beam footprint in transfer function space. It is also ex-
pensive to preintegrate high-resolution 2D transfer functions, and
this approach has not been extended to higher-dimensional classi-
fication. Peak finding [12] combines direct volume rendering with
discrete isosurfacing by sampling directly at peaks in the transfer
function. Ament et al. [1] detail a more robust method for DVR
integration of discrete isosurfaces that removes scale-dependency
entirely. However, it is expensive (requiring 3 samples per voxel as
opposed to multiple voxels between samples for peak finding) and
would not extend easily to multidimensional classification due to
its reliance on lookup tables.
3 BACKGROUND

Direct volume rendering is a numerical integration of discrete sam-
ples blended according to an emission-absorption model approx-
imating the radiative transport equation [18]. On a ray segment,
irradiance is represented continuously as:

I(a,b) =
Z b

a
rE(f(s))ra(f(s))e�

R s
a ra(f (t))dtds (1)

Here, rE is the emissive term or color, ra is the opacity of the
transfer function; a,b are the segment endpoints, and f(t) = f(~R(t))
is the scalar field function evaluated in world space at t along the
ray ~R. Since the transfer function is applied after interpolation, r(f)
implies postclassification. To approximate Equation 1 discretely,
we employ a Riemann sum,

e�
R s

a ra(f(t))dt =
n

’
i=0

e�Dt ra(f(i Dt)) =
n

’
i=0

(1�ai), (2)

where Dt is the uniform sampling step, n = (s�a)/Dt, and

ai ⇡ 1� e�Dt ra(f (i Dt)) (3)

Discretizing the integral on [a,b] yields the discrete summation

I ⇡
N

Â
i=0

řE(i)
i�1

’
j=0

(1�a j), (4)

where řE is approximated at discrete points along the ray as:

řE(i) ⇡ ra(f(i Dt))rE(f(i Dt)) (5)

Preintegration employs a separate integral in transfer function
space to estimate řE and ra [6], specifically the Riemann sum of
irradiance between two samples f0 = f(t0) and f1 = f(t1), assuming
linear spacing of f values between these points. Typically, the colors
řE(i) are associated, i.e. integrated alongside ai.

ai ⇡ 1� e�
R 1

0 ra((1�w)f0+wf1)d dw, (6)

where d = ||(f1 � f0)|| is the length of a segment.
In order for this linear approximation to be accurate, preinte-

gration assumes that transfer function space is continuous with
bounded variation (specifically, Lipschitz) along the ray. However,
it is often applied in scenarios where this is not the case. Peak find-
ing [12] assumes the transfer function is potentially discontinuous,
and that at sharp peaks ai it is better approximated by the supre-
mum:

ai ⇡ 1� e(sup
f2(f0 ,f1) ra(f)) (7)

Peak finding assumes the isosurface at that peak is always sam-
pled with constant opacity regardless of the step size Dt. This ap-
proximation is only employed where peaks exist; all other samples
are assigned ai according to Equation 6 and integrated using stan-
dard postclassification. This has a biasing effect on the integral,
but ensures peak features are sampled regardless of sampling rate.
To determine if a peak exists, 1D peak finding uses a 2D lookup
similar to a preintegrated table, storing the peak isovalue (or iso-
values) between [f0, f1]. At rendering, if a peak u exists in this

Classifying vorticity and normalized helicity, compare with FTLE computation.  
 

Kotava et al. Volume Rendering with Multidimensional Peak Finding. IEEE Pacific Vis 2012

