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Recap from last sci-vis 
lecture

• 3D graphics 

• rasterization vs ray tracing 

• rendering pipelines, indirect and direct visualization 

• Volume rendering 

• Emission-absorption, classification, blending 

• Transfer functions 

• 1D vs 2D transfer functions 

• (start from slide 117)



Volume rendering recap

• Discrete (Riemann sum) volume rendering

• Blending operation (front-to-back)

• Continuous volume rendering equation, e.g. Sabella 1988, Kniss 2003

the chance that the region will be selected by the transfer function.
The use of the triangular classification function can also be easily
extended for use with multi-field datasets by replacing the gradient
magnitude from the univariate case with the L2 norm of the ma-
trix DTD where the rows of D are the gradients of each of the data
fields.

4 Piecewise Analytic Integration
The intersection of the multidimensional GTF with an arbitrary line
through data space results in one-dimensional Gaussian. This al-
lows us to integrate the transfer function over line segments in the
volume for which the data varies linearly. As shown in Figure 3
for narrow peaked transfer functions, this analytical integration is
much more accurate than a numerical (Riemann sum) integration
using the same number of samples for each viewing ray.
The emission-absorption volume rendering equation over a line

segment is defined as [Sabella 1988]:

I(a,b) =
∫ b

a
Cρ(v(u)) e−

∫ u
a τρ(v(t))dtdu (4)

where τ is extinction (expressing attenuation along the ray), ρ is
density, C is radiant intensity or color, v(t) is the data value at the
position along the ray parameterized by t starting at the spatial po-
sition x in direction ω⃗ . If we assume that the color C and extinc-
tion τ are constant over the segment, the intensity can be expressed
as [Max et al. 1990]:

I(a,b) =
C
τ α (5)

where the opacity term α is:

α = 1− e−τ
∫ b
a ρ(v(t))dt . (6)

If we further assume that data values along the ray between param-
eters a and b vary linearly, the opacity term becomes:

α(v1,v2, l) = 1− e−τ l
∫ 1
0 ρ(v1+t(v2−v1))dt = 1− e−τ lρ ′

(7)

where v1 = v(a) is the data value at ray parameter a, v2 = v(b) is the
value at ray parameter b, l = b−a, and ρ ′ is the density line integral
along the segment. For arbitrary one dimensional transfer functions
the integral can be expressed as [Williams and Max 1992]:

ρ ′(v1,v2) =
∫ 1

0
ρ(v1+ t(v2− v1))dt =

R(v2)−R(v1)
v2− v1

(8)

where R(v) is the integral function of the density:

R(v) =
∫ v

−∞
ρ(x)dx (9)

The opacity is computed similarly to (7) when ρ is a multidimen-
sional function:

α (⃗v1, v⃗2, l) = 1− e−τ l
∫ 1
0 ρ (⃗v1+t (⃗v2−⃗v1))dt = 1− e−τ lρ ′

(10)

In general, the line integral ρ ′ has no analytic solution. In the com-
panion paper [Kniss et al. 2003], we show that if we let ρ (⃗v) =
GTF(⃗v, c⃗,K), ρ ′ becomes:

ρ ′(⃗v1, v⃗2) =
√

π
2

S
∥d⃗∥

(erf(B) − erf(A)) (11)

where

A=
d⃗ · v⃗ ′1
∥d⃗∥

, B= A+∥d⃗∥, S= e−∥⃗v ′
1∥2+A2

f(x)
T(x)

T(f(x))
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Figure 3: Setup for analytic integration using Gaussian transfer
functions. The top image shows a parameterized ray going through
a volume. The volume is sampled at points x1...xn along this ray.
A continuous function f is reconstructed from these samples using
linear interpolation. A Gaussian transfer function T is then applied
to the function f , and becomes T ( f (v)). Traditionally, the integral
of T ( f (v)) is computed using a Riemann sum, seen at the bottom
labeled S. Notice how the peaks A and B in T ( f ) are missing in the
Riemann sum. Piecewise analytic integration of T ( f ) ensures that
we do not miss these peaks.

v⃗ ′1 =K
(

v⃗1− c⃗
)

, v⃗ ′2 =K
(

v⃗2− c⃗
)

, d⃗ = v⃗ ′2− v⃗ ′1 (12)

and erf(z) is the error function:

erf(z) =
2√
π

∫ z

0
e−x

2
dx. (13)

Notice that the
√

π/2 in equation (11) cancels the 2/
√

π in equa-
tion (13). While erf has no explicit representation, it can be closely
approximated with simple functions. We found the approximation
of [Abramowitz and Stegun 1974] particularly useful and easy to
implement.
Note that if v⃗1 = v⃗2, i.e., when we have two samples in a homo-

geneous region, ∥d⃗∥ = 0 and we cannot use equation (11) directly.
In this case the formula converges to:

ρ ′(⃗v1, v⃗2) → ρ (⃗v1) (14)

as ∥d⃗∥→ 0, since ρ ′ becomes the derivative of the integral function,
which is the integrand itself.
We use the following formulae to combine transfer function ele-

ments during piecewise analytic integration of each segment:

ρ ′
i =

∫ 1
0 ρi(v1+ t(v2− v1))dt ρi(v) = GTF(v, ci, Ki)

α = 1− e−l∑τiρ ′
i

C = ∑τiρ ′
i C ′

i
∑τiρ ′

i
= ∑ρ ′

i Ci
∑τiρ ′

i
C ′
i =

Ci
τi

(15)

where the integrals in the sum for computing the opacity α are eval-
uated separately similarly to equation (11). Note that even though
the sum of GTFs is not a GTF, we can still integrate them sepa-
rately, scale them by τi and sum them in the exponent. Combining
the color contributions employs a commonly used approximation
that neglects the order in which the primitives appear along the line
segment [Engel et al. 2001]. We also have to divide the input color
Ci by the input extinction coefficient τi according to equation (5).

Sabella, P. A rendering algorithm for visualizing 3D scalar fields. In Computer Graphics (SIGGRAPH ’88 Proceedings), vol. 22, 51–58.  
Kniss, J, Premoze, S, Ikits, M, Lefohn, A, Hansen, C, Praun, E. Gaussian transfer functions for Multi-field Volume Visualization. Proc. IEEE Vis 2003, 497—504.

• Emission-absorption model: Emission C (RGB), Absorption A (scalar) 

• p(v(u)) means classify(interpolate(position)), i.e. a post-classified transfer function



Today
• Wrap up transfer functions 

• Surfaces 

• Explicit vs implicit  

• Terrain visualization 

• Contours 

• Isosurfaces 

• Marching Cubes and variants 

• Particle-based extraction 

• Splatting 

• Ray casting/tracing



Wrap up transfer functions





Figure 8: Left to right: Multiple colored isosurfaces of a synthetic data set with the corresponding dependent texture. Isosurfaces of a human
head CT scan (2563): skin, skull, semi-transparent skin with opaque skull and the dependent texture for the latter image.

Figure 9: Images showing a comparison of a) pre-shaded, b) post-shaded without additional slices, c) post-shaded with additional slices and
d) pre-integrated volume visualization of tiny structures of the inner ear (128 128 30) with 128 slices.

Figure 10: High-quality pre-integrated direct volume rendering of a spherical harmonic (Legendre’s) function with random transfer functions
(top, left) and dependent texture (bottom, right). The resolution was 163 voxels, thus only 15 textured slices were rendered. Pre-shaded
(bottom, left) and post-shaded (top, right) results are included for comparison.

pre-integrated colors C̃ C̃ s f sb d and opacities α α s f sb d .
As these tables depend on the transfer functions, any modification
of the transfer functions requires an update of the lookup tables.
This might be no concern for games and entertainment applica-
tions, but it strongly limits the interactivity of applications in the
domain of scientific volume visualization, which often depend on
user-specified transfer functions. Therefore, we will suggest three
methods to accelerate the pre-integration step.
Firstly, under some circumstances it is possible to reduce the di-

mensionality of the tables from three to two (only s f and sb) by as-
suming a constant length of the segments. Obviously, this applies to
ray-casting with equidistant samples. It also applies to 3D texture-
based volume visualization with orthographic projection and is a
good approximation for most perspective projections. It is less ap-
propriate for axes-aligned 2D texture-based volume rendering as
discussed in Section 5.5. Even if very different lengths occur, the
complicated dependency on the segment length might be approxi-
mated by a linear dependency as suggested in [12]; thus, the lookup
tables may be calculated for a single segment length.
Secondly, a local modification of the transfer functions for a par-

ticular scalar value s does not require to update the whole lookup
table. In fact, only the values C̃ s f sb d and α s f sb d with
s f s sb or s f s sb have to be recomputed; i.e., in the worst
case about half of the lookup table has to be recomputed.
Finally, the pre-integration may be greatly accelerated by eval-

uating the integrals in Equations (5), (6), and (7) by employing
integral functions for τ s , c̃ s , and τ s c s , respectively. More
specifically, Equation (5) for αi α s f sb d can be rewritten as

α s f sb d 1 exp d
sb s f

T s f T sb (8)

with the integral function T s : s
0 τ s ds, which is easily com-

puted in practice as the scalar values s are usually quantized.
Equation (6) for C̃i C̃ s f sb d may be approximated analo-

gously:

C̃ s f sb d
d

sb s f
K sb K s f (9)

with the integral function K s : s
0 c̃ s ds. However, this requires

to neglect the attenuation within a ray segment. As mentioned
above, this is a common approximation for post-classified volume
rendering and well justified for small products τ s d.
For the non-associated color transfer function c s we approxi-

mate Equation (7) by

C̃τ s f sb d
d

sb s f
Kτ sb Kτ s f (10)

with Kτ s : s
0 τ s c s ds.

Thus, instead of numerically computing the integrals in Equa-
tions (5), (6), and (7) for each combination of s f , sb, and d, we will
only once compute the integral functions T s , K s , or Kτ s and
employ these to evaluate colors and opacities according to Equa-
tions (8), (9), or (10) without any further integration.

3.6 Application to Volume Rendering Techniques
Pre-integrated classification is not restricted to a particular volume
rendering technique, rather it may replace the post-classification
step of various techniques. For example, in [12] Röttger et al. have
applied pre-integrated classification to cell projection employing
3D textures for the lookup of segment colors C̃ and opacities α.
In fact, the application of pre-integrated classification is quite natu-
ral for the cell projection of tetrahedral meshes, because the linear

interpolation of the scalar field between two samples is exact if the
samples are taken at the faces of tetrahedra as in the case of cell
projection.
Of course, pre-integrated classification may also be employed

in other volume rendering techniques, e.g., software ray-casting of
structured and unstructured meshes. In the remainder of this pa-
per, however, we will focus on the implementation of pre-integrated
classification in texture-based volume rendering algorithms.

4 Texture-Based Pre-Integrated Volume
Rendering

Based on the description of pre-integrated classification in Sec-
tion 3.4, we will now present two novel texture-based algorithms
(one for 2D textures and one for 3D textures) that implement pre-
integrated classification. Both algorithms employ dependent tex-
tures, i.e., rely on the possibility to convert fragment (or pixel)
colors into texture coordinates. The technical details of this table
lookup will be discussed in Section 5.
The basic idea of texture-based volume rendering is to render

a stack of textured slices. Texture maps may either be taken from
three stacks of two-dimensional texture maps (object-aligned slices;
see [11]) or from one three-dimensional texture map (view-aligned
slices; see [3]). Pre-classification is implemented by applying the
transfer functions once for each texel and storing colors and opac-
ities in the texture map(s). On the other hand, post-classification
is performed by storing the scalar field value in the texture map(s)
and applying transfer functions during the rasterization of the slices
for each pixel. Each pixel (more precisely spoken, each fragment)
of a slice corresponds to the contribution of one ray segment to the
volume rendering integral for this pixel. Therefore, the composit-
ing Equations (3) or (4) are employed for the rasterization of the
textured slices. As each fragment of a slice corresponds to one ray
segment, the whole slice corresponds to a slab of the volume as
depicted in Figure 2.

s f
sb

front slice
back slice

Figure 2: A slab of the volume between two slices. The scalar value
on the front (back) slice for a particular viewing ray is called s f (sb).

After these preliminaries, we can now describe pre-integrated
volume rendering using textured slices. The texture maps (either
three-dimensional or two-dimensional textures) contain the scalar
values of the volume, just as for post-classification. As each pair of
adjacent slices (either view-aligned or object-aligned) corresponds
to one slab of the volume (see Figure 2), the texture maps of
two adjacent slices have to be mapped onto one slice (either the
front or the back slice) by means of multiple textures (see Sec-
tion 5.1). Thus, the scalar values of both slices (front and back) are
fetched from texture maps during the rasterization of the polygon
for one slab (see Section 5.2). These two scalar values are required
for a third texture fetch operation, which performs the lookup of
pre-integrated colors and opacities from a two-dimensional texture

Preintegration
• Blend using the pre-summed 

(pre-integrated) transfer function  
between front and back samples 

• Higher quality with fewer samples.



Surfaces



Contours

© Weiskopf/Machiraju/Möller 19

Volume Visualization

• 2D visualization
  slice images
  (or multi-planar 
  reformating MPR)

• Indirect
  3D visualization
  isosurfaces
  (or surface-shaded
  display SSD)

• Direct  
  3D visualization
  (direct volume 
  rendering DVR)



Explicit vs Implicit
• In graphics, we often differentiate between explicit and implicit geometry.  

• For our purposes in scientific visualization: 

• Explicit geometry is defined directly by vertices. 

• i.e. a triangle mesh 

• Implicit geometry is defined by an isovalue of an implicit function (specifically, the scalar field) 

• i.e., an isosurface of volume data 

• Parametric geometry: explicit geometry in R
n
 interpolated via parametric equations in R

n-1
 

• I.e. a heightfield of uniform vertices, interpolated via B-spline patches 

• Depending on parameterization, can be implicit (converted into a scalar field) or explicit 
(requires geometric subdivision). To learn more, take Elaine Cohen’s CAGD class. 

• Indirect visualization usually involves turning implicit geometry into explicit geometry to be rasterized. 



Explicit vs Implicit

• There are two types of geometry 

Explicit vs. Implicit

10

Explicit:!
• Range of parameterization function

f(x) = (r cos(x), r sin(x))T

Implicit:!
• Kernel of implicit function

F (x, y) =
�

x2 + y2 � r

f([0, 2�])

F (x, y) < 0

F (x, y) > 0

F (x, y) = 0

Slides: Hao Li, USC 



Surfaces

Explicit vs. Implicit

11

Explicit:!
• Range of parameterization function 
• Piecewise approximation

F (x, y) =
�

x2 + y2 � rImplicit:!
• Kernel of implicit function 
• Piecewise approximation

f(x) = (r cos(x), r sin(x))T?

?

Slides: Hao Li, USC 



Surfaces
Implicit:!

• Kernel of implicit function 
• Piecewise approximation 
• Scalar-valued 3D grid 
• Easy in/out test 
• Easy topology modification

Explicit vs. Implicit

1212

Explicit:!
• Range of parameterization function 
• Piecewise approximation 
• Splines, triangle mesh, points 
• Easy enumeration 
• Easy geometry modification

Slides: Hao Li, USC 



Heightfields



• F(x,y) = h 

• At its simplest, just a raster image (2D texture) 

• Need some way to reconstruct the mesh in between 

• Explicit geometry (interpolating mesh) 

• Implicit geometry (ray tracing parametric patches)

Heightfields



Terrain visualization
• DEM acquired by resampling LiDAR point data onto a grid 

• Often accompanied by color  

• F(x,y) = {h,r,g,b}



Explicit Terrain Rendering
• Geometry compression (split quadtree) 

Texture compression (Built-in S3TC compression in DirectX) 

• Out-of-core rendering of a 5.1 TB terrain dataset, .25m LiDAR 
135+ fps at 1080p on a 880 GTX in 2007! 

C. Dick, J. Schneider & R. Westermann. Efficient Geometry Compression for GPU-Based  
Decoding in Realtime Terrain Rendering. Computer Graphics Forum, 2009.



Surfaces

computer graphics & visualization
Christian Dick, 04.12.2007

Resolution 0.25 m
Texture: 46 MB / km2 (R8G8B8)
Height field: 31 MB / km2 (16 Bit)
This region: 30 GB (400 km2)
Bavaria: 5.1 TB (70549 km2)

Luftbild/Geobasisdaten © Landesamt für Vermessung und Geoinformation Bayern



Surfaces

computer graphics & visualization
Christian Dick, 04.12.2007

Luftbild/Geobasisdaten © Landesamt für Vermessung und Geoinformation Bayern

C. Dick, J. Schneider & R. Westermann. Efficient Geometry Compression for GPU-Based  
Decoding in Realtime Terrain Rendering. Computer Graphics Forum, 2009.



Implicit Terrain Rendering
• Use ray casting to intersect bilinear patches directly. 

• Same quadtree LOD as before, but without the diagonal splits  

• Lower memory footprint  
(i.e., you can fit more high-resolution tiles in core) 

• Significantly faster for high-resolution data (.25 m Vorarlberg); slower for 
smoother low-resolution data (1 m Utah)

C. Dick, J. Krueger & R. Westermann. GPU Ray-Casting for Scalable Terrain Rendering.  
Eurographics 2009 Area Papers



More Terrain Rendering
• Terrain visualization for whole planets in a Planetarium 
 
R. Kooima, J Leigh, A Johnson, D Roberts, M SubbaRao, T 
DeFanti. Planetary-Scale Terrain Composition. IEEE 
Visualization 2009.  
 
https://www.youtube.com/watch?v=BVHRNYOUzcA

• LA Times Data Visualization: Mars 
Gale Crater in Three.js 
 
http://graphics.latimes.com/mars-
gale-crater-how-we-did-it/

https://www.youtube.com/watch?v=BVHRNYOUzcA
http://graphics.latimes.com/mars-gale-crater-how-we-did-it/


Contours



• In 2D, a contour at a value v of a 
scalar field F(x,y) is the set of 
curves where F(x,y) = v. 

• Design choices: 

• Plan view vs profile view 

• Line width, dashes, dots, labels. 

• Why is it best to use multiple 
contours?

Contours



Contours



Contours

Compare



2D contouring algorithmApproach to Contouring in 2D
• Contour must cross every grid line connecting two 

grid points of opposite sign 

CS530 - Introduction to Scientific Visualization Oct 7, 2014,

• Idea: primitives must cross every grid line 
connecting two grid points of opposite sign

Interpolate 
along grid lines

Contours in 2D

+ -

x

x
Get cell Identify grid 

lines w/cross
Find crossings

Primitives naturally chain together



2D contouring algorithmCases

No Crossings

Case Polarity Rotation Total

x2 2

Singlet x2 8x4

Double adjacent x2 4x2 (4)

Double Opposite x2 2x1 (2)

(x2 for 
polarity)

16 = 24

+ -



2D contouring algorithmAmbiguities
• How to form lines?

CS530 - Introduction to Scientific Visualization Oct 7, 2014,

Ambiguities
• How to form the lines?

x

x

x

x



2D contouring algorithmAmbiguities
• Right or Wrong?

CS530 - Introduction to Scientific Visualization Oct 7, 2014,

Ambiguities
• Right or wrong?

x

x

x

x

x

x

x

x

x

x

x

x



2D contouring algorithmAmbiguities
• Right or Wrong?

CS530 - Introduction to Scientific Visualization Oct 7, 2014,

Ambiguities
• Right or wrong?

x

x

x

x

x

x

x

x

x

x

x

x

More on this later… let’s go to 3D!



Isosurfaces

50



Isosurfaces



• An isosurface is a contour of a scalar field in 3D. 

• An isosurface at a value v of a scalar field (volume) F(x,y,z) is the set 
of surfaces where F(x,y,z) = v.

Isosurfaces



• It’s easier to use some mathematical terminology to 
generalize contours. 

• A level set of a function                        is the set of points x, 

Level sets

Lc(f) = {x | f(x) = c}
f : Rn ! R

L�
c (f) = {x | f(x)  c}

L+
c (f) = {x | f(x) � c}

• c also defines the sublevel set,

• and the superlevel set,

In      , a level set is an isosurface. More generally, a contour.R3

both bounded manifolds in      .Rn



Isosurfaces

52

Isosurfacing

• You’re given a big 3D block of numbers

• Make a picture

• Slicing shows data, but not its 3D shape

• Isosurfacing is one of the simplest ways



Isosurfaces

54

10,887 citations on Google Scholar



Isosurfaces
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10,887 citations on Google ScholarNov 10, 2015: 11814 cites on Google Scholar!



Isosurfaces

56

© Weiskopf/Machiraju/Möller 10

Marching Cubes

• The core MC algorithm
– Cell consists of 4(8) pixel (voxel) values:

(i+[01], j+[01], k+[01])

1. Consider a cell
2. Classify each vertex as inside or outside
3. Build an index
4. Get edge list from table[index]
5. Interpolate the edge location
6. Compute gradients
7. Consider ambiguous cases
8. Go to next cell



Isosurfaces
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© Weiskopf/Machiraju/Möller 11

Marching Cubes

• Step 1: Consider a cell defined by eight data 
values

(i,j,k) (i+1,j,k)

(i,j+1,k)

(i,j,k+1)

(i,j+1,k+1) (i+1,j+1,k+1)

(i+1,j+1,k)

(i+1,j,k+1)



Isosurfaces
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© Weiskopf/Machiraju/Möller 12

Marching Cubes

• Step 2: Classify each voxel according to 
whether it lies
– Outside the surface (value > isosurface value)
– Inside the surface (value <= isosurface value)

8
Iso=7

8

8

55

1010

10

Iso=9

=inside
=outside



Isosurfaces
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© Weiskopf/Machiraju/Möller 13

Marching Cubes

• Step 3: Use the binary labeling of each 
voxel to create an index

v1 v2

v6

v3v4

v7v8

v5

inside =1
outside=0

11110100

00110000

Index:
v1 v2 v3 v4 v5 v6 v7 v8



Isosurfaces
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© Weiskopf/Machiraju/Möller 14

Marching Cubes

• Step 4: For a given index, access an array 
storing a list of edges
– All 256 cases can be derived from 1+14=15 

base cases due to symmetries



Isosurfaces
Case 
Table 



Isosurfaces

8 Above 
0 Below 

 
1 case 



Isosurfaces

7 Above 
1 Below 

 
1 case 



Isosurfaces

6 Above 
2 Below 

 
3 cases 



Isosurfaces

5 Above 
3 Below 

 
3 cases 



Isosurfaces

4 Above 
4 Below 

 
7 cases 



Isosurfaces
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Marching Cubes

• Step 4 cont.: Get edge list from table
– Example for

Index = 10110001
triangle 1 = e4,e7,e11
triangle 2 = e1, e7, e4
triangle 3 = e1, e6, e7
triangle 4 = e1, e10, e6 e1

e10

e6

e7
e11

e4



Isosurfaces
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© Weiskopf/Machiraju/Möller 16

Marching Cubes

• Step 5: For each triangle edge, find the 
vertex location along the edge using linear 
interpolation of the voxel values

=10
=0

T=8T=5

i i+1x



Isosurfaces
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© Weiskopf/Machiraju/Möller 17

Marching Cubes

• Step 6: Calculate the normal at each cube 
vertex (central differences)
– Gx = Vx+1,y,z - Vx-1,y,z

Gy = Vx,y+1,z - Vx,y-1,z

Gz = Vx,y,z+1 - Vx,y,z-1

– Use linear interpolation to 
compute the polygon vertex 
normal (of the isosurface)



Isosurfaces
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Marching Cubes

• Step 7: Consider ambiguous cases
– Ambiguous cases: 

3, 6, 7, 10, 12, 13
– Adjacent vertices: 

different states
– Diagonal vertices: 

same state
– Resolution: choose 

one case
(the right one!)

or

or

Hint: there is no “right”, just “consistent”.



Isosurfaces



Isosurfaces

Nov 10, 2015: 626 cites on Google Scholar!



Contours

Asymptotic Decider (1) 

!  Based on bilinear interpolation over faces 

B01 

B00 B10 

B11 

(s,t) 

B(s,t) = (1-s, s)  B00  B01 
B10  B11 

1-t 
 t 

The contour curves of B:  
 
{(s,t) | B(s,t) = α } are hyperbolas 

=  B00(1- s)(1- t) + B10(s)(1- t) + 

    B01(1- s)(t) + B11(s)(t) 



Contours

Asymptotic Decider (2) 

(0,0) 

(1,1) 

Asymptote 

(Sα, Tα) 

If  B(Sα, Tα) >= α

(Sα, Tα) 

Not Separated 



Contours

Asymptotic Decider (3) 

(1,1) 

Asymptote 

(Sα, Tα) 

(0,0) 

If  B(Sα, Tα) < α

(Sα, Tα) 

    Separated 



Contours

Asymptotic Decider (4) 

(S1 , 1) 

(Sα, Tα) 

(S0 , 0) 

   Sα =        B00  - B01  
            B00 + B11 – B01 – B10 
 
   Tα=         B00 – B10  
            B00 + B11 – B01 – B10 
 
B(Sα,Tα) =      B00 B11 + B10 B01  
                  B00 + B11 – B01 – B10  

(0 , T0) 

(1 , T1) 

B( Sα , 0) = B( Sα , 1) 

B( 0, Tα) = B( 1 , Tα) 



Contours

Asymptotic Decider (4) 

(S1 , 1) 

(Sα, Tα) 

(S0 , 0) 

   Sα =        B00  - B01  
            B00 + B11 – B01 – B10 
 
   Tα=         B00 – B10  
            B00 + B11 – B01 – B10 
 
B(Sα,Tα) =      B00 B11 + B10 B01  
                  B00 + B11 – B01 – B10  

(0 , T0) 

(1 , T1) 

B( Sα , 0) = B( Sα , 1) 

B( 0, Tα) = B( 1 , Tα) 

i.e., use Sa, Ta to divide the face into  
4 unambiguous rectangles — only 2 of which we need to evaluate. 



Contours

Asymptotic Decider (5) 

!  case 3, 6, 12, 10, 7, 13 
!  (These are the cases with at least one ambiguious  faces) 
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Marching Cubes

• Summary
– 256 Cases
– Reduce to 15 cases by symmetry
– Ambiguity in cases 

3, 6, 7, 10, 12, 13
– Causes holes if arbitrary choices 

are made

• Up to 5 triangles per cube
• Several isosurfaces

– Run MC several times
– Semi-transparency requires spatial sorting



Isosurfaces
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Marching Cubes

• Examples
1 Isosurface

2 Isosurfaces

3 Isosurfaces



Marching Cube Variants

Marching Cubes

54

Algorithm for isosurface extraction from 
medical scans (CT, MRI)

Slides: Hao Li, USC 



Marching Cube Variants

Marching Cubes

55

Effect of grid size

Slides: Hao Li, USC 



Marching Cube Variants



Nov 10, 2015: 1033 cites on Google Scholar

The “first Marching Cubes” paper  
Wyvill, McPheeters & Wyvill 86.



Marching tetrahedra

• Only 8 cases to consider in a tetrahedron 

• Correct piecewise-linear interpolants on 
tet meshes! 

• Generates horrible triangles.

Doi and Koide. An efficient method of triangulating equi-valued surfaces by using 
tetrahedral cells. IEICE Transactions on Information and Systems, 1991

marching tets after 30 iterations of Laplacian smoothing…

http://search.ieice.org/bin/summary.php?id=e74-d_1_214


Marching Cube Variants

Increasing Resolution

57

Does not remove alias problems!

Slides: Hao Li, USC 



Marching Cube Variants

Extended Marching Cubes

62

Feature!
Detection

Feature!
Sampling

Edge!
Flipping

L Kobbelt, M Botsch, U Schwanecke, HP Seidel. Feature Sensitive 
Surface Extraction from Volume Data. Siggraph 2001. 

Extended Marching Cubes

58

Locally extrapolate distance gradient
Place samples on estimated features

65×65×65
L Kobbelt, M Botsch, U Schwanecke, HP Seidel. Feature Sensitive 

Surface Extraction from Volume Data. Siggraph 2001. 
Slides: Hao Li, USC 



Marching Cube Variants

Extended Marching Cubes

62

Feature!
Detection

Feature!
Sampling

Edge!
Flipping

L Kobbelt, M Botsch, U Schwanecke, HP Seidel. Feature Sensitive 
Surface Extraction from Volume Data. Siggraph 2001. 

Slides: Hao Li, USC 



Marching Cube Variants

L Kobbelt, M Botsch, U Schwanecke, HP Seidel. Feature Sensitive 
Surface Extraction from Volume Data. Siggraph 2001. 

Milling Simulation

63

257×257×257
L Kobbelt, M Botsch, U Schwanecke, HP Seidel. Feature Sensitive 

Surface Extraction from Volume Data. Siggraph 2001. 
Slides: Hao Li, USC 



Dual Contouring

Ju et al., Dual Contouring of Hermite Data, 
Siggraph 2002

Schafer and Warren., Dual Marching Cubes: 
Primal Contouring of Dual Grids. Computer 

Graphcis Forum, 2004



Edge Groups

Dietrich et al. Edge Groups: An Approach to Understanding the Mesh  
Quality of Marching Methods. IEEE TVCG, 2008



Particle-driven mesh 
extraction



Advancing Front

Schreiner et al. High-Quality Extraction of Isosurfaces from Regular and 
Irregular Grids. IEEE Visualization 2006

• Starting from a seed point, use curvature of the implicit surface to 
determine local feature size (LFS), find next seed points, and from those 
create a guidance field locally resampling the scalar field.  

• Continue the guidance field until all fronts merge, and the mesh is done.



Dynamic Particle Systems

Schreiner et al. High-Quality Extraction of Isosurfaces from Regular and 
Irregular Grids. IEEE Visualization 2006

5k particles!
0.5 minutes

13k particles!
3.4 minutes

28k particles!
15 minutes

59k particles!
39 minutes

Particle Systems for Efficient and Accurate High-Order Finite Element Visualization!

M. Meyer et al., TVCG 2006.79



Particle-driven extraction
182k triangles!

41 minutes!
0.18 min rr!
0.94 avg rr

Topology, Accuracy, and Quality of Isosurface 
Meshes Using Dynamic Particles.!

M. Meyer et al., Vis 2007. 80



Particle-driven extraction

81



Surface splatting



• The first (large) pure point-based system, built on a 
bounding sphere hierarchy. 

• Stores vertices and normals up to full resolution 

• Explicit geometry only — no mesh!

QSplat

S Rusinkiewicz and M Levoy. QSplat: A Multiresolution Point Rendering 
System for Large Meshes. Siggraph 2000



Iso-splatting

C Co, B Hamann, K Joy. Iso-splatting: A Point-based Alternative to Isosurface 
Visualization. IEEE Vis 2003.

• Create approximate points near the isosurface 
using pre-classified points inside the volume 

• Optionally, use Newton-Raphson to better fit 
samples to the isosurface.



Hybrid splatting + extraction

Y Livnat and X Tricoche. Interactive Point-Based Isosurface Extraction. IEEE 
Vis 2005.

• View dependent splatting 

• Builds on the point hierarchy idea of QSplat, and view-
dependent marching cubes. 

• Very fast for its time — but complicated.



Ray casting / tracing



RTRT

S Parker et al. Interactive Ray Tracing for Isosurface Rendering.  
IEEE Visualization 98. 

• Accelerate volume with a two-
level uniform grid of interval 
values 

• Direct numerical solution for 
ray intersection with the 
trilinear isosurface patch 

• 1 GB visible female, rendered 
interactively on an SGI 
shared-memory machine.



Ray-trilinear isosurface 
intersection

S Parker et al. Interactive Ray Tracing for Isosurface Rendering.  
IEEE Visualization 98. 



Fast CPU Isosurface Ray Tracing — 2004-2008 

Aaron Knoll, Younis Hijazi, Andrew Kensler, Mathias Schott, Charles Hansen and Hans Hagen
Fast Ray Tracing of Arbitrary Implicit Surfaces with Interval and Affine Arithmetic.
Computer Graphics Forum, 2009

Aaron Knoll, Ingo Wald, Steven 
Parker, and Charles Hansen.
Interactive Isosurface Ray Tracing 
of Large Octree Volumes
Proceedings of the IEEE 
Symposium on Interactive Ray 
Tracing, Salt Lake City, 2006

Ingo Wald, Heiko Friedrich, Aaron Knoll, and Charles D. Hansen
Interactive Isosurface Ray Tracing of Time-Varying Tetrahedral Volumes 
IEEE Visualization 2007Aaron Knoll, Charles Hansen, and Ingo Wald

Coherent Multiresolution Isosurface Ray Tracing
The Visual Computer 2009 

Chris Wyman, Steven Parker, Pete Shirley, and Charles Hansen. 
Interactive display of isosurfaces with global illumination.
IEEE TVCG 2006.

http://www.sci.utah.edu/~knolla/cgrtia.pdf
http://www.sci.utah.edu/~knolla/tetty/tetty.pdf
http://www.sci.utah.edu/~knolla/cohoctiso.pdf


Fast GPU isosurface ray casting

E Gobbetti et al. A single-pass GPU ray casting framework for interactive out-
of-core rendering of massive volumetric datasets. The Visual Computer, 2008



Peak finding: combining 
isosurfacing and volume rendering

A Knoll et al. Volume Ray Casting with Peak Finding and Differential Sampling. 
IEEE Visualization 2009. 



Thoughts on isosurfacing
• 2012: “No one uses volume rendering, it’s too slow and hard.” 

• 2015: “No one uses isosurfacing, it’s too ugly and limiting.” 

• As a pure visualization modality, isosurfacing is on its way out 

• Volume rendering is no longer “expensive”, has decent implementations in Paraview and 
VisIt, as well as Voreen, ImageVis3D, Intel OSPRay, NVIDIA IndeX, etc. 

• Users are starting to “get” transfer functions… 

• Marching cubes is still nasty and expensive, and has pitfalls 

• As a core technique, isosurfacing will be here for a long time 

• Schroeder et al. “Flying Edges: A High Performance Scalable Isocontouring Algorithm”, 
IEEE LDAV 2015. 

• We’ll always need ways to convert from implicit to explicit and visa versa, for computation.



Next up:

• Thursday 11-12: Vector and tensor field 
visualization.


