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Recap from last sci-vis
lecture

e 3D graphics

e rasterization vs ray tracing

e rendering pipelines, indirect and direct visualization
e Volume rendering

e Emission-absorption, classification, blending
e Transfer functions

e 1D vs 2D transter functions

o (start from slide 117)
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Volume rendering recap
e Emission-absorption modelzm

e Continuous volume rendering equation, e.g. Sabella 1988, Kniss 2003
b u
I(a,b) = / Co(v(u)) e~ i PO g,

Sabella, P. A rendering algorithm for visualizing 3D scalar fields. In Computer Graphics (SIGGRAPH 88 Proceedings), vol. 22,51-58.
Kniss, J, Premoze, S, Ikits, M, Lefohn, A, Hansen, C, Praun, E. Gaussian transfer functions for Multi-field Volume Visualization. Proc. IEEE Vis 2003, 497 —504.

* p(v(u)) means classify(interpolate(position)), i.e. a post-classified transfer function

Discrete (Riemann sum) volume rendering

. |7/ At| i—1
C = Z ¢ [1a
' j=0

e Blending operation (front-to-back)

www.sclutah.edu



loaay

« Wrap up transfer functions
» Surfaces
e Explicit vs implicit
 Terrain visualization
« Contours
* |sosurfaces
 Marching Cubes and variants
* Particle-based extraction
« Splatting

e Ray casting/tracing

SN

www.sciutah.edu



Wrap up transfer functions



High-Quality Pre-Integrated Volume Rendering
Using Hardware-Accelerated Pixel Shading

Klaus Engel, Martin Kraus, Thomas Ertl *

Visualization and Interactive Systems Group, University of Stuttgart, Germany

Abstract

We introduce a novel texture-based volume rendering approach that
achieves the image quality of the best post-shading approaches with
far less slices. It is suitable for new flexible consumer graphics
hardware and provides high image quality even for low-resolution
volume data and non-linear transfer functions with high frequen-
cies, without the performance overhead caused by rendering addi-
tional interpolated slices. This is especially useful for volumetric
effects in computer games and professional scientific volume visu-
alization, which heavily depend on memory bandwidth and rasteri-
zation power.

We present an implementation of the algorithm on current pro-
grammable consumer graphics hardware using multi-textures with
advanced texture fetch and pixel shading operations. We imple-
mented direct volume rendering, volume shading, arbitrary number
of isosurfaces, and mixed mode rendering. The performance does
neither depend on the number of isosurfaces nor the definition of
the transfer functions, and is therefore suited for interactive high-
quality volume graphics.

CR Categories: 1.3.3 [Computer Graphics]: Picture/Image
Generation, 1.3.5 [Computer Graphics]: Computational Geom-
etry and Object Modeling, 1.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism.

Keywords: direct volume rendering, volume graphics, volume
shading, volume visualization, multi-textures, rasterization, PC
graphics hardware, flexible graphics hardware

1 Introduction

In spite of recent progress in texture-based volume rendering al-
gorithms, volumetric effects and visualizations have not reached
the mass market. One of the reasons is the requirement for ex-

while the technical details of an implementation on current pro-
grammable consumer graphics hardware are described in Section 5.
In particular, we discuss the use of advanced texture fetch and pixel
shading operations recently proposed by graphics hardware ven-
dors [4]. These features are exploited in order to achieve direct
volume rendering, multiple smoothly shaded isosurfaces, and vol-
ume shading. Preliminary results on a GeForce3 graphics hardware
are presented in Section 6. Finally, Section 7 sums up the paper.

2 Related Work

High accuracy in direct volume rendering is usually achieved by
very high sampling rates resulting in heavy performance losses.
However, for cell-projective techniques Max, Williams, and Stein
have proposed elaborated optical models and efficient, highly accu-
rate projective methods in [8, 14]. The latter were further improved
by Rottger, Kraus, and Ertlin [12]. Although these techniques were
initially limited to cell projection, we were able to generalize them
in order to apply these ideas to texture-based rendering approaches.

The basic idea of using object-aligned textured slices to substi-
tute trilinear by bilinear interpolation was presented by Lacroute
and Levoy [6], although the original implementation did not use
texturing hardware. For the PC platform, Brady et al. [2] have pre-
sented a technique for interactive volume navigation based on 2D
texture mapping.

The most important texture-based approach was introduced by
Cabral [3], who exploited the 3D texture mapping capabilities of
high-end graphics workstations. Westermann and Ertl [13] have
significantly expanded this approach by introducing a fast direct
multi-pass algorithm to display shaded isosurfaces. Based on their
implementation, MeiBner et al. [9] have provided a method to en-
able diffuse illumination for semi-transparent volume rendering.
However, in this case multiple passes through the rasterization hard-
ware led to a significant loss in rendering performance. Dachille et
al. [5] have proposed an approach that employs 3D texture hardware
interpolation toeether with software shadine and classification.
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Preintegration

e Blend using the pre-summed |
(pre-integrated) transfer function I

between front and back samples <14~ |7 |

* Higher quality with fewer samples.

back slice

Figure 9: Images showing a comparison of a) pre-shaded, b) post-shaded without additional slices, ¢) post-shaded with additional slices and
d) pre-integrated volume visualization of tiny structures of the inner ear (128 x 128 x 30) with 128 slices. S" fr//h
-

www.sciutah.edu



Surfaces



» 2D visualization
slice images
(or multi-planar
reformating MPR)

 Indirect
3D visualization
Isosurfaces
(or surface-shaded
display SSD)

3D visualization
(direct volume
rendering DVR)




Explicit vs Implicit

* |n graphics, we often differentiate between explicit and implicit geometry.
e For our purposes in scientific visualization:
* Explicit geometry is defined directly by vertices.
* |.e. atriangle mesh
* Implicit geometry is defined by an isovalue of an implicit function (specifically, the scalar field)
* i.e., an isosurface of volume data
* Parametric geometry:. explicit geometry in Rn interpolated via parametric equations in Rn_1

* |.e. a heightfield of uniform vertices, interpolated via B-spline patches

* Depending on parameterization, can be implicit (converted into a scalar field) or explicit
(requires geometric subdivision). To learn more, take Elaine Cohen’s CAGD class.

* Indirect visualization usually involves turning implicit geometry into explicit geometry to be rasterized.

SN
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Explicit vs. Implicit

Explicit: f(x) = (r cos(z),rsin(z))"

* Range of parameterization function £(]0, 2m))

Implicit: F(z,y) =22 +y2—7r

* Kernel of implicit function

F(z,y) =0
Flz.y) >0

Slides: Hao Li, USC 10



Explicit vs. Implicit

Explicit: f(z)= ?

Implicit: F(z,y) = 2

Range of parameterization function

Plecewise approximation

Kernel of implicit function

Plecewise approximation

Slides:

Hao Li, USC

11




Explicit vs. Implicit

Explicit:

Implicit:

Range of parameterization function
Piecewise approximation
Splines, triangle mesh, points
Easy enumeration

Easy geometry modification

Kernel of implicit function
Piecewise approximation
Scalar-valued 3D grid
Easy in/out test

Easy topology modification

Slides: Hao Li, USC
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Helghtfields



Heightfields

« F(x,y)=h

« At its simplest, just a raster image (2D texture)

* Need some way to reconstruct the mesh in between
» Explicit geometry (interpolating mesh)

» Implicit geometry (ray tracing parametric patches)

ST

www.sclutah.edu



lerraln visualization

 DEM acquired by resampling LIDAR point data onto a grid

« Often accompanied by color

¢ F(X’y) = {h’r’g’b}

Orthophoto Digital Elevation Model

www.sclutah.edu




Explicit Terrain Rendering

* Geometry compression (split guadtree)
Texture compression (Built-in S3TC compression in DirectX)

e Qut-of-core rendering of a 5.1 TB terrain dataset, .25m LIDAR
135+ fps at 1080p on a 880 GTX in 2007!

C. Dick, J. Schneider & R. Westermann. Efficient Geometry Compression for GPU-Based S 'r
Decoding in Realtime Terrain Rendering. Computer Graphics Forum, 2009. };&

www.sclutah.edu
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Resolution 0.25 m
Texture: 46 MB / km? (R8G8B8)

Height field: 31 MB / km? (16 Bit)
This region: 30 GB (400 km?)
Bavaria: 5.1 TB (70549 km?)
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implicit Terrain Rendering

» Use ray casting to intersect bilinear patches directly. 4
N
« Same quadtree LOD as before, but without the diagonal splits
, N\
* Lower memory footprint (Step 2) TexEx BoxExit
(i.e., you can fit more high-resolution tiles in core) (Step 2) TexEntry
o . . BoxEntry — TexHxit (Step 1)
« Significantly faster for high-resolution data (.25 m Vorarlberg); slower for d (Step 1)
smoother low-resolution data (1 m Utah) FA
L ye
0 N x

C. Dick, J. Krueger & R. Westermann. GPU Ray-Casting for Scalable Terrain Rendering. SS ,r g
Eurographics 2009 Area Papers R A A



More lerrain Rendering

e Terrain visualization for whole planets in a Planetarium

R. Kooima, J Leigh, A Johnson, D Roberts, M SubbaRao, T
DeFanti. Planetary-Scale Terrain Composition. IEEE
Visualization 2009.

https://www.youtube.com/watch?v=BYHRNYOUzcA

LA Times Data Visualization: Mars
Gale Crater in Three.js

http://graphics.latimes.com/mars-
gale-crater-how-we-did-it/



https://www.youtube.com/watch?v=BVHRNYOUzcA
http://graphics.latimes.com/mars-gale-crater-how-we-did-it/

Contours



Contours

* In 2D, a contour at a value vof a
scalar field F(x,y) is the set of
curves where F(x,y) = v.

e Design choices: This example

_ /( shows a
| o topographic saddle at
* Plan view vs profile view view w f‘ point “X”
A X [ )
| [ l : B
 Line width, dashes, dots, labels. w
\:\i L
« Why is it best to use multiple o
contours? AN ! NS ;i;;;
R NI
profile. 2 —— e N
. 20 : 20
View g:“" —_— ~\g;°°

/

N& TS
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300 mb Wind Barhs (k) 05011780000
300 mb» Hesoht (m) Analvsls 0507 170000

300 oy Temperature (C) Analysis 0507 170000






Approach to Contouring in 2D

e Contour must cross every grid line connecting two
grid points of opposite sign

Get cell !dentify grd FInd crossings
ines w/cross
@ ® @ @ @ @ L
X
Interpolate
along grid lines
O o o \7;r ggﬂ\ s
\l/ J

Primrtives naturally chain together
gy ® o

- -




Cases

Case Polarity | Rotation | Total
No Crossings X2 2 [I Ij
Single e | x| s [I I I I I E
Double adjacent X2 X2 (4) 4 [I Ij I I I I
Double Opposite X2 x1(2)

- [ 1] ]

16 = 24

(x2 for
polarity)
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Ambiguities

e How to form lines?

N/
/\




Ambiguities

* Right or Wrong”




Ambiguities

* Right or Wrong”

TN L]

ANl
Q@TA

More on this later... let's go to 3D!
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OO E 4K L
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|lsosurfaces

e An isosurface is a contour of a scalar field in 3D.

 An isosurface at a value v of a scalar field (volume) F(x,y,z) is the set
of surfaces where F(x,y,z) = v.

www.sclutah.edu



| evel sets

e |t's easier to use some mathematical terminology to
generalize contours.

« Alevel set of a function f : R — R is the set of points X,

L.(f) =1x| f(x) = ¢}
In R?, a level set is an isosurface. More generally, a contour.

e cC also defines the sublevel set,

Lo(f)=4x]f(x) < ¢}
e and the superlevel set,

Le(f) ={x] f(x) = c}

both bounded manifolds in R"

1%
A

—



Isosurfacing

* You're given a big 3D block of numbers
 Make a picture

» Slicing shows data, but not its 3D shape
* |sosurfacing is one of the simplest ways

52



MARCHING CUBES: A HIGH RESOLUTION
3D SURFACE CONSTRUCTION ALGORITHM

William E. Lorensen
Harvey E. Cline

General Electric Company
Corporate Research and Development
Schenectady, New York 12301

Abstract

We present a new algorithm, calied marching cubes, that
creates triangle models of constant density surfaces from 3D
medical data. Using a divide-and-conquer approach lo gen-
erate inter-slicc connectivity, we creale a case table that
defines (riangle topology. The algorithm processes the 3D
medical data in scan-line order and calculates triangle vertices
using linear interpolation. We find the gradient of the origi-
nal data. normalize i1, and use it as a basis for shading the
models. The detail in images produced from the generated
surface models is the result of maintaining the inter-slice
connectivity, surface data, and gradicnt information present
in the original 3D data. Results from computed tomography
(CT), magnetic resonance (MR, and single-photon emission
computed tomography (SPECT) illustrate the quality and
functionality of marching cubes We also discuss improve-
ments that decrease processing time and add solid modeling
capabihtics.

CR Categories: 3.3, 3.5

Additionat Keywords: computer graphics, medical imaging,
surface reconstruction

acetabular fractures [6], craniofacial abnormalities [17,18],
and intracranial structure [13] illustrate 3D’s potential for the
stiudy of complex bone structures. Applications in radiation
therapy [27.11] and surgical planning [4,5,31] show interac-
tive 3D techniques combined with 3D surface images. Cardi-
ac applications include artery visualization [2,16] and non-
graphic modeling applications to calculate surface area and
volume [21].

Existing 3D algorithms lack detail and sometimes intro-
duce artifacts. We present a new, high-resolution 3D surface
construction algorithm that produces models with unpre-
cedented detail. This new algorithm. called marching cubes,
creales a polygonal representation of constant density sur-
faces from a 3D array of data. The resulting model can be
displayed with conventional graphics-rendering algorithms
implemented in software or hardware.

After describing the information flow for 3D medical ap-
plications, we describe related work and discuss the draw-
backs of that work. Then we describe the algorithm as well
as efficiency and functional enhancements, followed by case
studies using three different medical imaging techniques to il-
lustrate the new algorithm's capabilities.

10,887 citations on Google Scholar

T

able medical tool. Images of these surfaces, constructed
from multiple 2D slices of computed tomography (CT), mag-
netic resonance (MR), and single-photon emission computed
tomography (SPECT), help physicians 1o understand the
complex anatomy present in the slices. Interpretation of 2D

R R T T . . e 1

ure 17.
one algorithm, we logically decompose the process as follows:

1TIEENTY

1. Data acguisition.
This first step, performed by the medical imaging
hardware, samples some property in a patient and pro-

P VLT . T o N Iy L R o . . do.4a e
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acetabular fractures [6], craniofacial abnormalities [17,18],
and intracranial structure [13] illustrate 3D’s potential for the
stiudy of complex bone structures. Applications in radiation
therapy [27.11] and surgical planning [4,5,31] show interac-
tive 3D techniques combined with 3D surface i images. Cardi-
ac applications include artery visualization [2,16] and non-
graphic modeling applications to calculate surface area and
volume [21].

Existing 3D algorithms lack detail and sometimes intro-
duce artifacts. We present a new, high-resolution 3D surface
construction algorithm that produces models with unpre-
cedented detail. This new algorithm. called marching cubes,
creales a polygonal representation of constant density sur-
faces from a 3D array of data. The resulting model can be
displayed with conventional graphics-rendering algorithms
implemented in software or hardware.

After describing the information flow for 3D medical ap-
plications, we describe related work and discuss the draw-
backs of that work. Then we describe the algorithm as well
as efficiency and functional enhancements, followed by case
studies using three different medical imaging techniques to il-

1. Data acguisition.
This first step, performed by the medical imaging
hardware samples some property in a patient and pro-
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 The core MC algorithm

— Cell consists of 4(8) pixel (voxel) values:
(1+[01], j+[01], k+[01])

1. Consider a cell
2. Classity each vertex as inside or outside

3. Build an index

4. Get edge list from table[index]

5. Interpolate the edge location 2

& o

A
8. Go to next cell f




o Step 1: Consider a cell defined by eight data
values

(ii+1 k+1) (i+1,j+1 k+1)
(L)k*1) (i+1,jJk+1)
(i.ji+1.k) (i+1,j+1 k)

(1.),k) (i+1,5,k)



Step 2: Classity each voxel according to
whether 1t lies

— Outside the surface (value > 1sosurface value)

— Inside the surface (value <= 1sosurface value)

10

10

/

10

|s0=9 =

\

> oo

lso=7
=Inside
=outside

»

=




e Step 3: Use the binary labeling of each

voxel to create an index

v8

v/

e

v1

Inside =1
v3| @ outside=0
v
/ vO
V2. |ndex:

v1 |v2|v3|v4|v5|v6|v7|v8

»

=

\

=

»
y
L

./.

11110100

00110000



e Step 4: For a given index, access an array
storing a list of edges

— All 256 cases can be derived from 1+14=15
base cases due to symmetries

()60 ) () 8
=
T .0

The 15 Cube Combinations







8 Abhove
0 Below

1 case

e

Case 14




7 Above
1 Below

1 case

e

Case 14













e Step 4 cont.. Get edge list from table

— Example for

Index = 10110001
triangle 1 = ed,e7.ell
triangle 2 =el, €7, e4
triangle 3 =¢l, €6, €7
triangle 4 = el, €10, €6




e Step 35: For each triangle edge, find the
vertex location along the edge using linear
interpolation of the voxel values

i MY




e Step 6: Calculate the normal at each cube
vertex (central differences)
— Gy = Vx+l,y,z - Vx—l,y,z
Gy — Vx,y+l,z B Vx,y—l,z
G, = Vx,y,z+1 - Vx,y,z—l
— Use linear interpolation to

compute the polygon vertex
normal (of the 1sosurface)




Step 7: Consider ambiguous cases

— Ambiguous cases: O O
3,6,7,10,12,13 of

— Adjacent vertices:
different states O O

— Diagonal vertices:
same state

— Resolution: choose
one case
(the right one!)

Hint: there is no “right”, just “consistent”.



The Asymptotic Decider:
Resolving the Ambiguity in Marching Cubes

Gregory M. Nielson

Bermnd Hamann

Computer Science
Arizona State University
Tempe, AZ 85287-5406

Abstract

A method for computing isovalue or contour
surfaces of a trivariate function is discussed. The
input data are values of the trivariate function, Fijk, at
the cuberille grid points (x;, yj, zx) and the output is a
collection of triangles representing the surface
consisting of all points where F(x, y, z) is a constant
value. The method described here is a modification
that is intended to correct a problem with a previous
method.

1.0 Introduction

The purpose of this paper is to describe a method
for computing contour or isovalue surfaces of a
trivariate function F(x, y, z). It is assumed that the
function is continuous and that samples over a
cuberille grid (see Figure 1 ) are available. These
values are denoted by Fiyx = F(x;, yj, zk);1=1, ...,
Nx,j=1, ..,Ny, k=1, .., Nz. The problem is to
compute the isovalue or contour surface

Sa={ X v.,2):Fx,y,2)=a}.

e ——

marked indicates Fijjx > o. While there are 28 =256
possible configurations, there are only 15 shown in
Figure 2. This is because some configurations are
equivalent with respect to certain operations. First
off, the number can be reduced to 128 by assuming
two configurations are equivalent if marked grid
points and unmarked grid points are switched. This
means that we only have to consider cases where there
are four or fewer marked grid points. Further
reduction to the 15 cases shown is possible by
equivalence due to rotations.

O/. 1 2
/ V
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Abstract

A method for computing isovalue or contour
surfaces of a trivariate function is discussed. The
input data are values of the trivariate function, Fijk, at
the cuberille grid points (x;, yj, zx) and the output is a
collection of triangles representing the surface
consisting of all points where F(x, y, z) is a constant
value. The method described here is a modification
that is intended to correct a problem with a previous
method.

1.0 Introduction

The purpose of this paper is to describe a method
for computing contour or isovalue surfaces of a
trivariate function F(x, y, z). It is assumed that the
function is continuous and that samples over a

marked indicates Fijjx > o. While there are 28 =256
possible configurations, there are only 15 shown in
Figure 2. This is because some configurations are
equivalent with respect to certain operations. First
off, the number can be reduced to 128 by assuming
two configurations are equivalent if marked grid
points and unmarked grid points are switched. This
means that we only have to consider cases where there
are four or fewer marked grid points. Further
reduction to the 15 cases shown is possible by
equivalence due to rotations.
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“ Asymptotic Decider (1)

= Based on bilinear interpolation over faces

B BOO BO1 1-t
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!‘ Asymptotic Decider (2)

A/

(1,1)
/

(0,0)

|

~_|

*T_

Asymptote

(Sa, Ta)
-
O ®
(Sa, Ta)
e /Q

Not Separated



!‘ Asymptotic Decider (3)
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!-‘ Asymptotic Decider (4)

B( Sa,0) =B( Sa, 1)
(51, 1) B( 0, To) = B( 1, To))
Nam 3
c N Sa = BOO - BO1
(0, To) \ (Sct, Tor) BOO + B11 - BO1 — B10
o— To= BOO — B10
(S0 0) BOO + B11 — BO1 — B10

B(So,Ta)=  BOO B1l + B10 BO1
BO0 + B11 — BOI — B10
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Asymptotic Decider (4)

B( Sa,0) =B( Sa, 1)

B(O, Ta) =B(1, Ta)

Sa =

To=

BOO - BO1

BOO + B11 — BO1 - B10

BOO — B10
BOO + B11 — BO1 - B10

B(So,Ta)=  BOO B1l + B10 BO1

B0O0 + B11 — B01 - B10

i.e., use Sa, Ta to divide the face into
4 unambiguous rectangles — only 2 of which we need to evaluate.



Asymptotic Decider (5)

m Case 3, 6,12, 10, /7, 13

= (These are the cases with at least one ambiguious faces)
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* Summary
— 256 Cases

— Reduce to 15 cases by symmetry (z) Volume data (b |§ns¥(ﬁacej
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— Ambiguity 1n cases
3,6,7,10,12,13

— Causes holes 1f arbitrary choices SN
are made
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PY Up to 5 triangles per Cllbe (c) Polygonal Apploximation

e Several 1sosurfaces
— Run MC several times

— Semi-transparency requires spatial sorting



3 Isosurfaces

 Examples

1 Isosurface

-ty
2 Isosurfaces



Marching Cubes

Algorithm for isosurface extraction from
medical scans (CT, MRI)
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Slides: Hao Li, USC 54



Marching Cubes

4

Effect of grid size

X' ¢

Gnd size=10 Gnd size=5 Grid size=2 Grid size=1 Gnd size=0.5
70 Facets 220 Facets 1700 Facets 6800 Facets 27000 Facets

Slides: Hao Li, USC 55



Marching Cube Variants
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The “first Marching Cubes” paper
Wyvill, McPheeters & Wyvill 86.

he Graphicsland project group (Wyvill

—VNisual

Computer

Data structure
for soft objects

Geoff Wyvill !, Craig McPheeters?,
and Brian Wyvill?

' Department of Computer Science,
University of Otago,
Box 56, Duncdin, New Zealand
! Department of Computer Science,
University of Calgary,
2500 University Drive N.W. Calgary, Alberta,
Canada, T2IN ING

We introduce the concept of soft objects
whose shape changes in response to their
surroundings.  Established  geometric
modelling techniques exist to handle most
engincering components, including “free
form® shapes such as car bodies and tele-
phones. More recently, there has been a
lot of interest in modelling natural pheo-
mena such as smoke, clouds, mountains
and coastlines where the shapes are
described stochastically, or as fractals
None of these techniques lends itselfl to
the description of soft objects. This class
of objects includes fabrics, cushions, living

Nov 10, 2015: 1033 cites on Google Scholar

in internal memory usage.

Key words: Soft objects ~ Geometric
modelling - Computer animation

1985a) at the University of Calgary has

developed an organised collection of soft-

ware tools for producing animation from
models in three dimensions. The system allows the
combination of several different kinds of model-
ling primitive (Wyvill et al. 1985b). Thus polygon
based models can be mixed freely with fractals
(Mandelbrot 1983, Fournier 1982) and particles
(Reeve 1983) in a scene. Motion and camera paths
can be described, and animation generated. Note
that we do not include the use of a two dimen-
sional ‘paint” system. Our objective is always to
construct views of a full three dimensional model.
An important class of objects in the everyday
world is soft. That is, the shape of the object var-
jes constantly because of the forces imposed on
it by its surroundings. A bouncing ball is a simple
example: as it strikes the ground, it flattens. The
smoothly covered joints of animals change shape
with seamless continuity, and liquids mould them-
selves to their surroundings and even break into
scparate droplets. Even apparently rigid objects
deform in some circumstances. Trees, for example,
bend in the wind.
To date, there seem to have been few attempts to
model soft objects for computer graphics. Pos-
sibly, this is because soft objects are less important
in engincering. But it is also true that much effort
in computer graphics has been directed to produc-
ing still pictures and you cannot tell that an
object is soft until it moves. Clouds (Gardner
1985) and particles (Reeve 1983) come close, but
there is nothing in either of these papers which
deals with the interaction of particles with sur-
rounding objects.
We have been experimenting with a general model
for soft objects which represents an object or col-
lection of objects by a scalar ficld. That is a math-

cations and describes a direct rendering technique
using an clegant set of sorted lists. A similar tech-
nique has been used for some years in the LINKS
project at the University of Osaka (Nishimura
1985). Ken Perlin has used a modification of




Marcning tetranedra

0010
1101

0001
0 1110

* Only 8 cases to consider in a tetrahedron

» Correct piecewise-linear interpolants on
0100 1000
tet meshes! 1011 o111

i

* Generates horrible triangles.

oo
1100

0101 o110
1010 1001 !ﬁii

marching tets  after 30 iterations of Laplacian smoothing...

Doi and Koide. An efficient method of triangulating equi-valued surfaces by using
tetrahedral cells. IEICE Transactions on Information and Systems, 1991 S’;lr}k

www.sclutah.edu


http://search.ieice.org/bin/summary.php?id=e74-d_1_214

Increasing Resolution

E

Does not remove alias problems!

Slides: Hao Li, USC St



Extended Marching Cubes

Locally extrapolate distance gradient

Place samples on estimated features

65x65x65

L Kobbelt, M Botsch, U Schwanecke, HP Seidel. Feature Sensitive

Surface Extraction from Volume Data. Siggraph 2001.
Slides: Hao Li, USC 58




Extended Marching Cubes

Feature Feature Edge
Detection Sampling Flipping

L Kobbelt, M Botsch, U Schwanecke, HP Seidel. Feature Sensitive

Surface Extraction from Volume Data. Siggraph 2001.
Slides: Hao Li, USC 62



Milling Simulation

257x257x257

L Kobbelt, M Botsch, U Schwanecke, HP Seidel. Feature Sensitive

Surface Extraction from Volume Data. Siggraph 2001.
Slides: Hao Li, USC 63



Dual Contour!
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Ju et al., Dual Contouring of Hermite Data,

Siggraph 2002 |
Schafer and Warren., Dual Marching Cubes:

Primal Contouring of Dual Grids. Computer

Graphcis Forum, 2004

www.sclutah.edu



Edge Groups

Fig. 4. Replacing cases in MC. The top row shows the original triangulation in 3
MC cases (case 5, complement of case 6 and case 11, respectively [20]), while
the bottom row shows the modified connectivity. The reconnection of the cut points
removes the edge group 2 from these cells, reducing the probability of generating
low quality triangles.

Q /’ )

Fig. 5. Intuition behind Macet: small changes to grid vertices positions (left)
may improve triangle quality. Moving vertices along the gradient (center) or along
tangential paths (right) improve triangle quality.

Dietrich et al. Edge Groups: An Approach to Understanding the Mesh Sgﬂ(;{é
Quality of Marching Methods. IEEE TVCG, 2008 wwwisciutah.edu




Particle-driven mesh
extraction
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Advancing Front

e Starting from a seed point, use curvature of the implicit surface to
determine local feature size (LFS), find next seed points, and from those
create a guidance field locally resampling the scalar field.

« Continue the guidance field until all fronts merge, and the mesh is done.

Schreiner et al. High-Quality Extraction of Isosurfaces from Regular and ;Qr/\!\_
Irregular Grids. IEEE Visualization 2006 Wwwaciutah.edu
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| 3k parucles,-.-,, f e .
SRt

3.4 mmutes'.g‘

5k partlcles
0.5 minutes

Particle Systems for Efficient and Accurate High-Order Finite Element Visualization
M. Meyer et al, TVCG 2006.



| 82k triangles
4| minutes
0.18 min rr
0.94 avg rr
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Topology, Accuracy, and Quality of Isosurface
Meshes Using Dynamic Particles.

M. Meyer et al.,Vis 2007.
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Surface splatting
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QSplat =

e The first (large) pure point-based system, built on a
bounding sphere hierarchy.

10-pixel cutoff
259,975 points
215 ms

» Stores vertices and normals up to full resolution

* Explicit geometry only — no mesh!

S5-pixel cutoff
1,017,149 points
722 ms

1-pixel cutoff
14,835,967 points
8308 ms

S Rusinkiewicz and M Levoy. QSplat: A Multiresolution Point Rendering
System for Large Meshes. Siggraph 2000




|SO-splatting

* Create approximate points near the isosurface | ,\
using pre-classified points inside the volume ‘ .

e Optionally, use Newton-Raphson to better fit
Samples tO the ISOSUI’faCe Figure 2. Projection of sample point p, onto

isosurface f;, producing point p/, using (a) ex-
act projection and (b) approximate projection.

Marching Cubes Iso-splatting Marching Cubes Iso-splatting

C Co, B Hamann, K Joy. Iso-splatting: A Point-based Alternative to Isosurface _S,Qr/\g‘
VISU8|IzatIOﬂ |EEE V|S 2003 wwx\:.‘;cl‘i.ufdh.edu



Hybrid splatting + extraction

* View dependent splatting

* Builds on the point hierarchy idea of QSplat, and view-
dependent marching cubes.

e Very tast for its time — but complicated.

Y Livnat and X Tricoche. Interactive Point-Based Isosurface Extraction. [EEE 51,
Vis 2005. S

www.sclutah.edu



Ray casting / tracing
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e Accelerate volume with a two-

level uniform grid of interval
values

* Direct numerical solution for
ray intersection with the
trilinear isosurface patch

1 GB visible female, rendered
interactively on an SGI
shared-memory machine.

S Parker et al. Interactive Ray Tracing for Isosurface Rendering. _S,Qr/\!‘
| E E E V| Su al | Zat | on 98 . W\\f\\;;i.u{dh.edu



Ray-trilinear isosurface
INntersection

p(Ta +tTp, Yo + tys, za +t2p) — pigo = 0.

The intersection with the isosurface p(p) = p;., Occurs where:

150

Piso = Z (u',’ - tu',»') (1.'}1 + tt?:') (H':’I + tu‘?) Pijk

i,J.k=0,1
This can be simplified to a cubic polynomial in £:

AP + Bt +Ct+D =0

b b b
A= E Ui U; Wi Piik

where

i,J,k=0,1
a b b b a b b b a
B = E (u, U, W; +uv; w; o+ u v w; ) Pijk
i.9,k=0,1
C = b a_ a .a b a a a_ b
;) = (u,l, w; + u; v;w; + u; v; tl,t)/)ijk.
1,7,k=0,1
o a a
D = —pjgo + E Wi U; Wi Pijk
1,7,k=0,1
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S Parker et al. Interactive Ray Tracing for Isosurface Rendering. ;Qr/\!\

IEEE Visualization 98.

www.sciutah.edu



Fast CPU l|sosurface Ray Tracing — 2004-2008

. P Ingo Wald, Heiko Friedrich, Aaron Knoll, and Charles D. Hansen

AR Y, ; o Interactive Isosurface Ray Tracing of Time-Varying Tetrahedral Volumes
Aaron Knoll, Charles Hansen, and Ingo Wald IEEE Visualization 2007

Coherent Multiresolution Isosurface Ray Tracing
The Visual Computer 2009

Aaron Knoll, Ingo Wald, Steven
Parker, and Charles Hansen.
Interactive Isosurface Ray Tracing
of Large Octree Volumes
Proceedings of the IEEE
Symposium on Interactive Ray
Tracing, Salt Lake City, 2006

Chris Wyman, Steven Parker, Pete Shirley, and Charles Hansen.
Interactive display of isosurfaces with global illumination.
IEEE TVCG 2006.

Aaron Knoll, Younis Hijazi, Andrew Kensler, Mathias Schott, Charles Hansen and Hans Hagen
Fast Ray Tracing of Arbitrary Implicit Surfaces with Interval and Affine Arithmetic. Sg Ir/ \
Computer Graphics Forum, 2009 = /’?

www.sclutah.edu


http://www.sci.utah.edu/~knolla/cgrtia.pdf
http://www.sci.utah.edu/~knolla/tetty/tetty.pdf
http://www.sci.utah.edu/~knolla/cohoctiso.pdf

Fast GPU isosurface ray casting

GPU

Index Texture

Memory pool

View
dependent
octree

CPU

Octree service Q

Request queue

L

-

Octree
nodes

databas

E Gobbetti et al. A single-pass GPU ray casting framework for interactive out-
of-core rendering of massive volumetric datasets. The Visual Computer, 2008

www.sciutah.edu



Peak finding: combining
iIsosurfacing and volume rendering

b) postclassification c¢) preintegration

-

A Knoll et al. Volume Ray Casting with Peak Finding and Differential Sampling. ‘S,Qr/
IEEE Visualization 2009. WWwciutah.



Thoughts on isosurfacing

* 2012: "No one uses volume rendering, it's too slow and hard.”
* 2015: “No one uses isosurfacing, it's too ugly and limiting.”
* As a pure visualization modality, isosurfacing is on its way out

* Volume rendering is no longer “expensive”, has decent implementations in Paraview anad
Vislt, as well as Voreen, ImageVis3D, Intel OSPRay, NVIDIA IndeX, etc.

* Users are starting to “get” transfer functions...
* Marching cubes is still nasty and expensive, and has pitfalls
* As a core technique, isosurfacing will be here for a long time

* Schroeder et al. “Flying Edges: A High Performance Scalable Isocontouring Algorithm?”,
IEEE LDAV 2015.

* We'll always need ways to convert from implicit to explicit and visa versa, for computation.

SN

www.sciutah.edu



Next up:

e Thursday 11-12: Vector and tensor field
visualization.
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