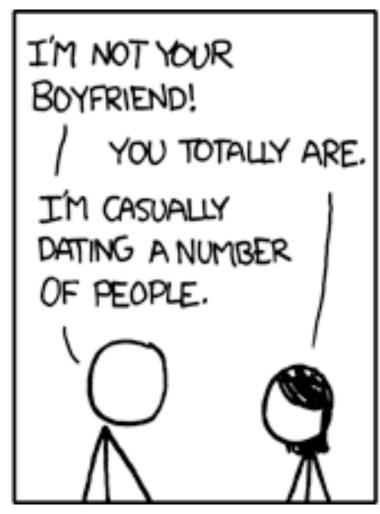
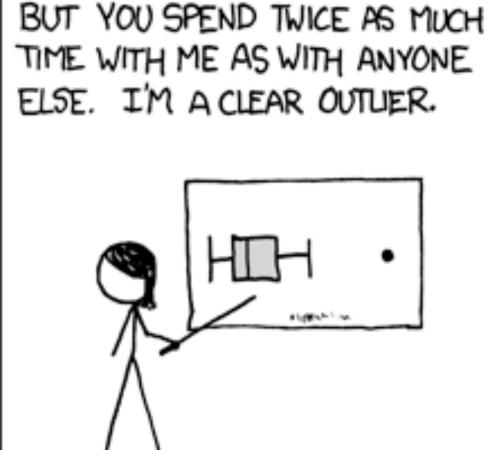
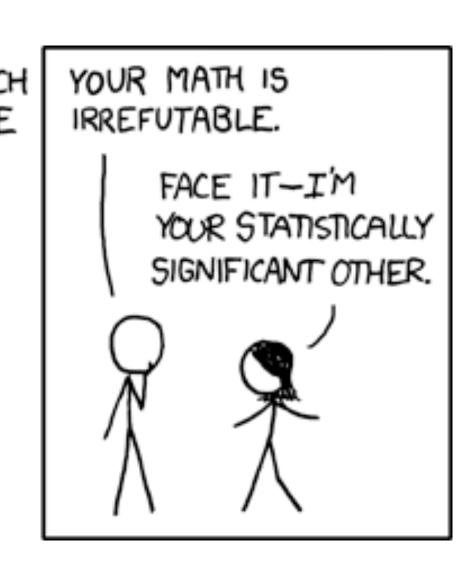
CS-5630 / CS-6630 Uisualization for Data Science Filtering & Aggregation

Alexander Lex alex@sci.utah.edu

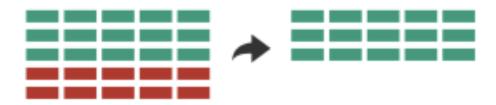






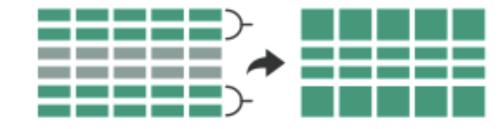
Reducing Items and Attributes

- → Filter
 - → Items

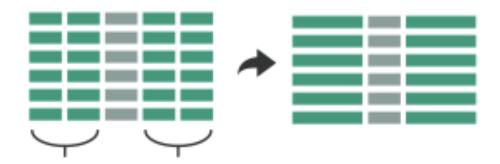


→ Attributes

- Aggregate
 - → Items



→ Attributes



Filter

elements are eliminated

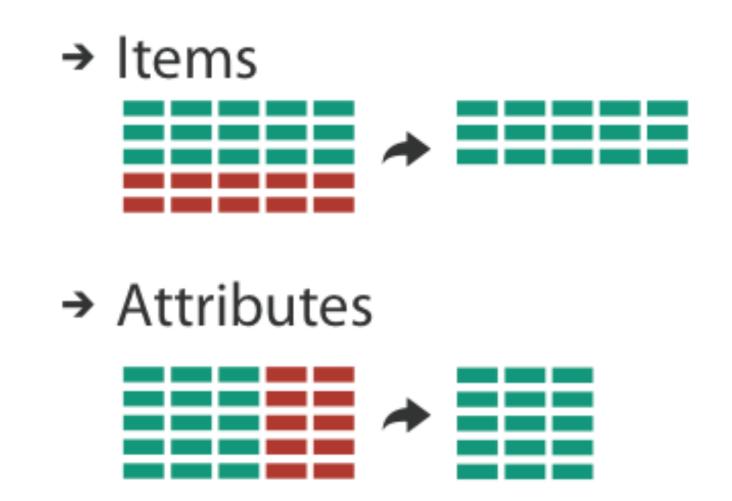
What drives filters?

Any possible function that partitions a dataset into two sets

Bigger/smaller than x

Fold-change

Noisy/insignificant



Dynamic Queries / Filters

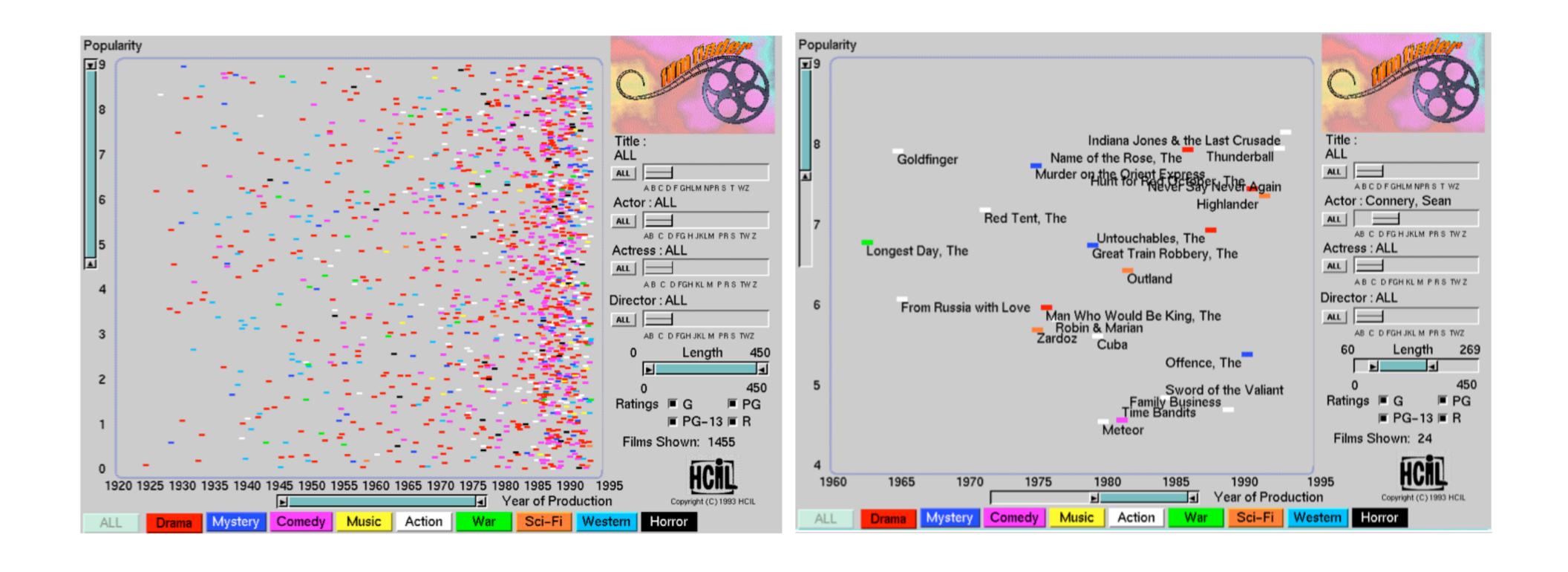
coupling between encoding and interaction so that user can immediately see the results of an action

Queries: start with 0, add in elements

Filters: start with all, remove elements

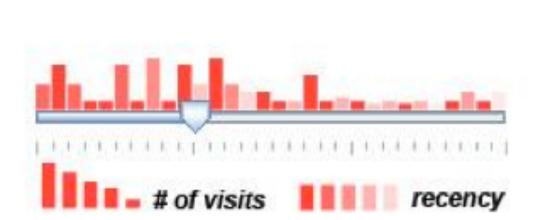
Approach depends on dataset size

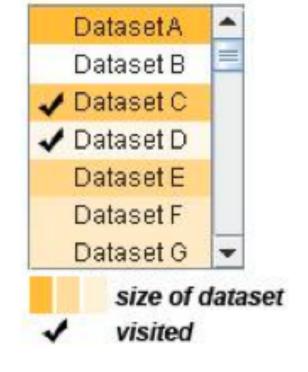
ITEM FILTERING

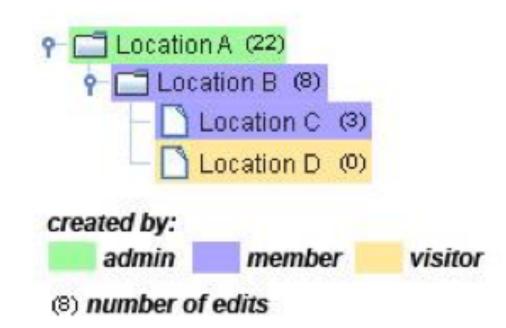


Scented Widgets

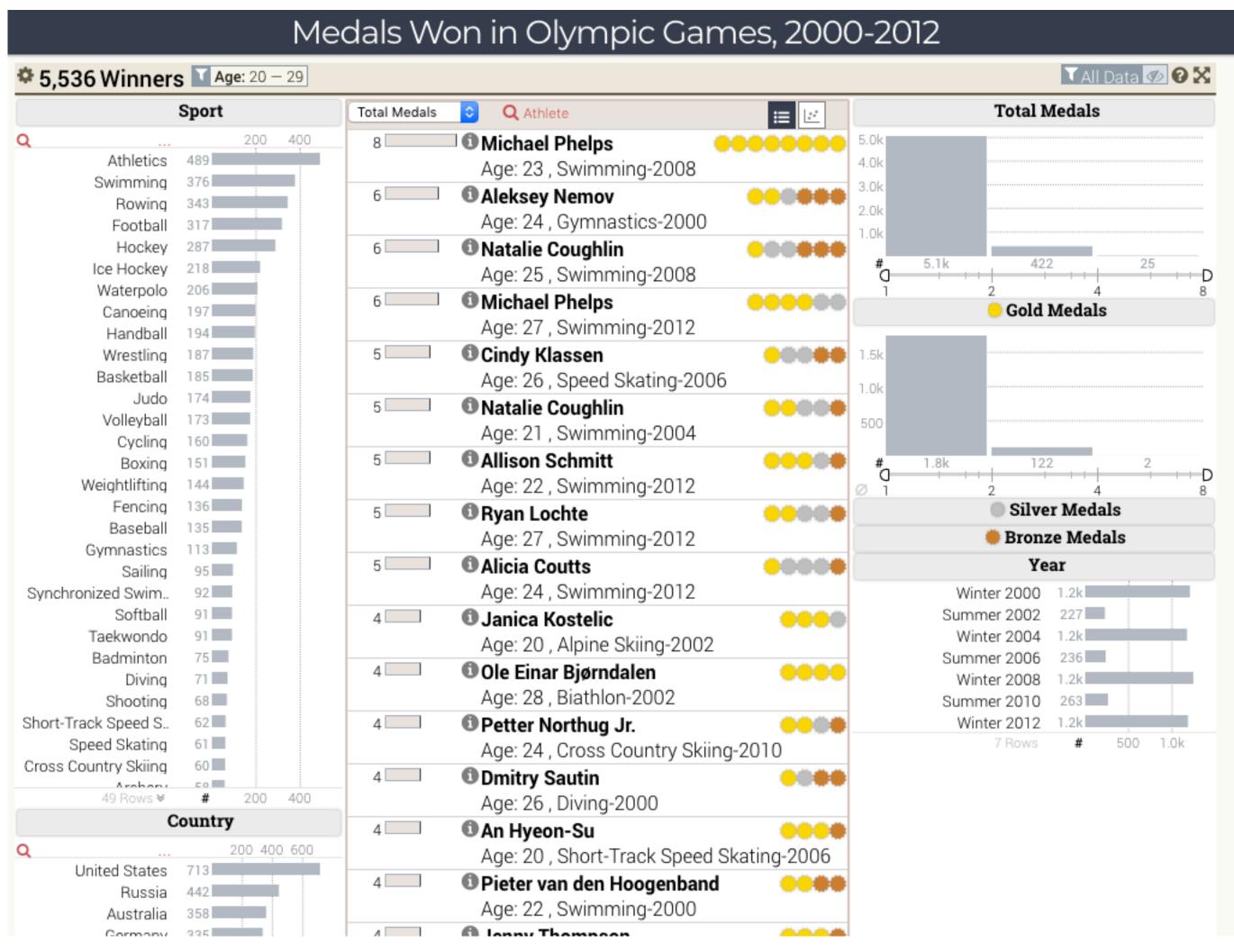
information scent: user's (imperfect) perception of data GOAL: lower the cost of information foraging through better cues







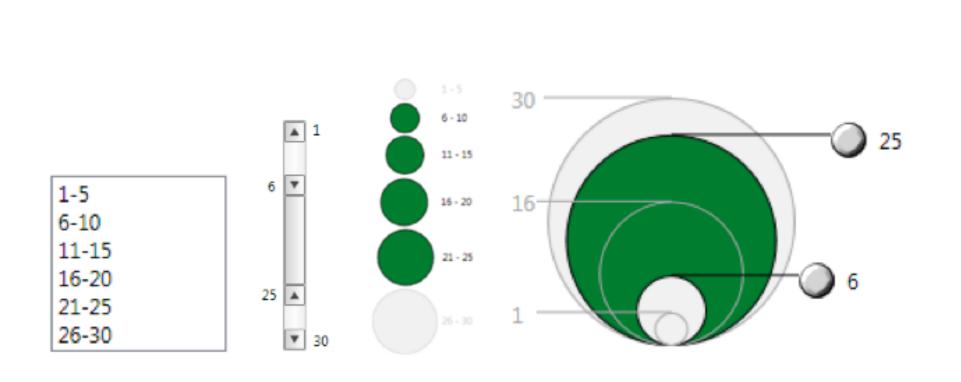
Item Filtering with Scented Widgets

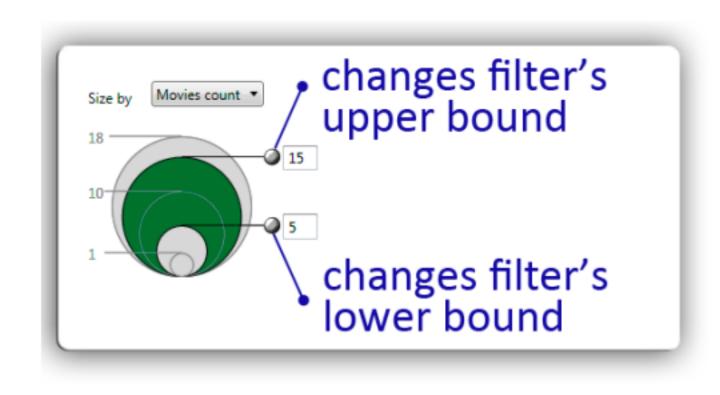


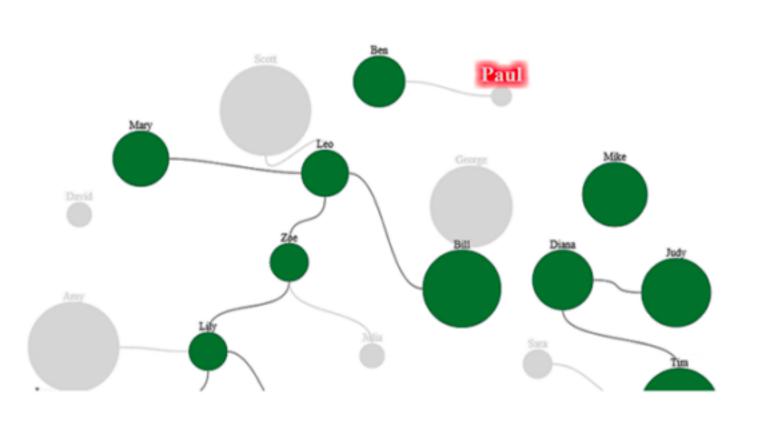
Interactive Legends

Controls combining the visual representation of static legends with interaction mechanisms of widgets

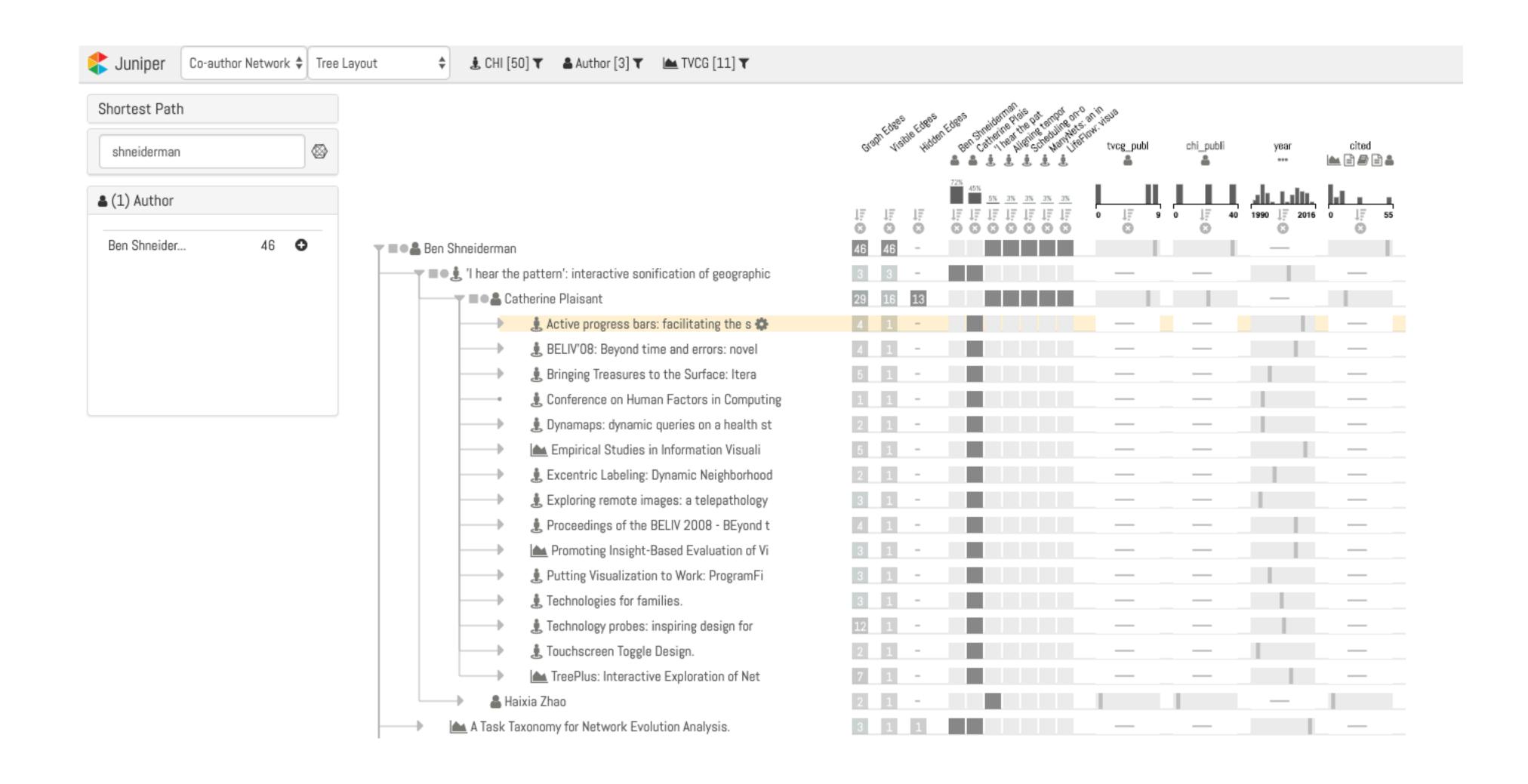
Define and control visual display together







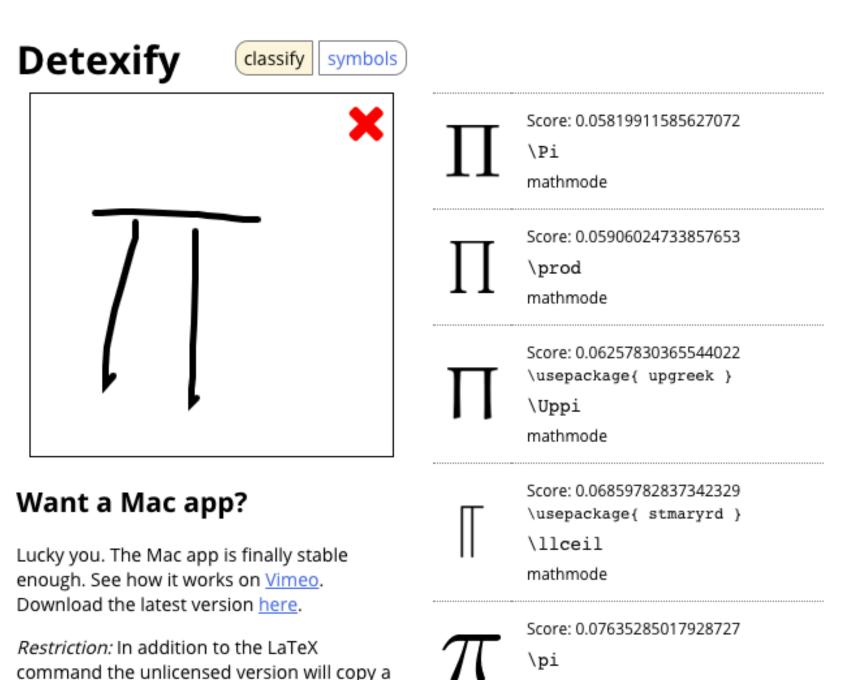
Text & Dynamic Queries



Sketch-based Queries

Idea: we have a mental model of a pattern.

Let user sketch it!



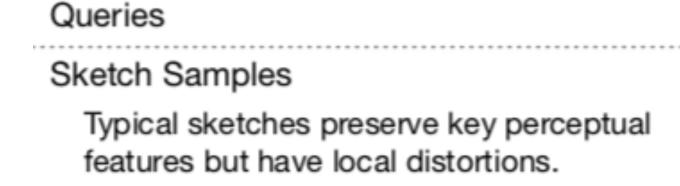
mathmode

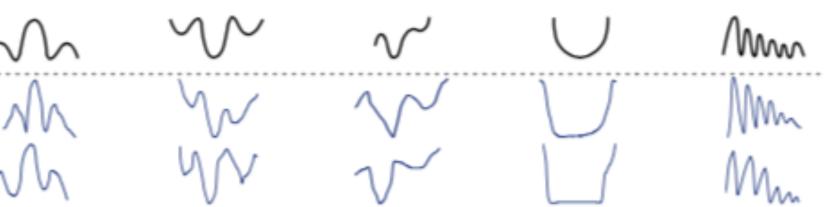
The symbol is not in the list? Show more

reminder to purchase a license to the clipboard when you select a symbol.

Sketch-based Queries

Time Series



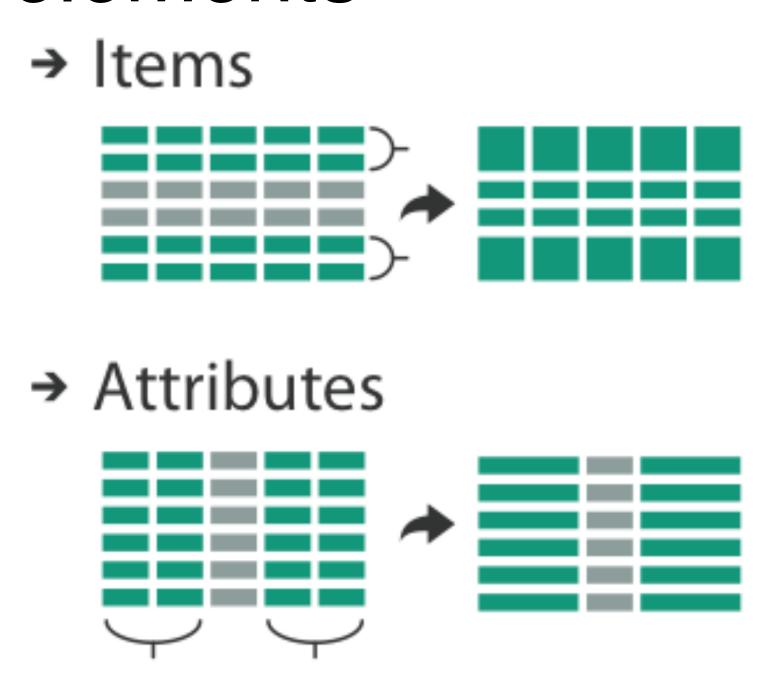


https://www.youtube.com/watch?v=4YQTuUuIFbI

Aggregation

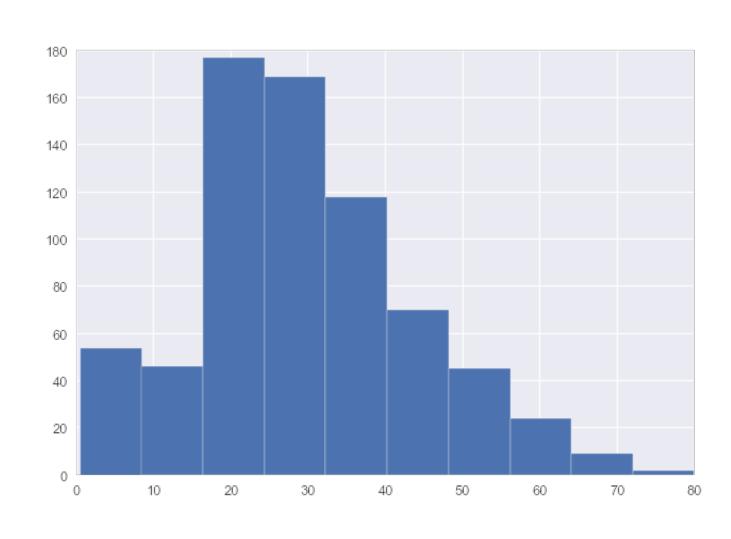
Aggregate

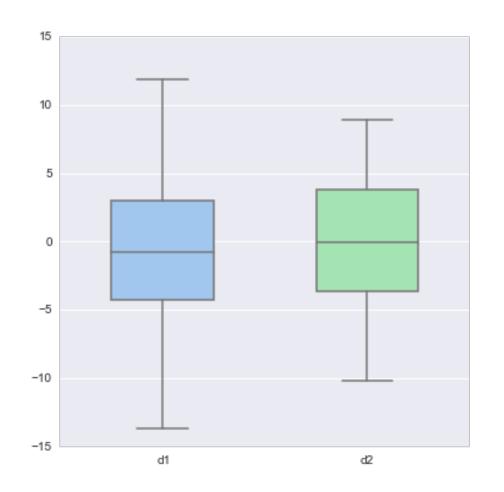
a group of elements is represented by a (typically smaller) number of derived elements

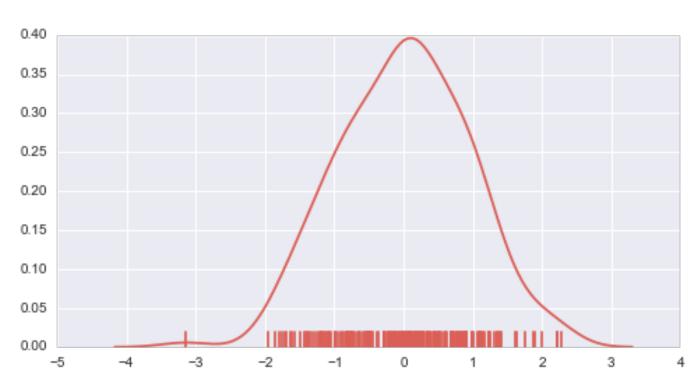


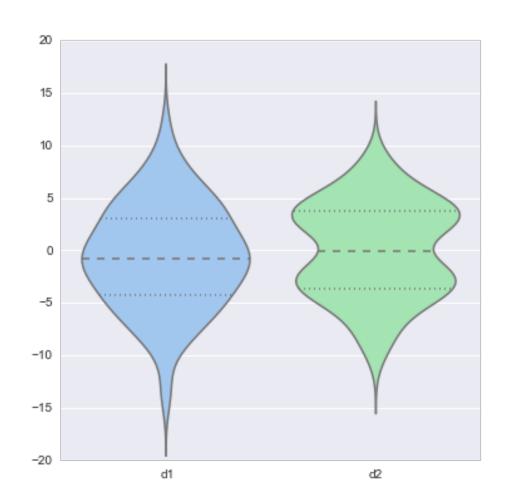
Why Aggregate?

Recall Tabular Aggregation





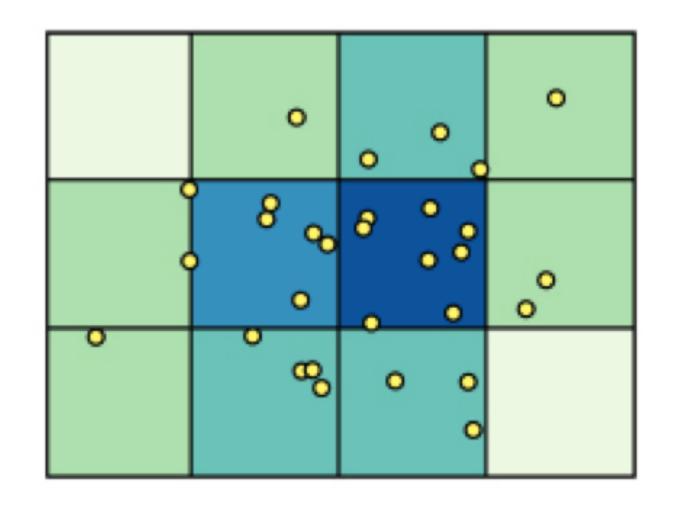


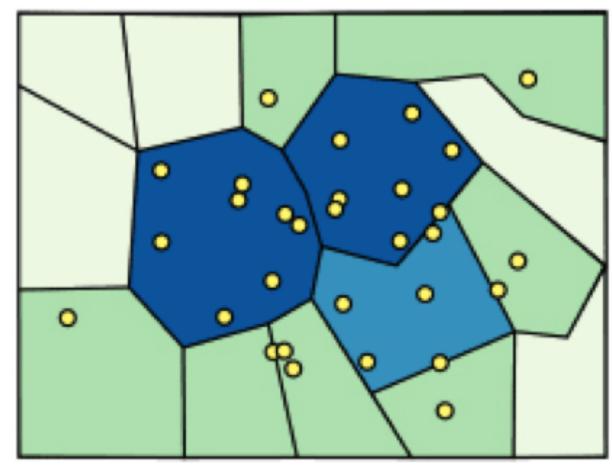


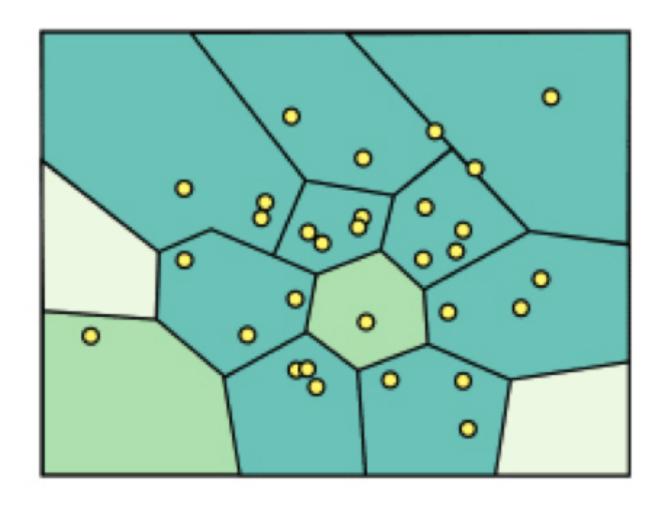
Spatial Aggregation

modifiable areal unit problem

in cartography, changing the boundaries of the regions used to analyze data can yield dramatically different results



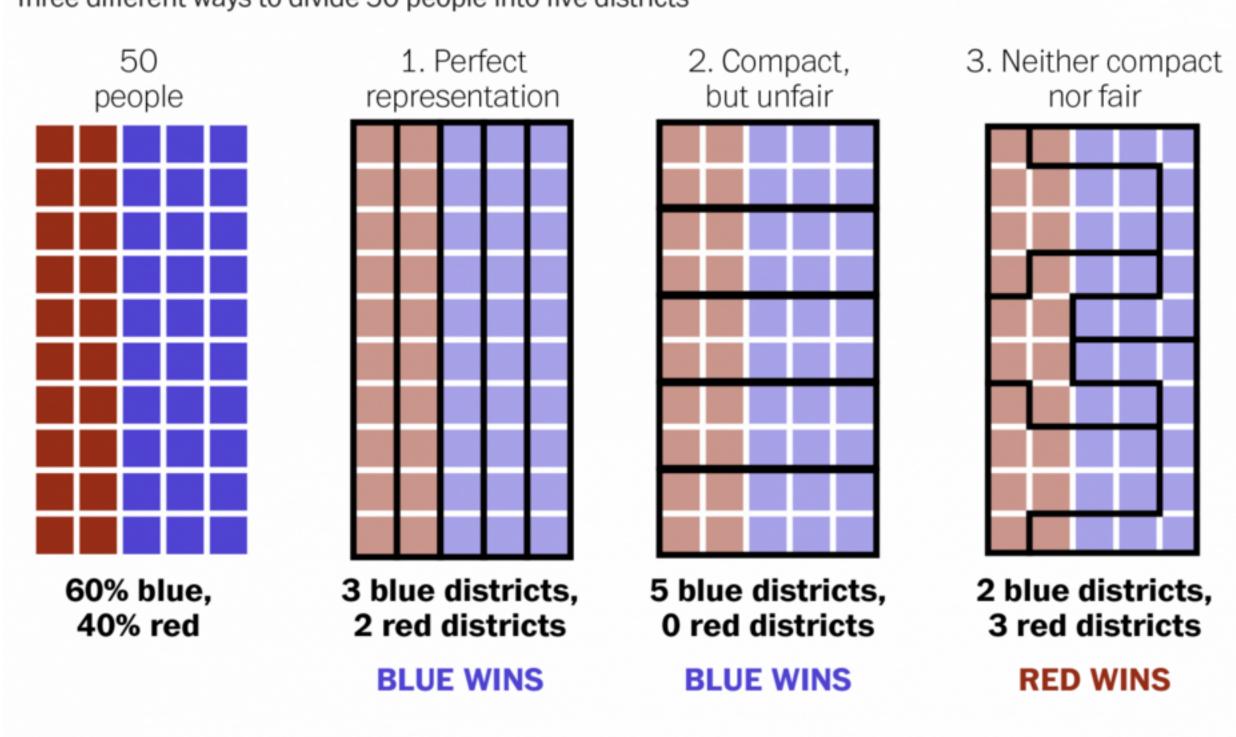




Gerrymandering, explained

Three different ways to divide 50 people into five districts

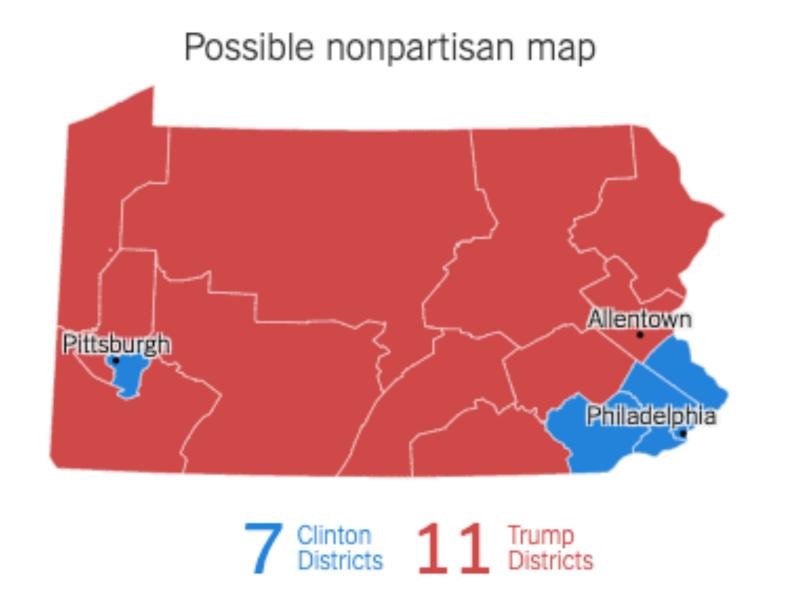
WASHINGTONPOST.COM/WONKBLOG

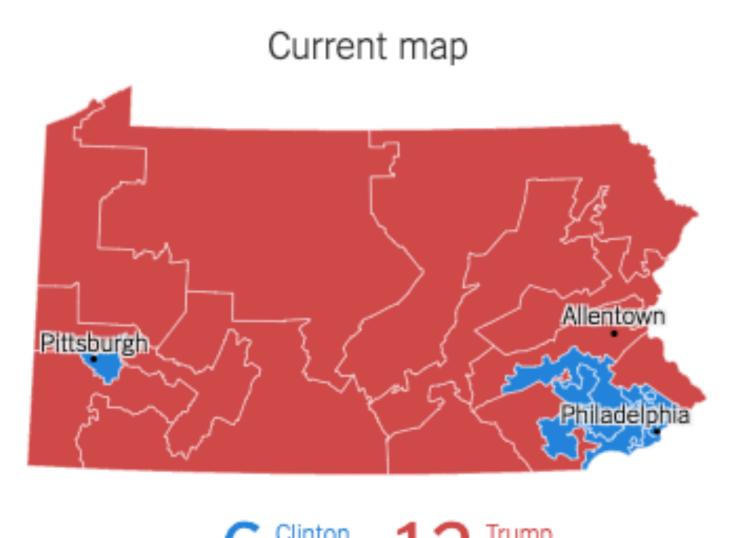


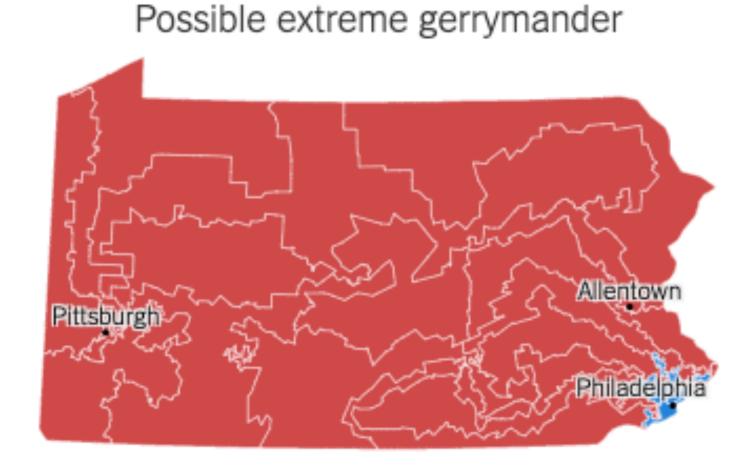
Adapted from Stephen Nass

A real district in Pennsylvania Democrats won 51% of the vote but only 5 out of 18 house seats

Gerrymandering in PA



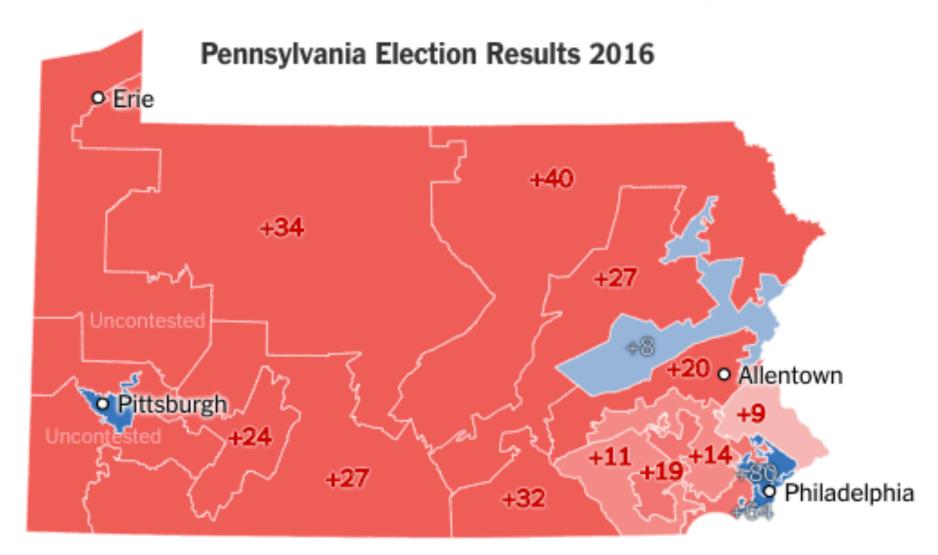


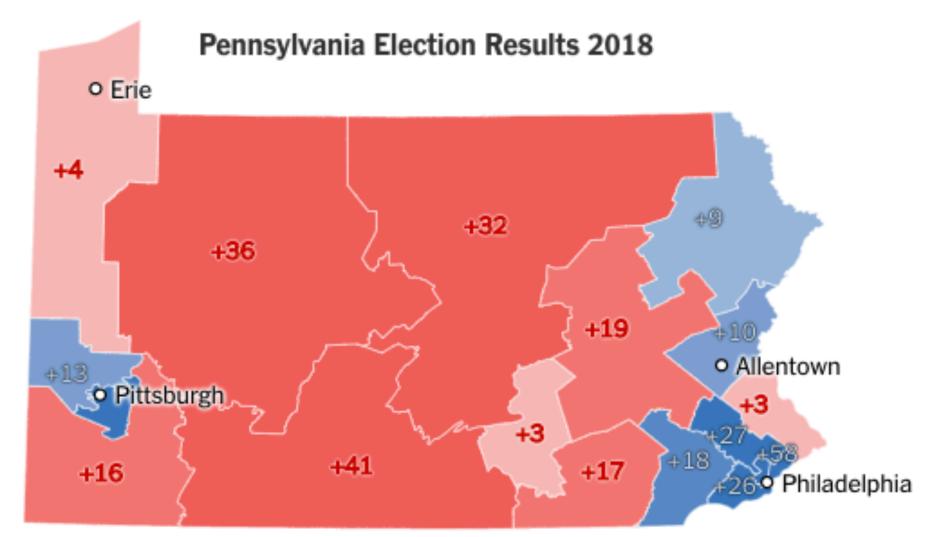


Updated Map after Court Decision

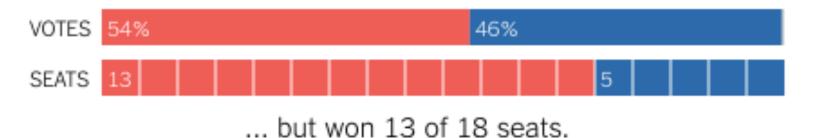
MARGIN OF VICTORY

◆ Democrats won	Republicans won >
+20 +15 +10 +5	+5 +10 +15 +20

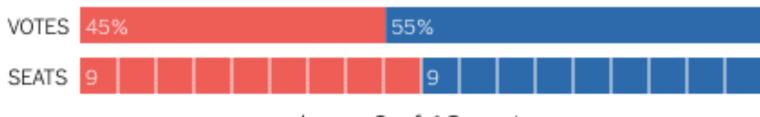




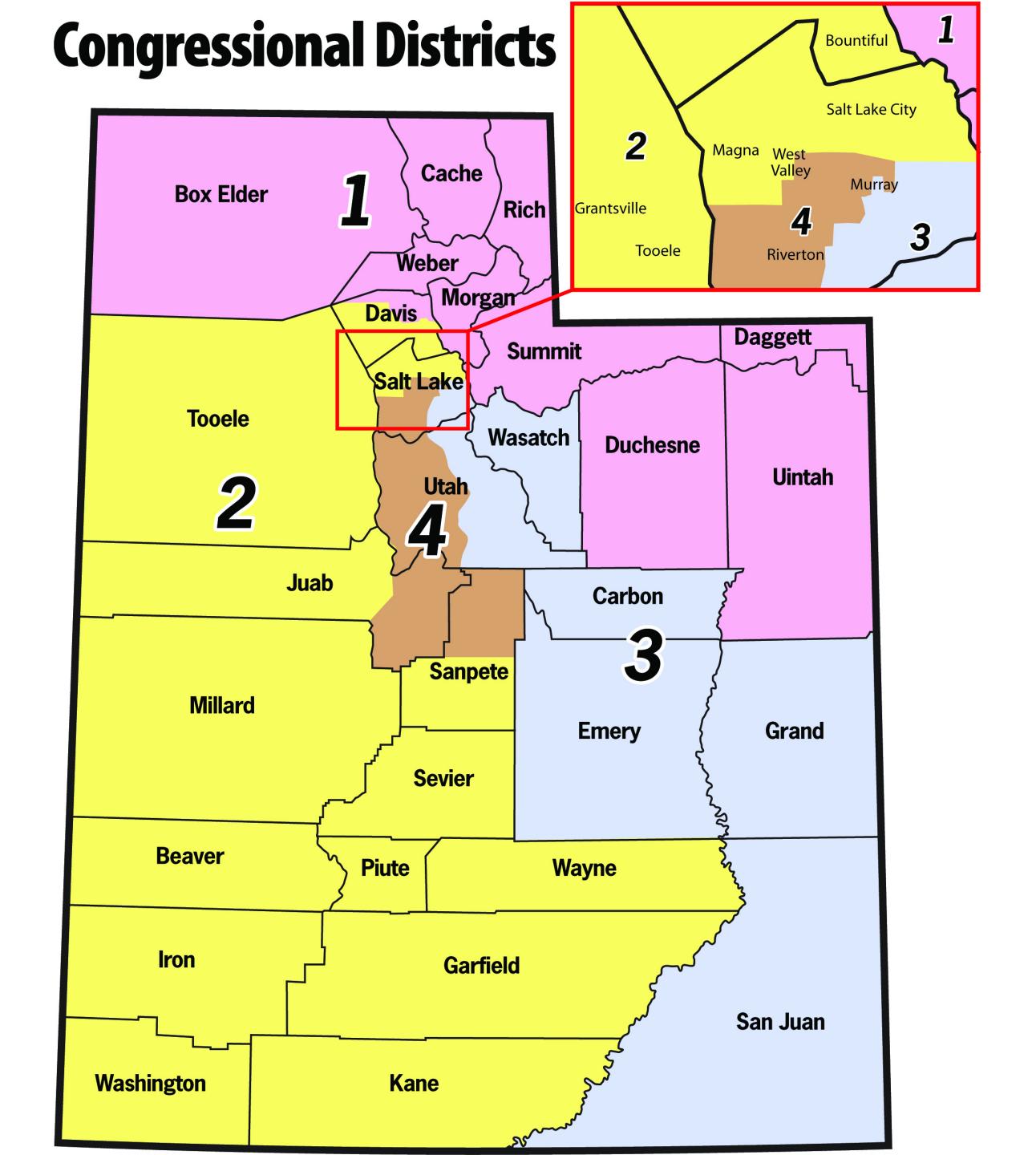
Republicans got 54% of U.S. House votes statewide ...

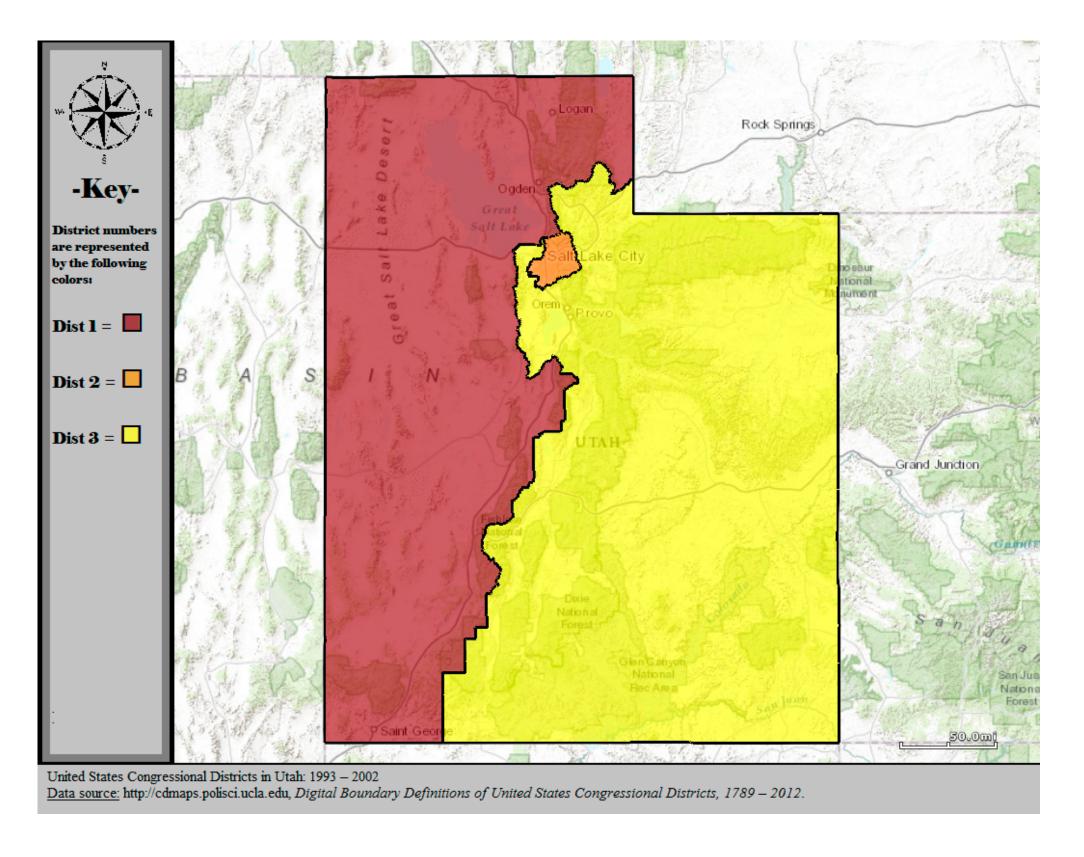


Republicans got 45% of U.S. House votes statewide ...



... and won 9 of 18 seats.



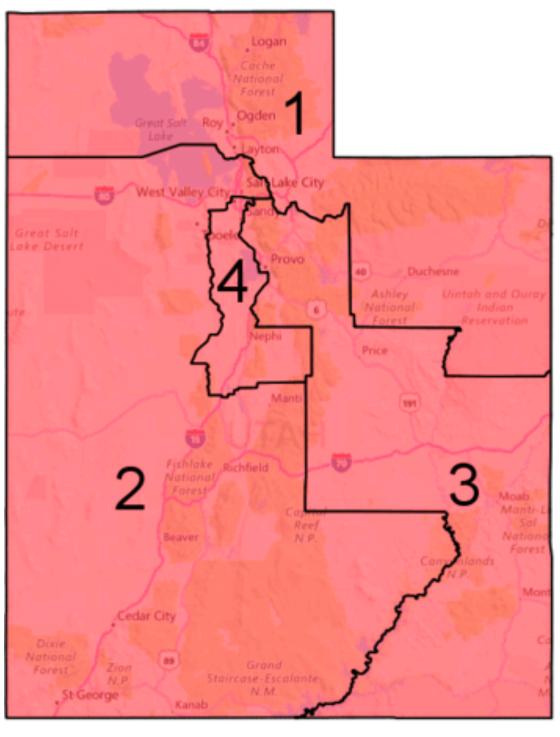


Valid till 2002

http://www.sltrib.com/opinion/ 1794525-155/lake-salt-republicancounty-http-utah

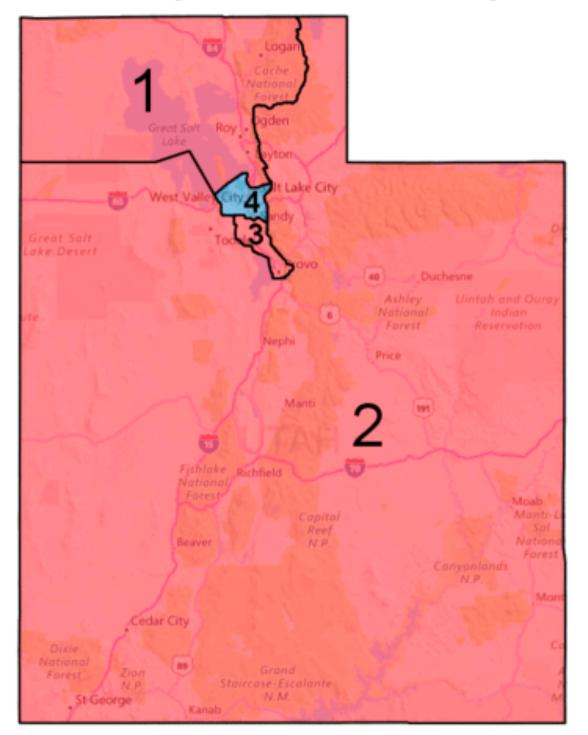
2016 Congressional Elections

Utah's Republican Congressional Map



2016 Outcome Republican (4)

Hypothetical Nonpartisan Map



Predicted Outcome

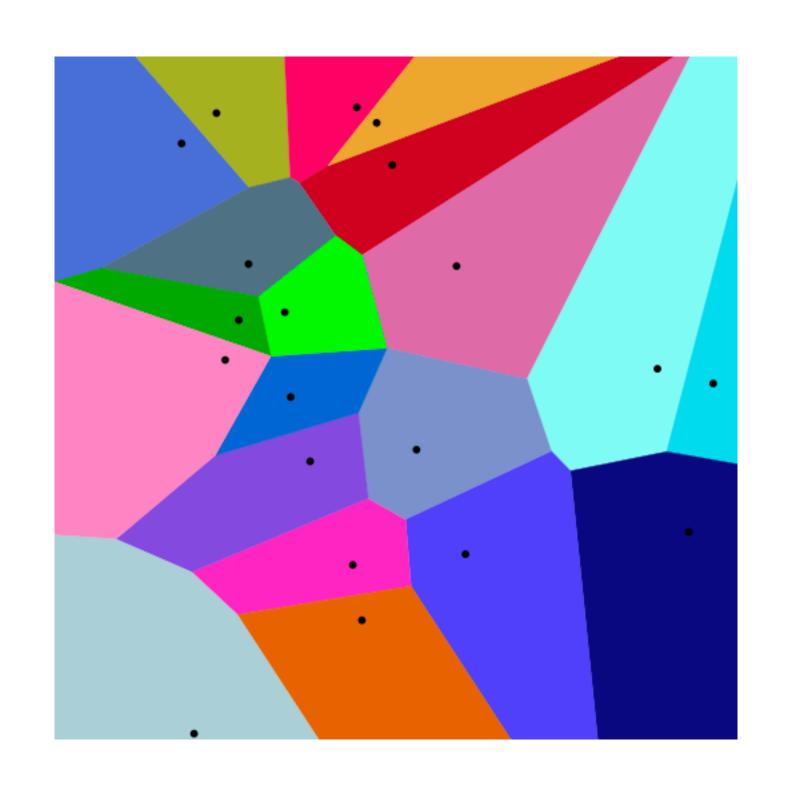
- Democratic (1)
- Republican (3)

Voronoi Diagrams

Given a set of locations, for which area is a location n closest?

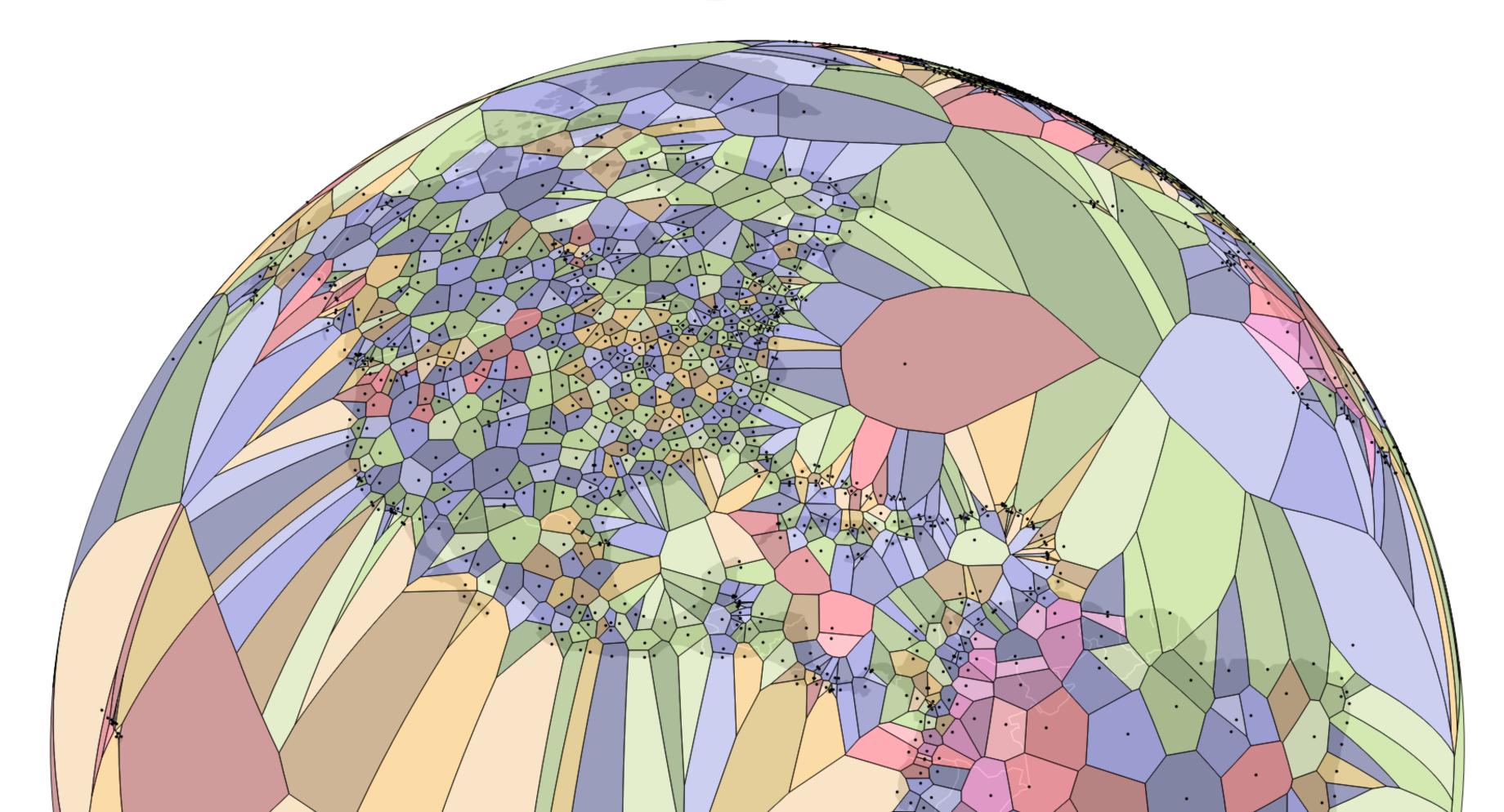
D3 Voronoi Layout:

https://github.com/d3/d3-voronoi



Voronoi Examples

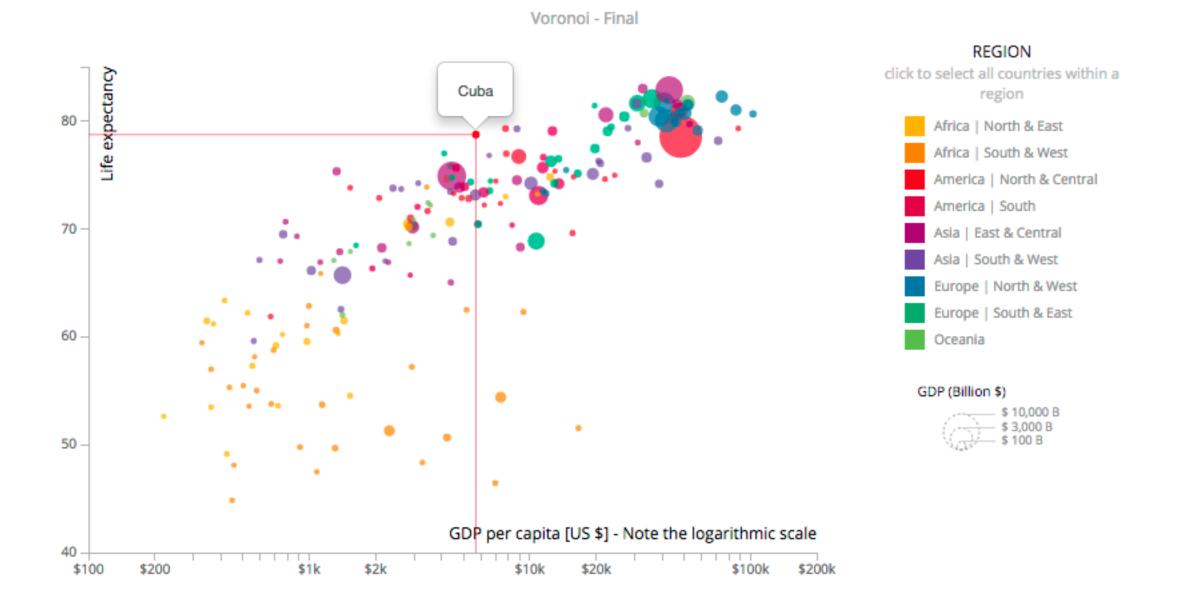
World Airports Voronoi



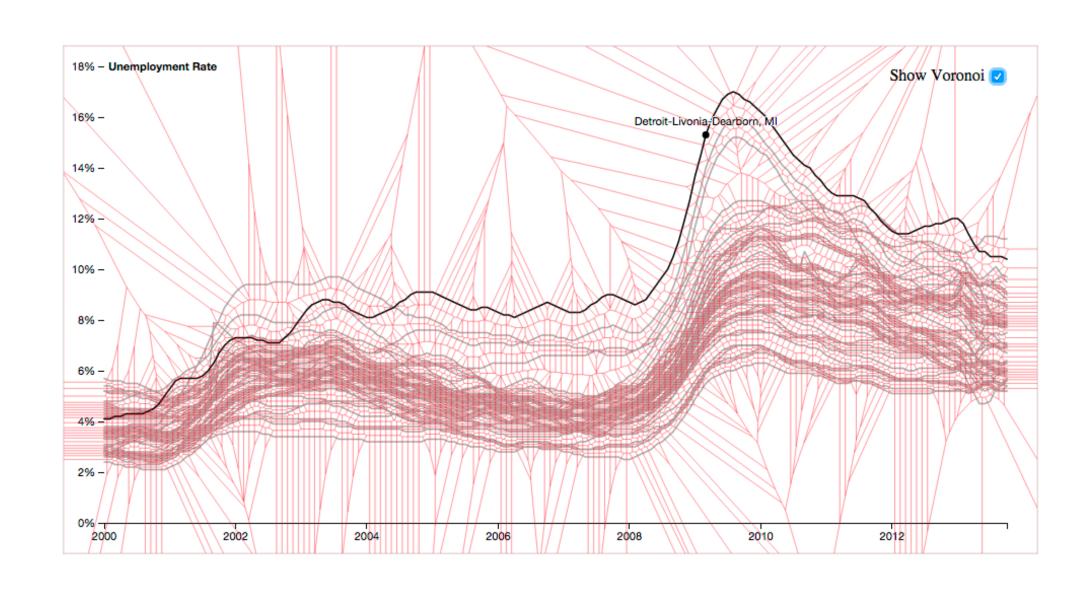
Voronoi for Interaction

Useful for interaction: Increase size of target area to click/hover

Instead of clicking on point, hover in its region



Life expectancy versus GDP per Capita

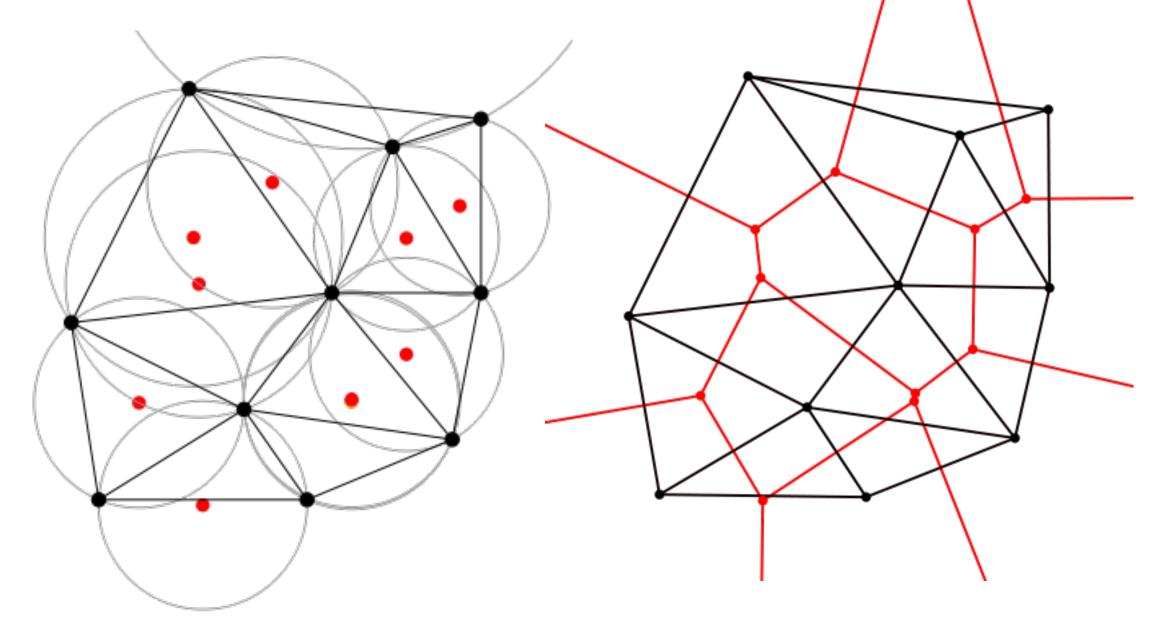


Constructing a Voronoi Diagram

Calculate a Delauney triangulation

Triangulation where no other vertices are in a circle described by the vertices of a triangle

Voronoi edges are perpendicular to triangle edges.



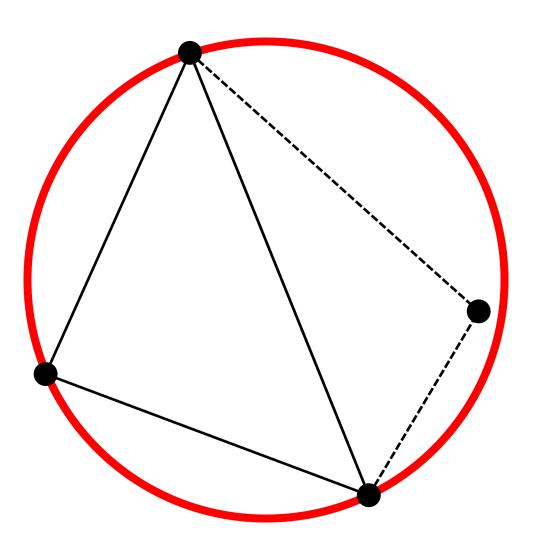
Computing a Delaunay Triangulation

Construct any triangulation

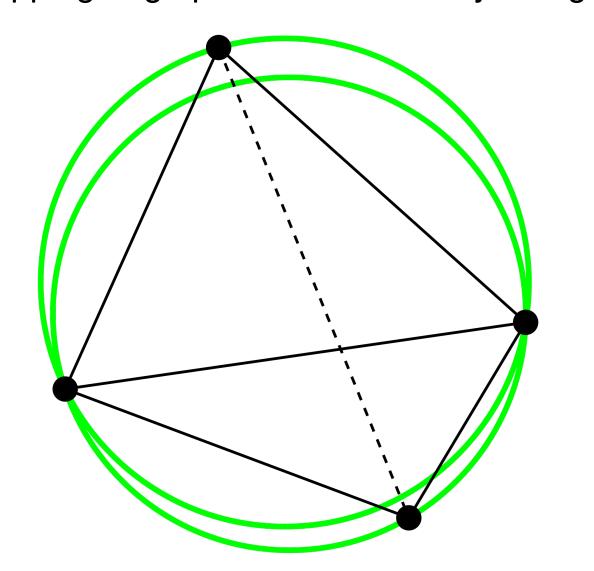
Test whether each triangle is delauny

If not, flip edge

Not a Delaunay triangle



Flipping edge produces Delaunay triangle



Clustering

Clustering

Classification of items into "similar" bins

Based on similarity measures

Euclidean distance, Pearson correlation, ...

Partitional Algorithms

divide data into set of bins

bins either manually set (e.g., k-means) or automatically determined (e.g., affinity propagation)

Hierarchical Algorithms

Produce "similarity tree" – dendrogram

Bi-Clustering

Clusters dimensions & records

Fuzzy clustering

allows occurrence of elements in multiples clusters

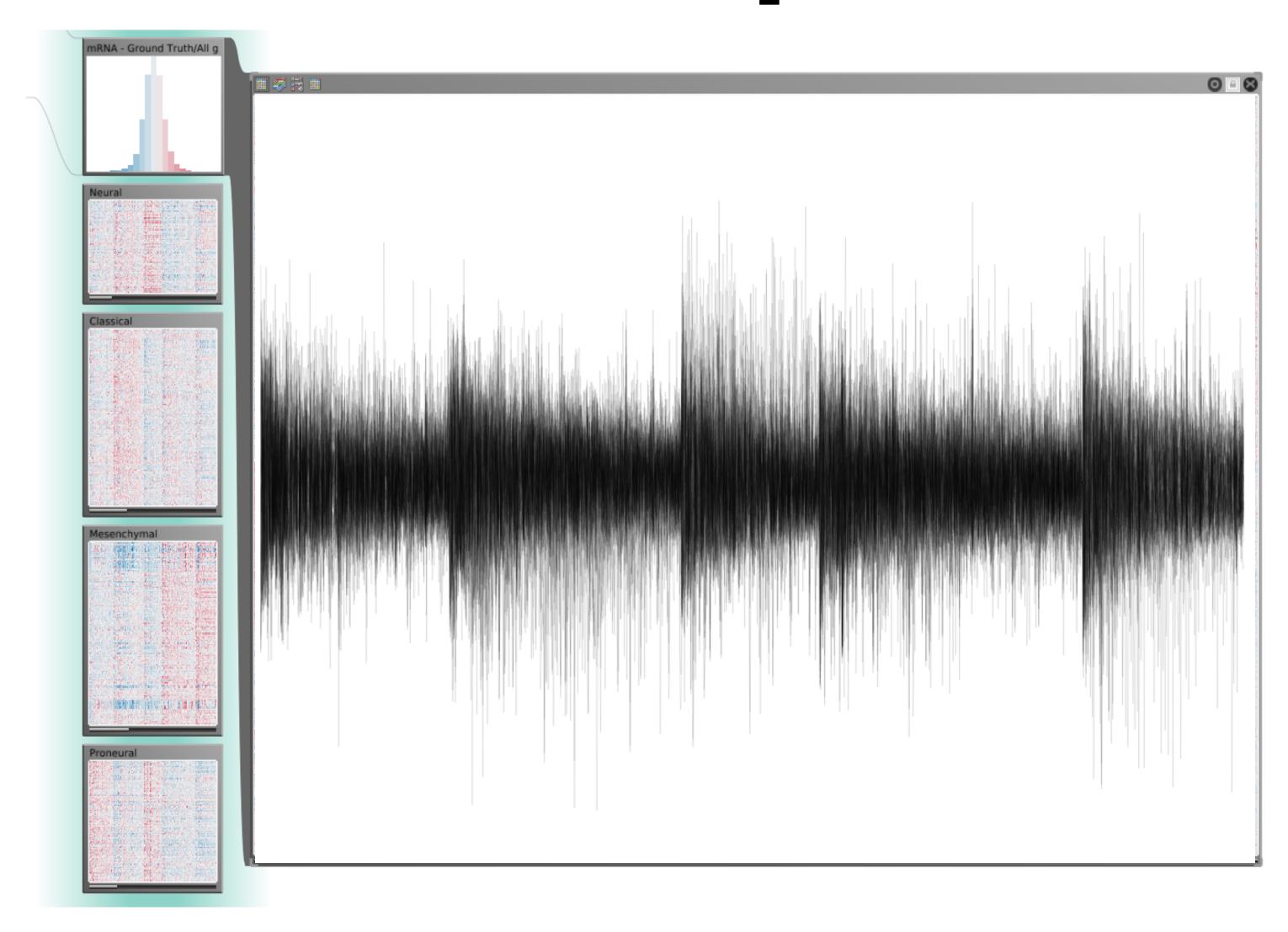
Clustering Applications

Clusters can be used to order (pixel based techniques) brush (geometric techniques) aggregate

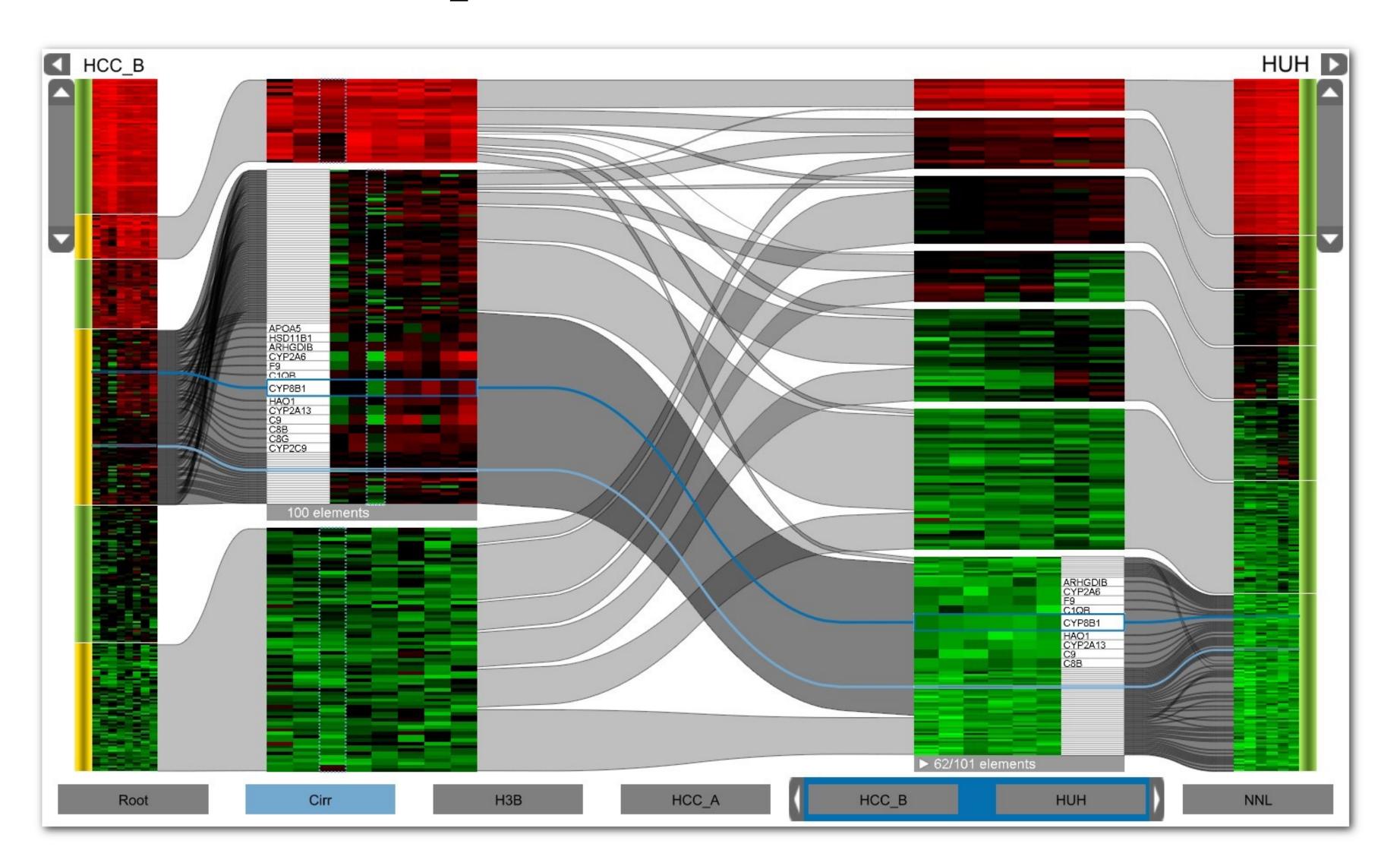
Aggregation

cluster more homogeneous than whole dataset statistical measures, distributions, etc. more meaningful

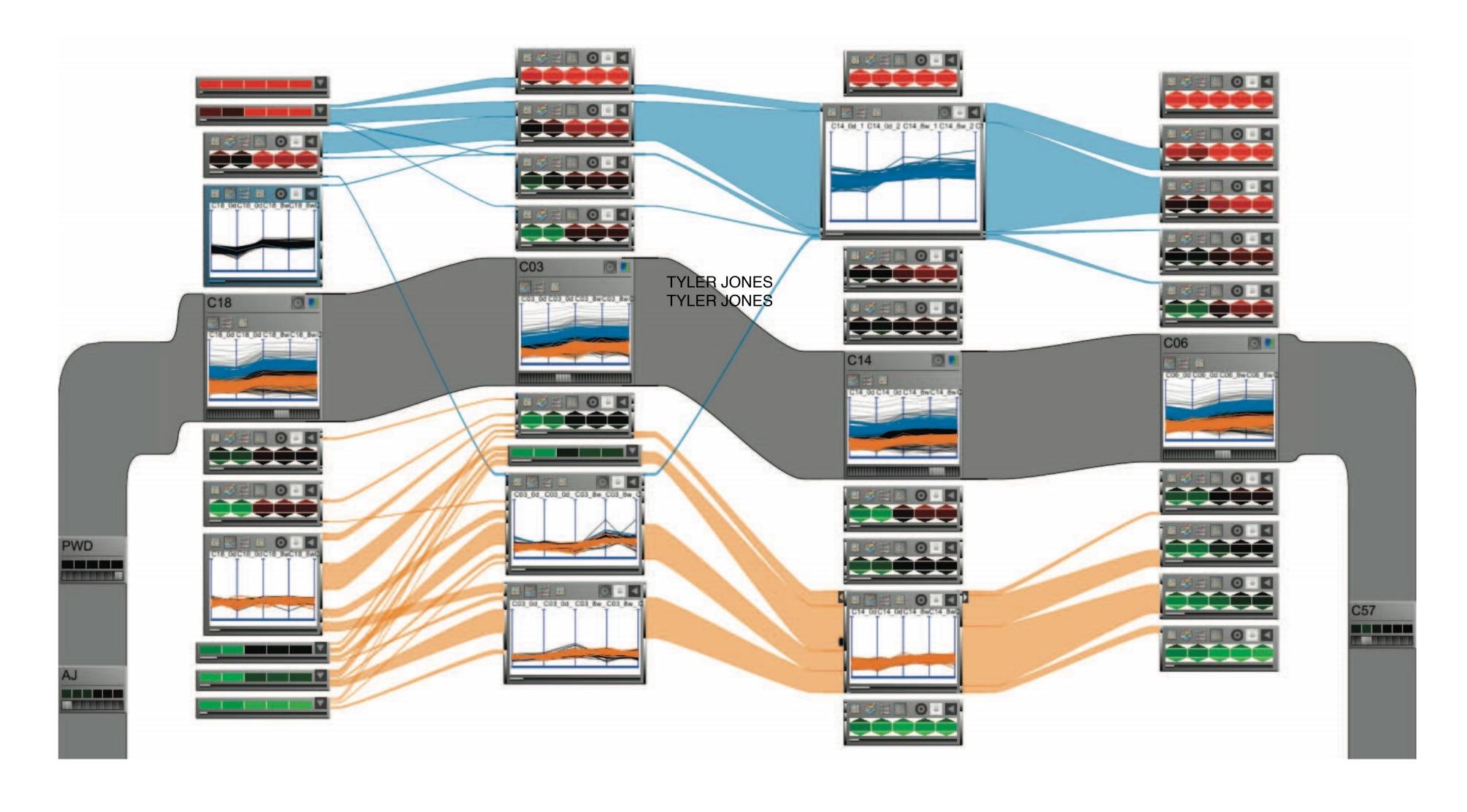
Clustered Heat Map



Cluster Comparison



Aggregation



Example: K-Means

Goal: Minimize aggregate intra-cluster distance (inertia)

$$\underset{C}{argmin} \sum_{i=1}^{\kappa} \sum_{x \in C_i} ||x - \mu_i||^2$$

total squared distance from point to center of its cluster for euclidian distance: this is the variance measure of how internally coherent clusters are

Lloyd's Algorithm

Input: set of records $x_1 \dots x_n$, and k (# of clusters)

Pick k starting points as centroids $c_1 \dots c_k$

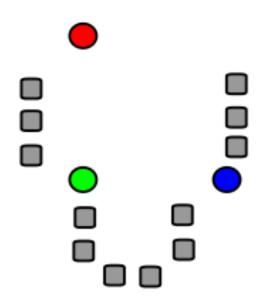
While not converged:

- 1. for each point x_i find closest centroid c_j
 - for every c_i calculate distance $D(x_i, c_j)$
 - assign x_i to cluster j defined by smallest distance
- 2. for each cluster j, compute a new centroid c_j by calculating the average of all x_i assigned to cluster j

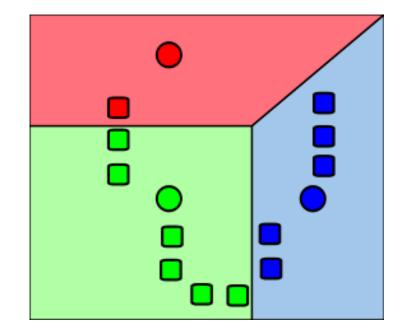
Repeat until convergence, e.g.,

- no point has changed cluster
- distance between old and new centroid below threshold
- number of max iterations reached

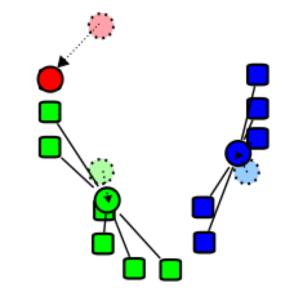
1. Initialization



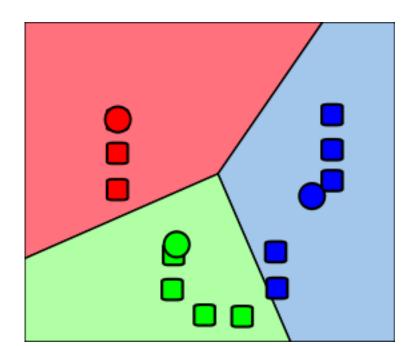
2. Assign Clusters



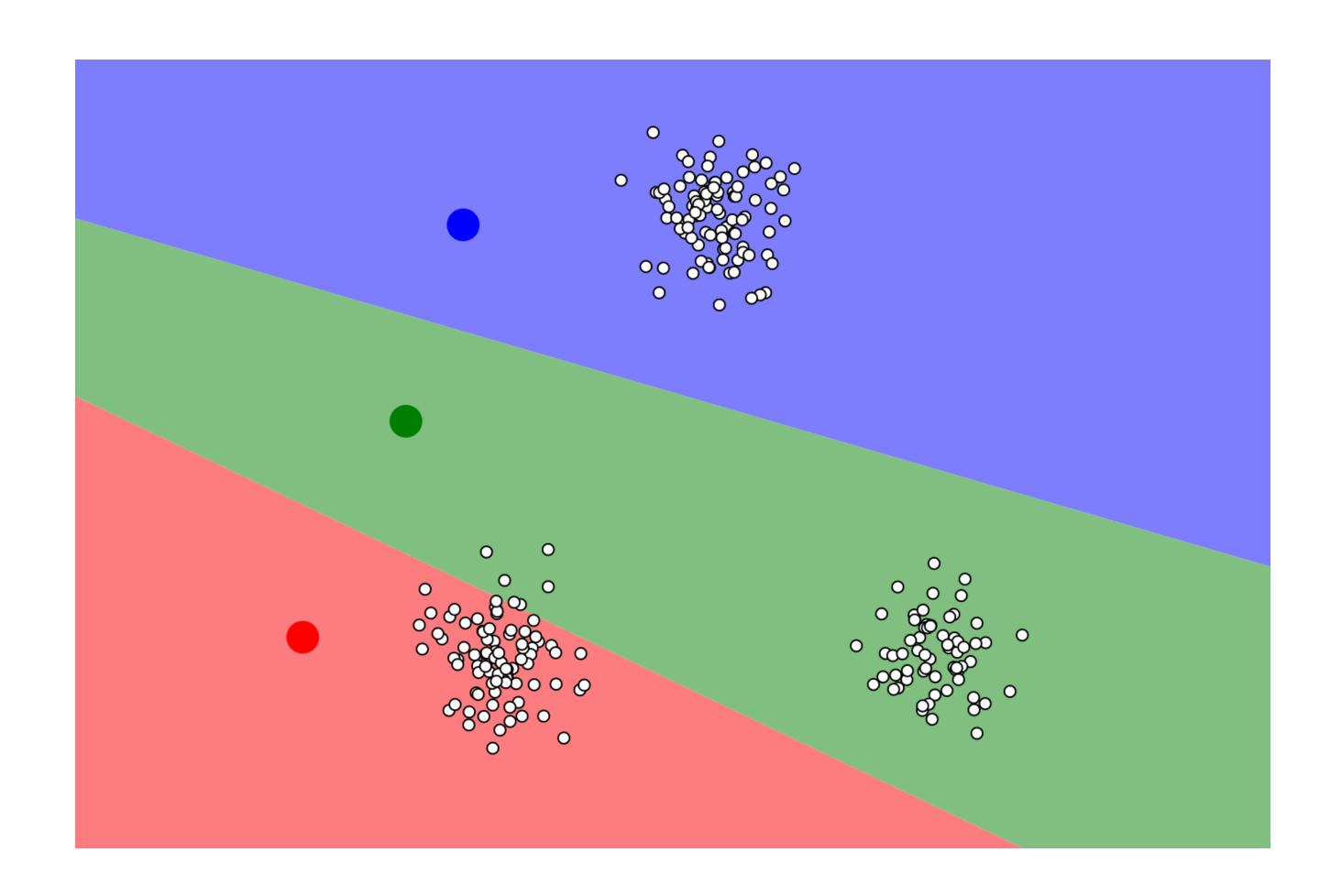
3. Update Centroids



4. Assign Clusters

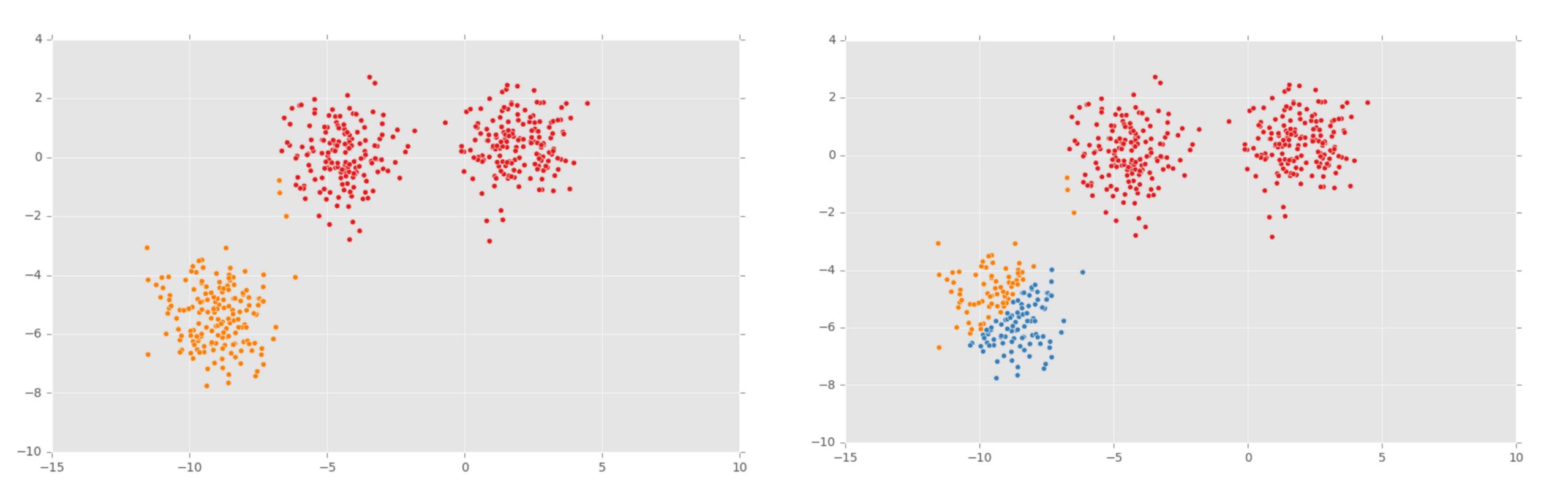


Illustrated



https://www.naftaliharris.com/blog/visualizing-k-means-clustering/

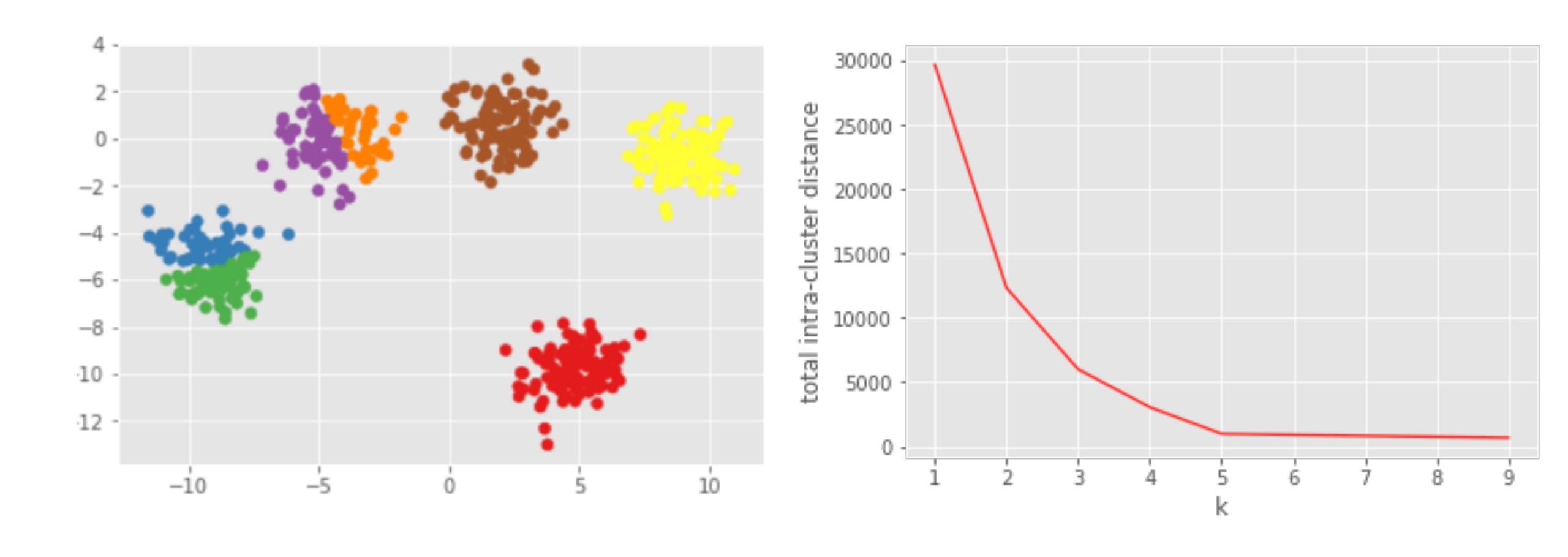
Choosing K, Initializing



Initializing: Farthest Point Strategy

Choosing K: looking for drop-off in Intra-Cluster Distance Reduction

Evaluating Intra-Cluster Distance



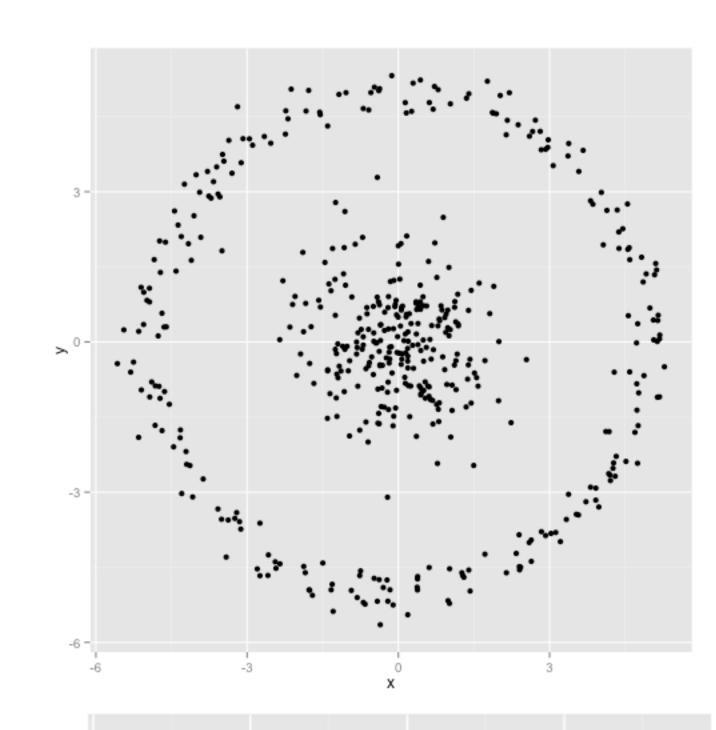
Properties

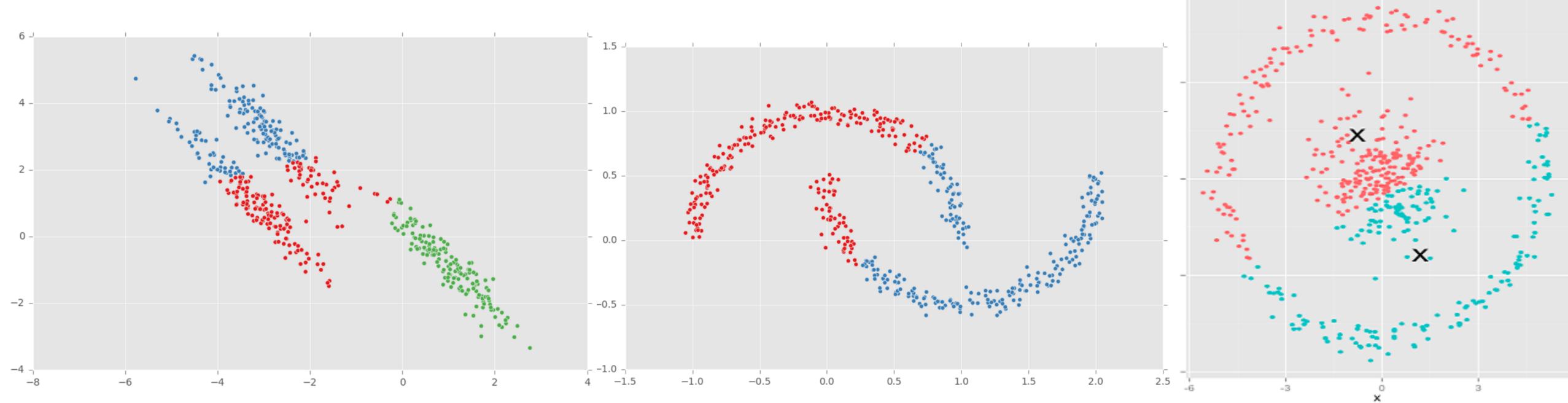
Lloyds algorithm doesn't find a global optimum Instead it finds a local optimum It is very fast:

common to run multiple times and pick the solution with the minimum inertia

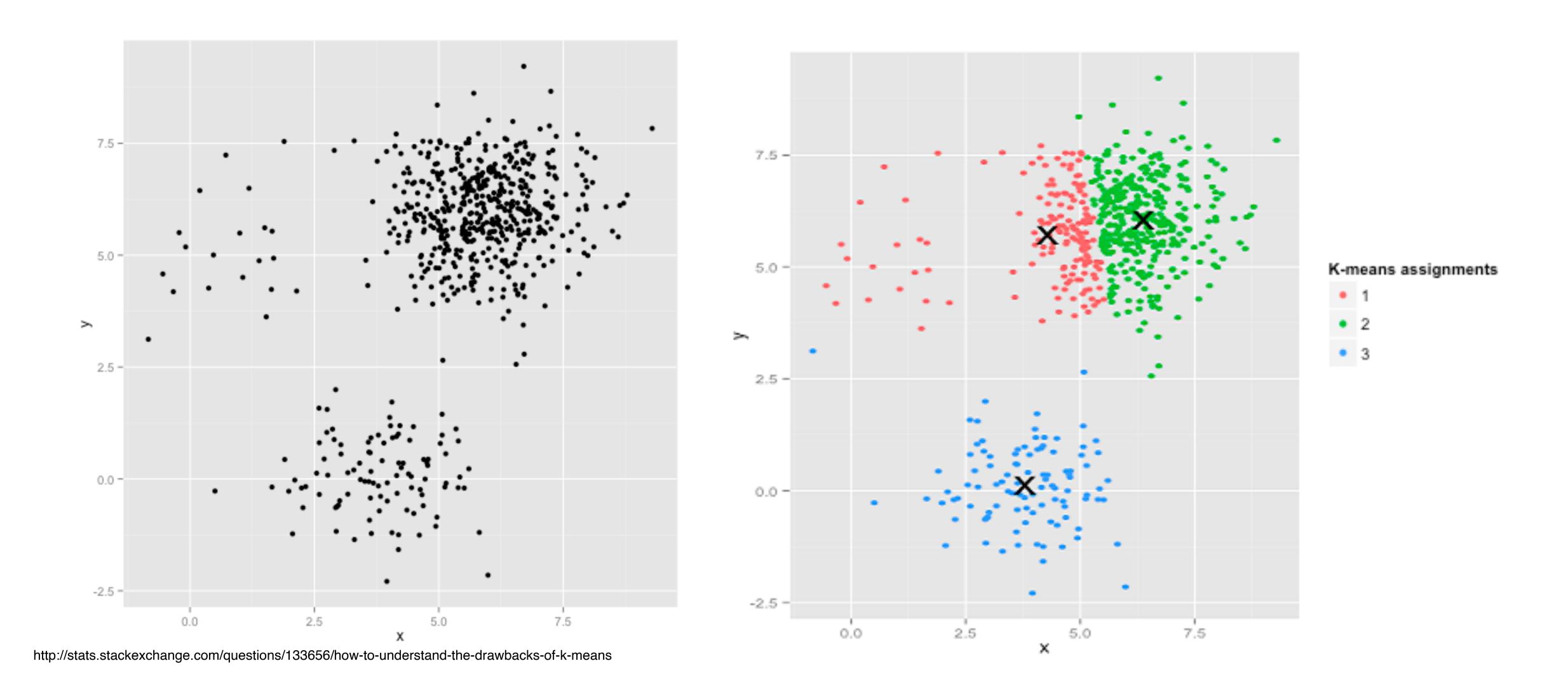
K-Means Properties

Assumptions about data: roughly "circular" clusters of equal size





K-Means Unequal Cluster Size



DBScan

Density-based spatial clustering of applications with noise

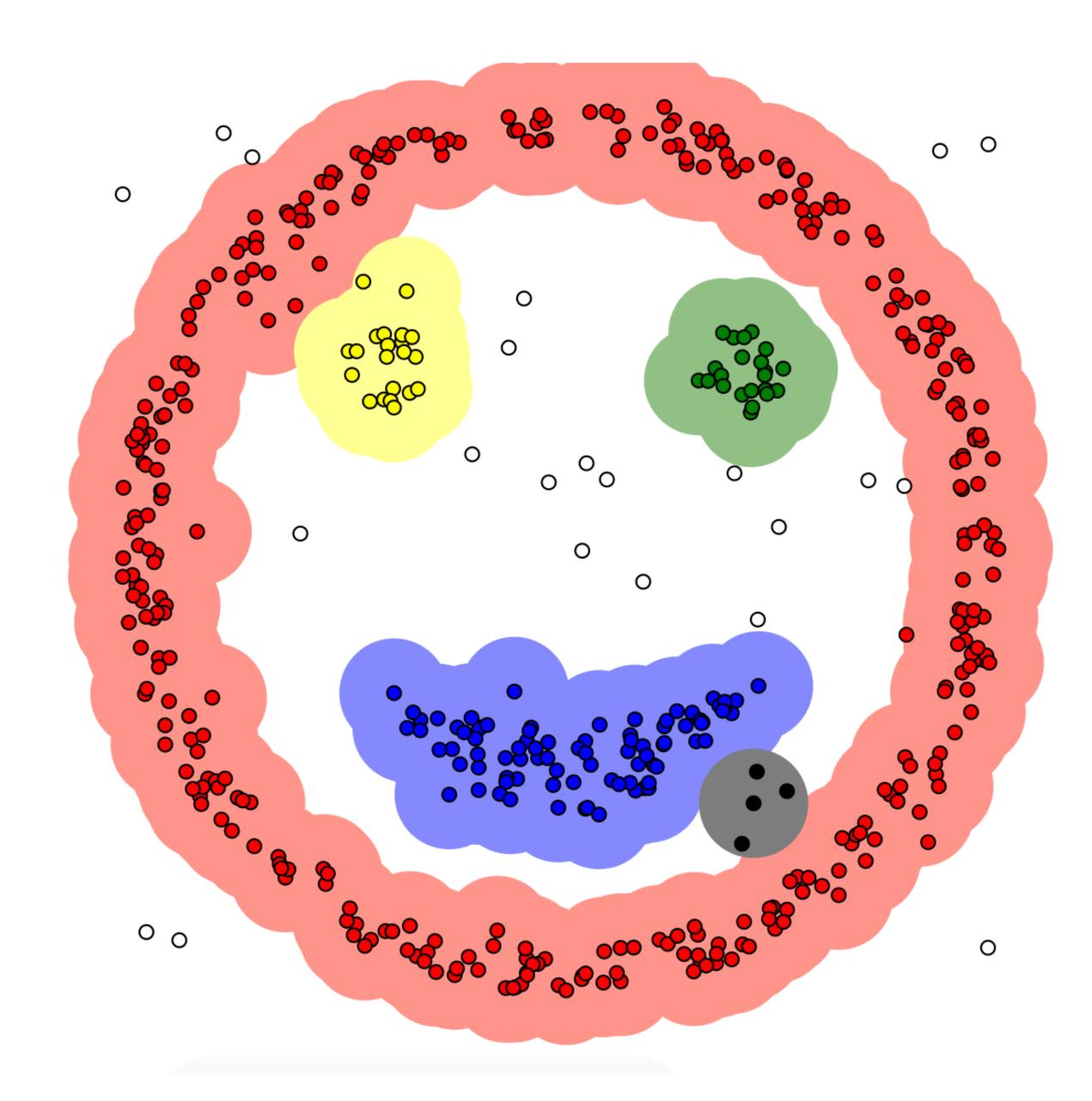
Idea: Clusters are dense groups

if point belongs to a cluster, it should be near to lots of other points in that cluster.

Parameters:

Epsilon: if new point distance to closest point in cluster is < epsilon, add to cluster

Min points: what's the smallest cluster (outliers)



Hierarchical Clustering

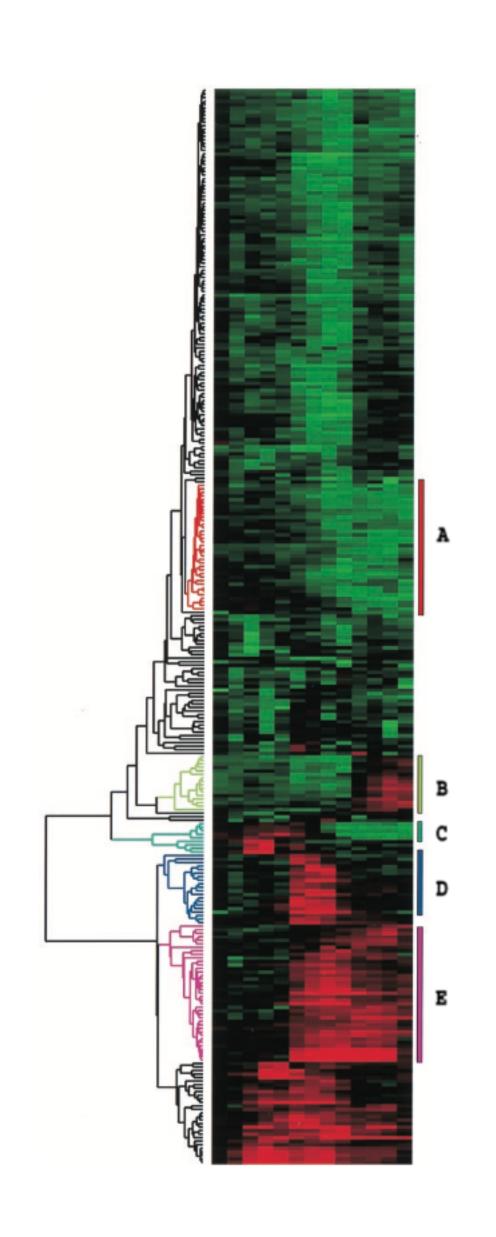
Two types:

agglomerative clustering

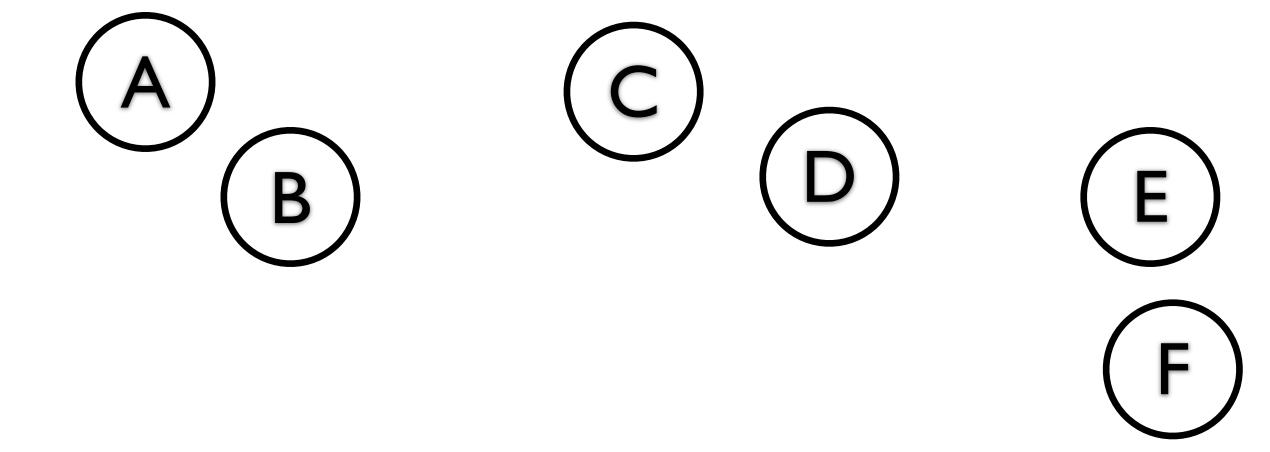
start with each node as a cluster and merge

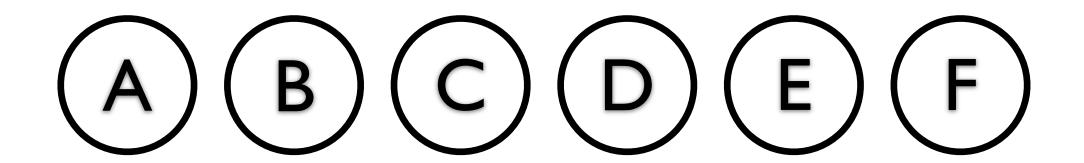
divisive clustering

start with one cluster, and split



Agglomerative Clustering Idea





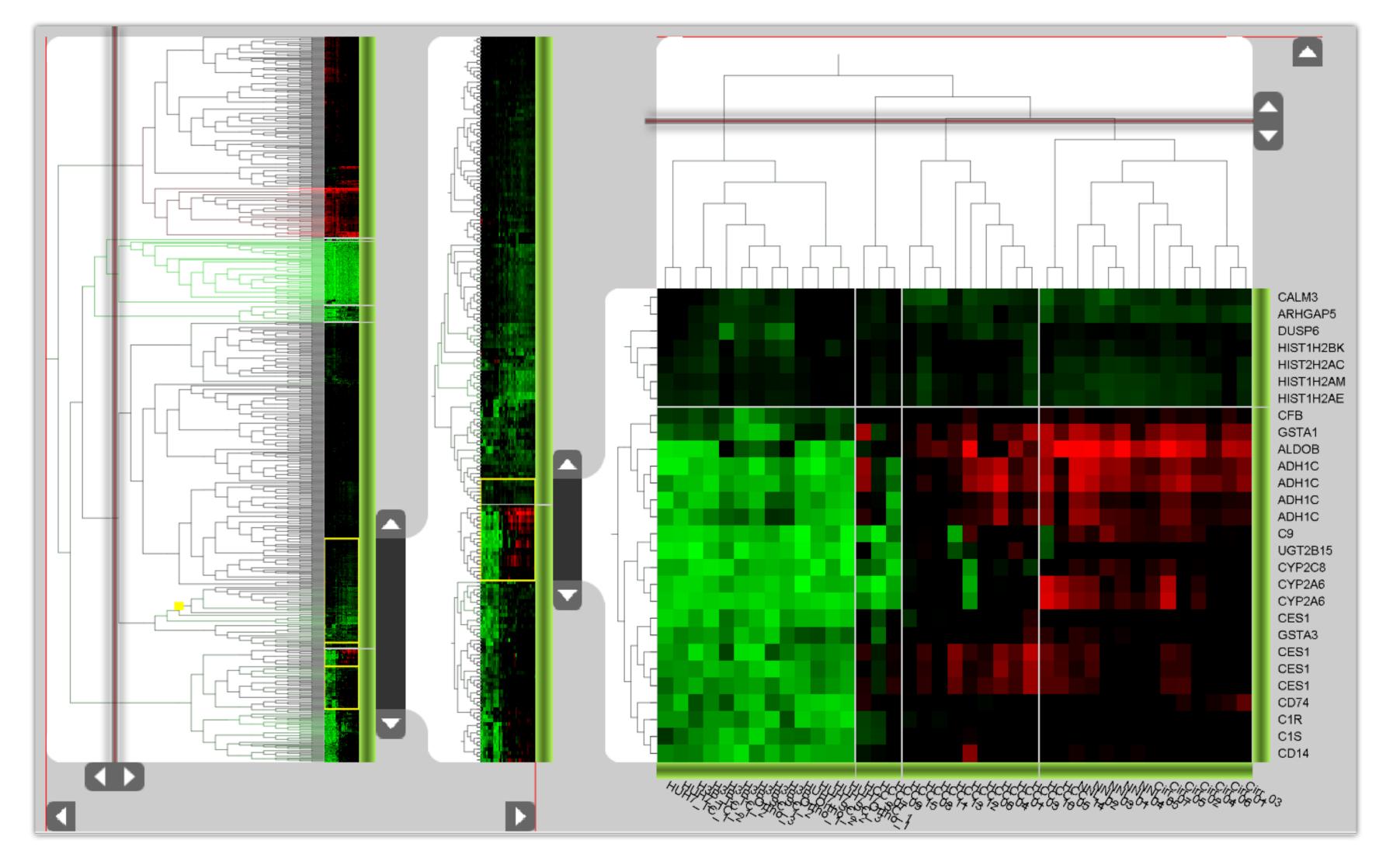
Linkage Criteria

How do you define similarity between two clusters to be merged (A and B)?

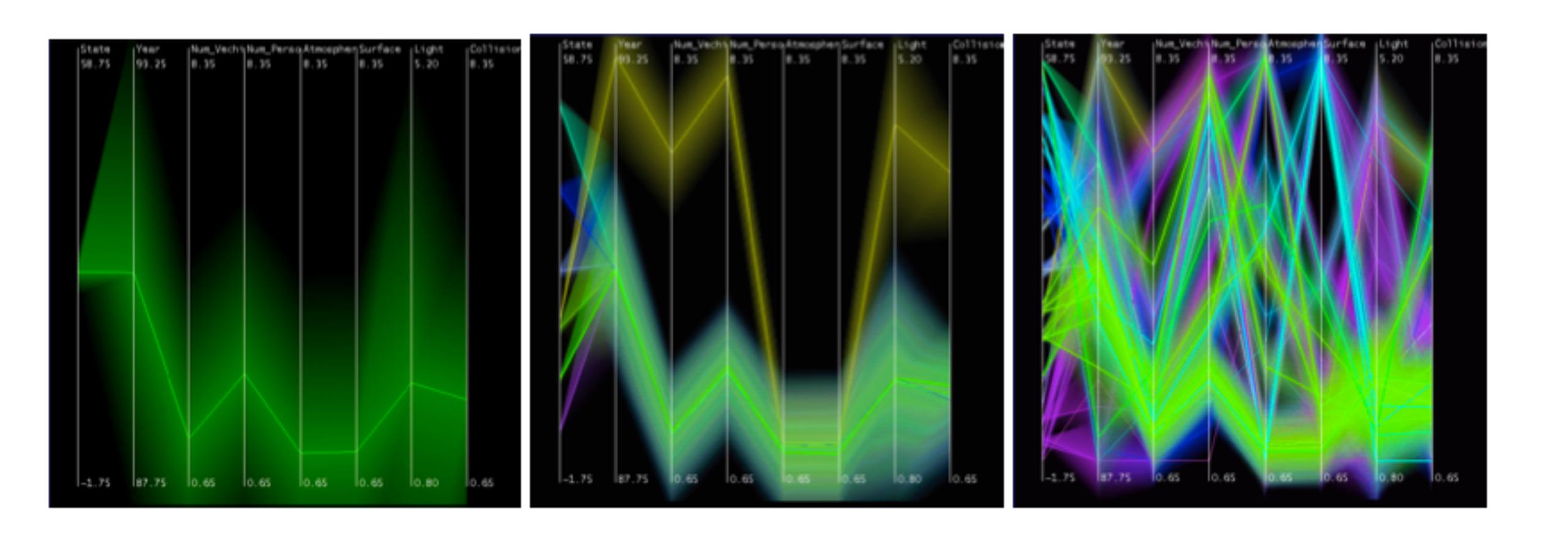
- maximum linkage distance: two elements that are apart the furthest
- use minimum linkage distance: the two closest elements
- use average linkage distance
- use centroid distance

Names	Formula
Maximum or complete-linkage clustering	$\max\{d(a,b):a\in A,b\in B\}.$
Minimum or single-linkage clustering	$\min\{d(a,b):a\in A,b\in B\}.$
Mean or average linkage clustering, or UPGMA	$\frac{1}{ A B }\sum_{a\in A}\sum_{b\in B}d(a,b).$
Centroid linkage clustering, or UPGMC	$\ c_s-c_t\ $ where c_s and c_t are the centroids of clusters s and t , respectively.

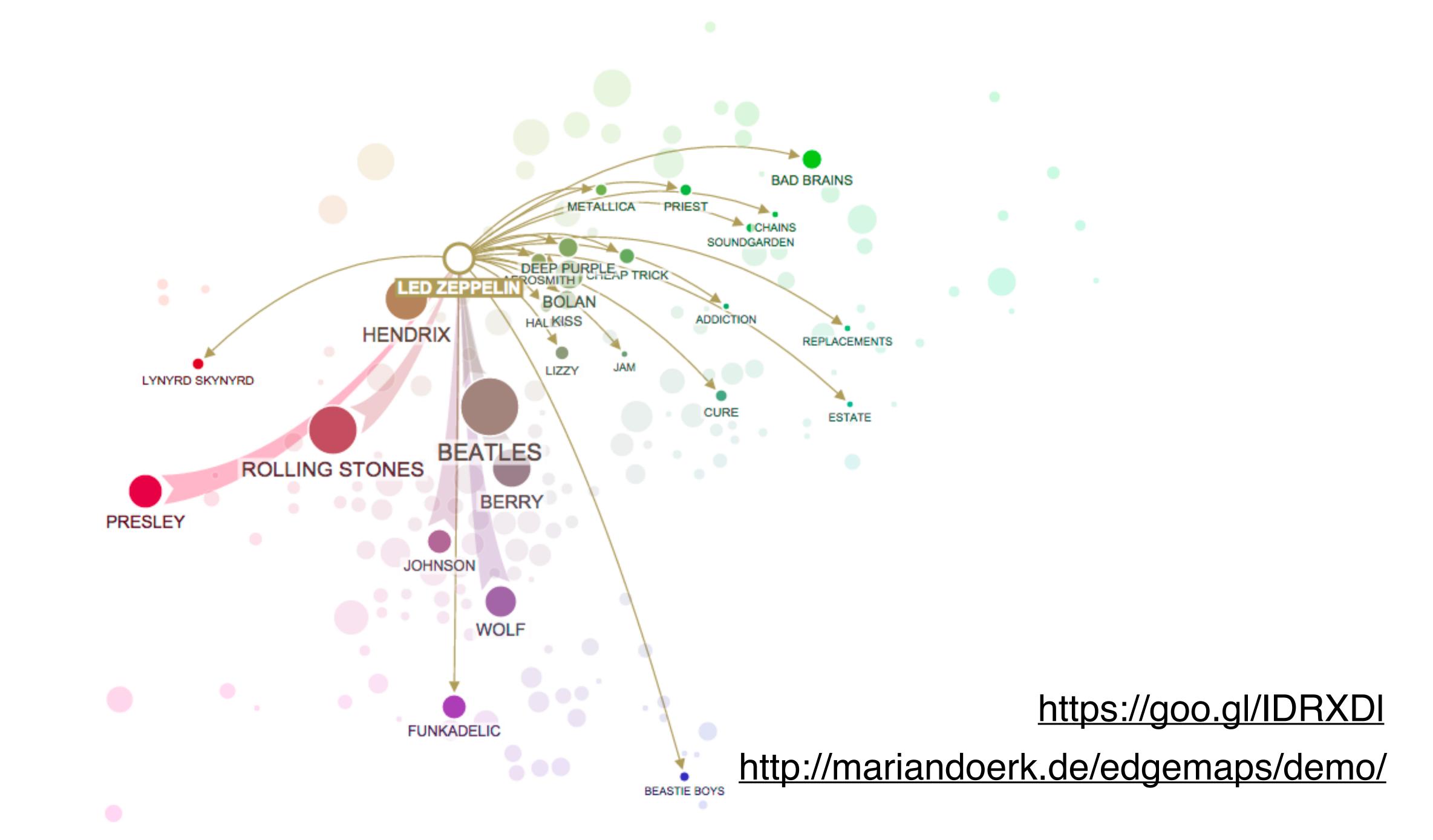
F+C Approach, with Dendrograms



Hierarchical Parallel Coordinates



Design Critique



Dimensionality Reduction

Dimensionality Reduction

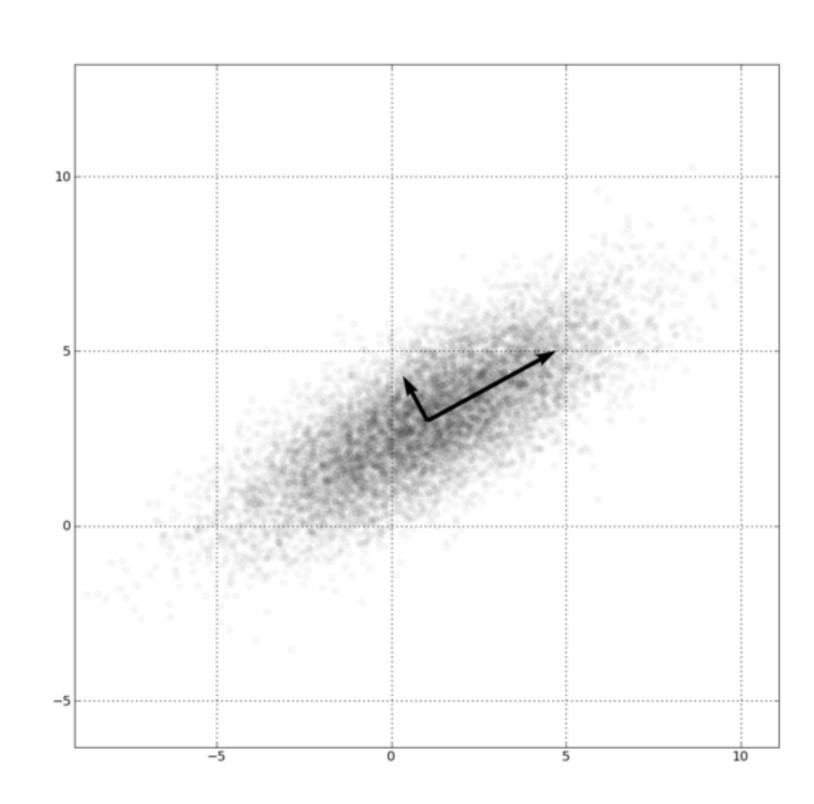
Reduce high dimensional to lower dimensional space

Preserve as much of variation as possible

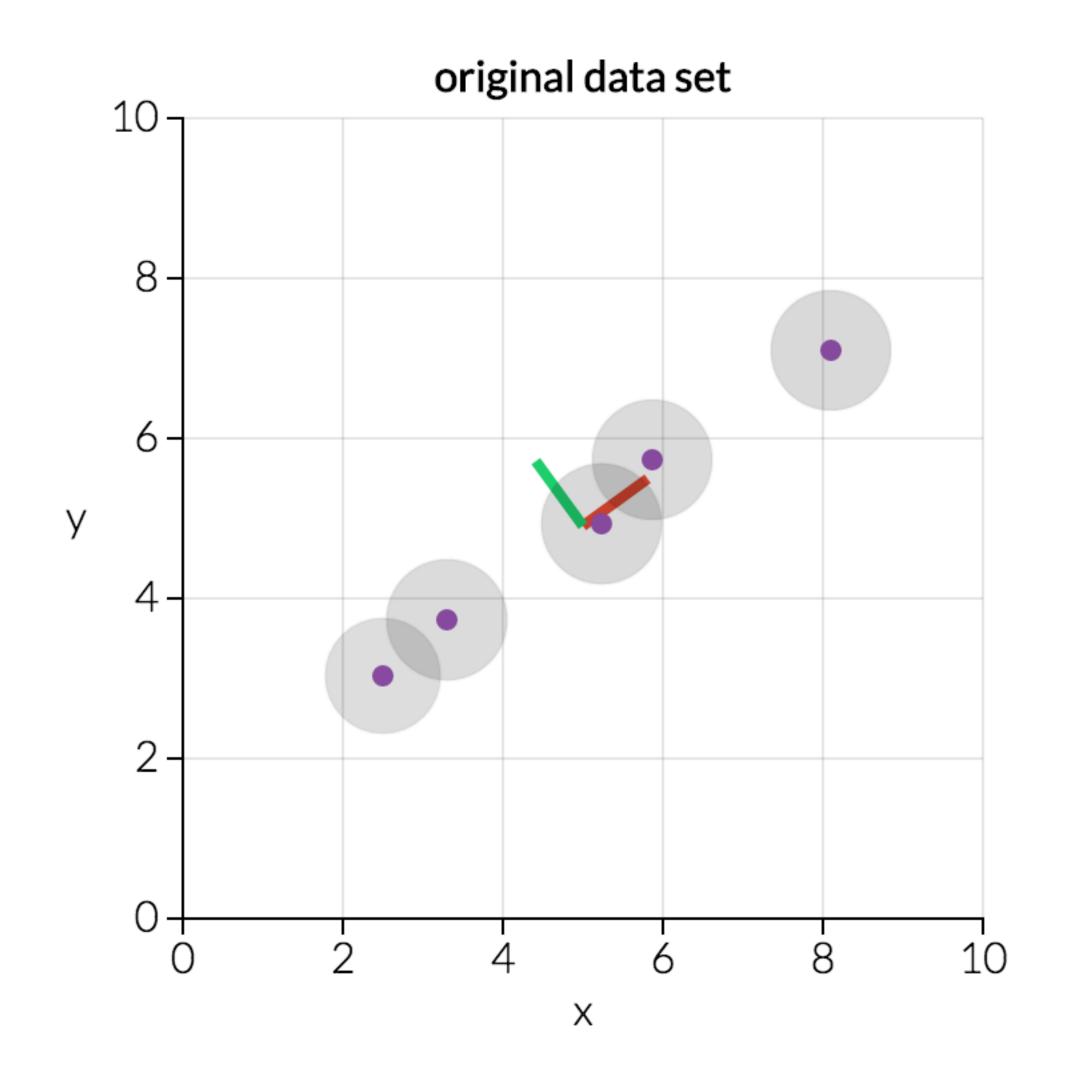
Plot lower dimensional space

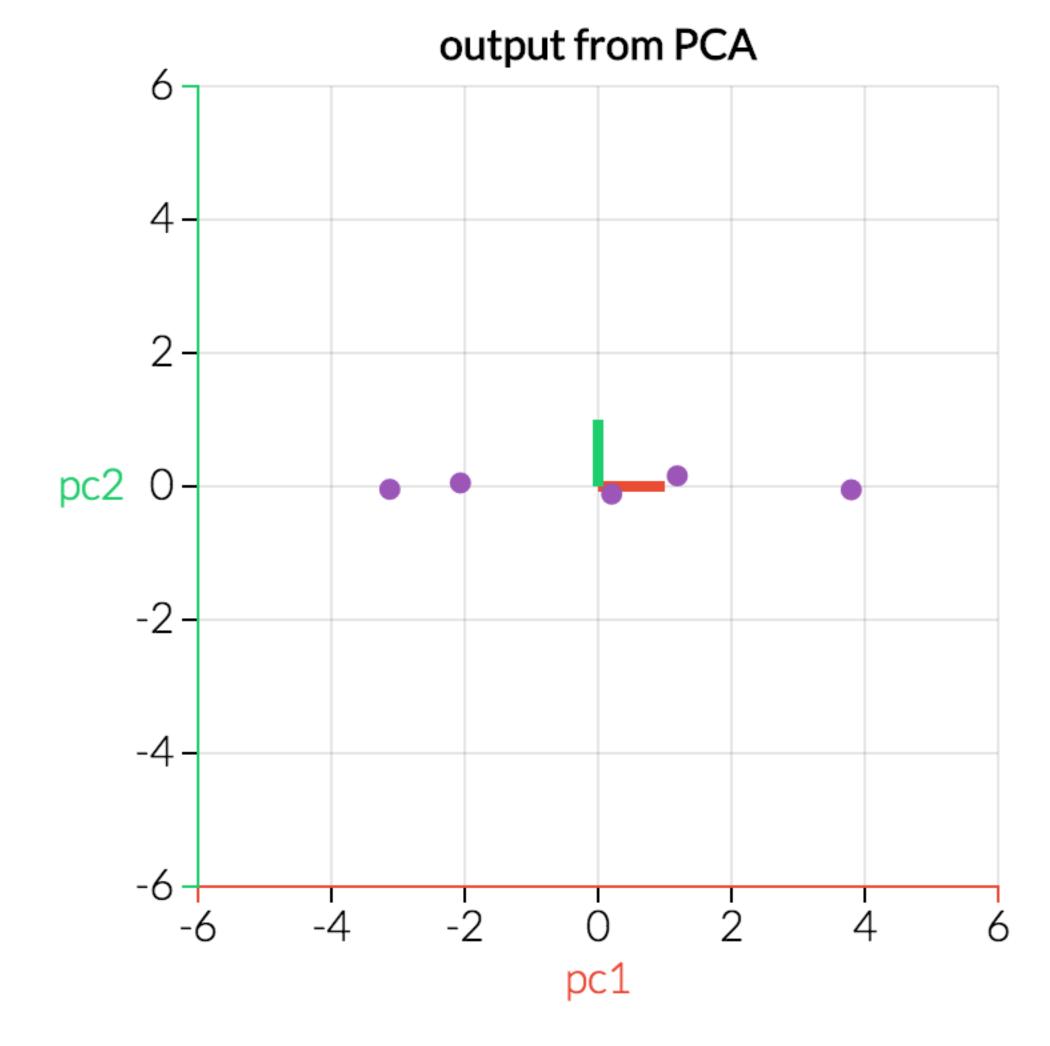
Principal Component Analysis (PCA)

linear mapping, by order of variance



PCA





Multidimensional Scaling

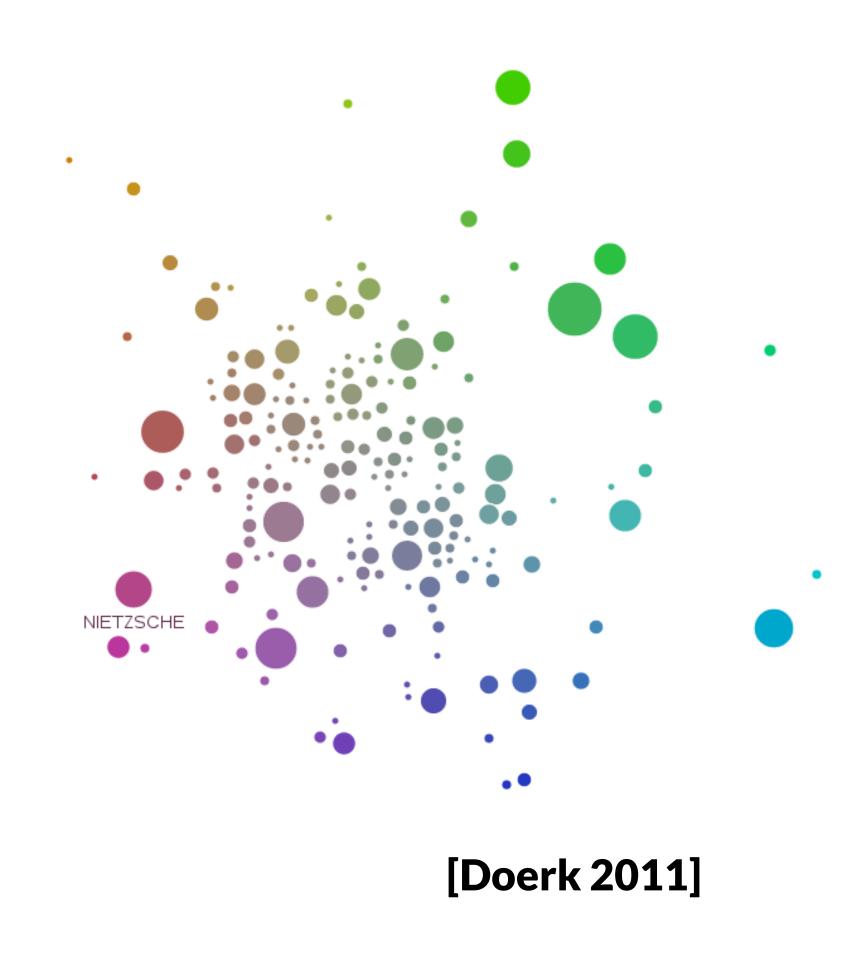
Multiple approaches

Works based on projecting a similarity matrix

How do you compute similarity?

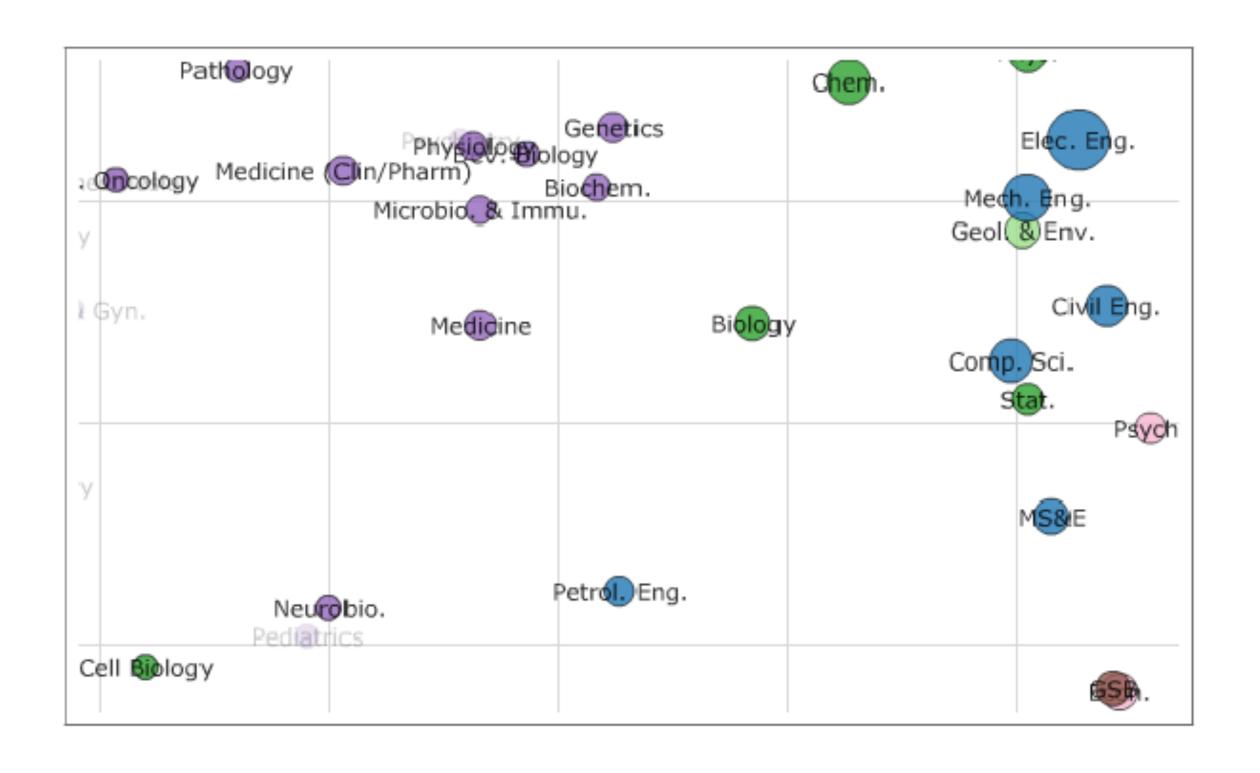
How do you project the points?

Popular for text analysis

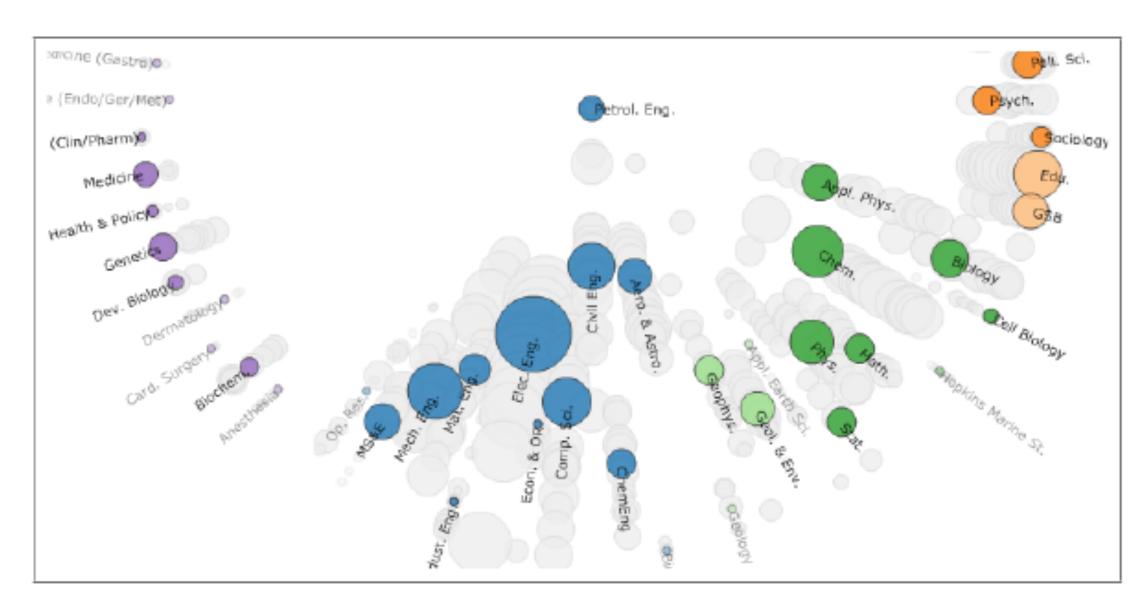


Can we Trust Dimensionality Reduction?

Topical distances between departments in a 2D projection



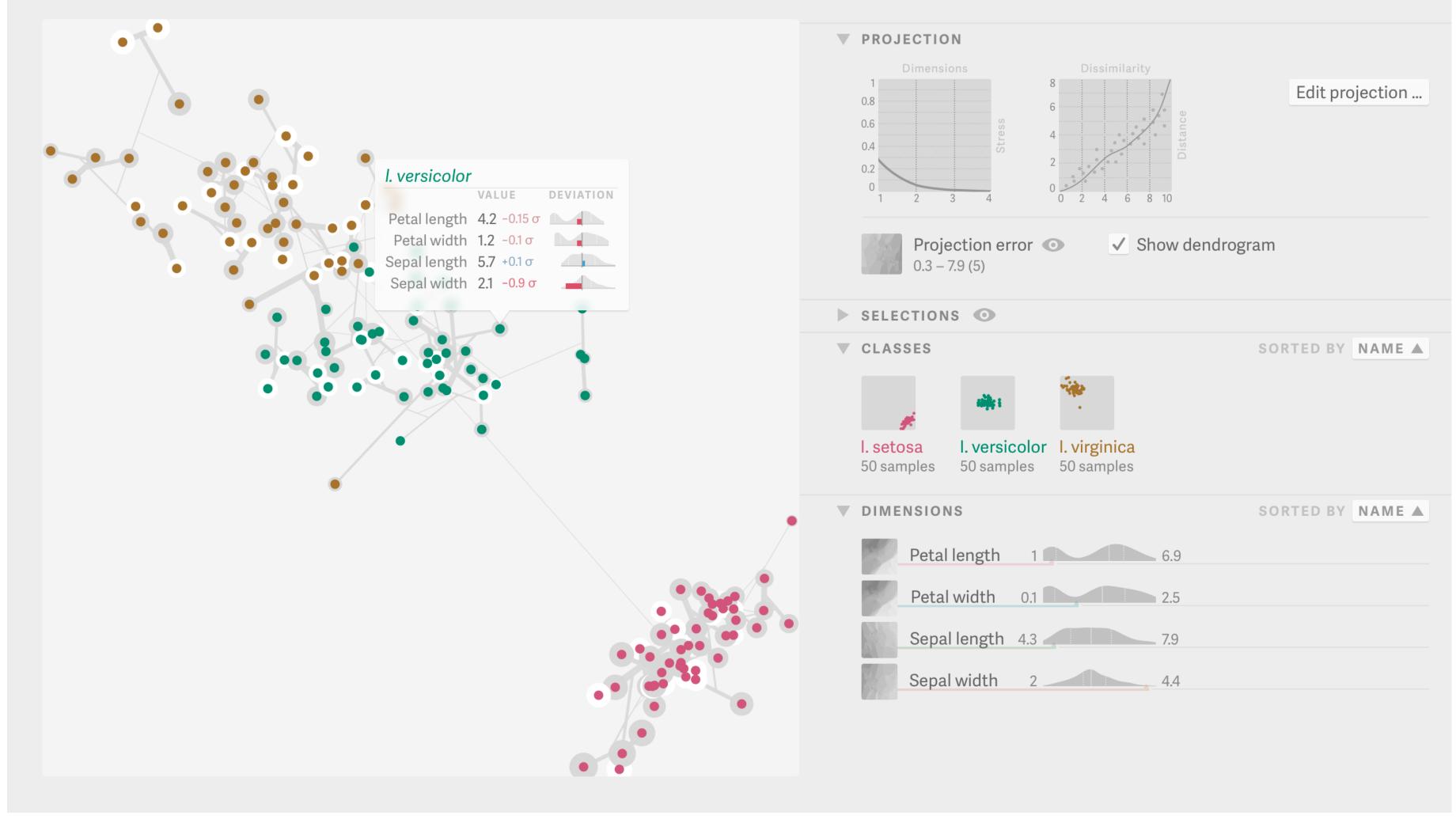
Topical distances between the selected Petroleum Engineering and the others.



[Chuang et al., 2012]

http://www-nlp.stanford.edu/projects/dissertations/browser.html

Probing Projections



t-SNE

t-distributed stochastic neighbor embedding

non-linear algorithm: different transformations for different

regions

How to Use t-SNE Effectively

Although extremely useful for visualizing high-dimensional data, t-SNE plots can sometimes be mysterious or misleading. By exploring how it behaves in simple cases, we can learn to use it more effectively.

Understanding UMAP

Andy Coenen, Adam Pearce | Google PAIR

Dimensionality reduction is a powerful tool for machine learning practitioners to visualize and understand large, high dimensional datasets. One of the most widely used techniques for visualization is t-SNE, but its performance suffers with large datasets and using it correctly can be challenging.

UMAP is a new technique by McInnes et al. that offers a number of advantages over t-SNE, most notably increased speed and better preservation of the data's global structure. In this article, we'll take a look at the theory behind UMAP in order to better understand how the algorithm works, how to use it effectively, and how its performance compares with t-SNE.

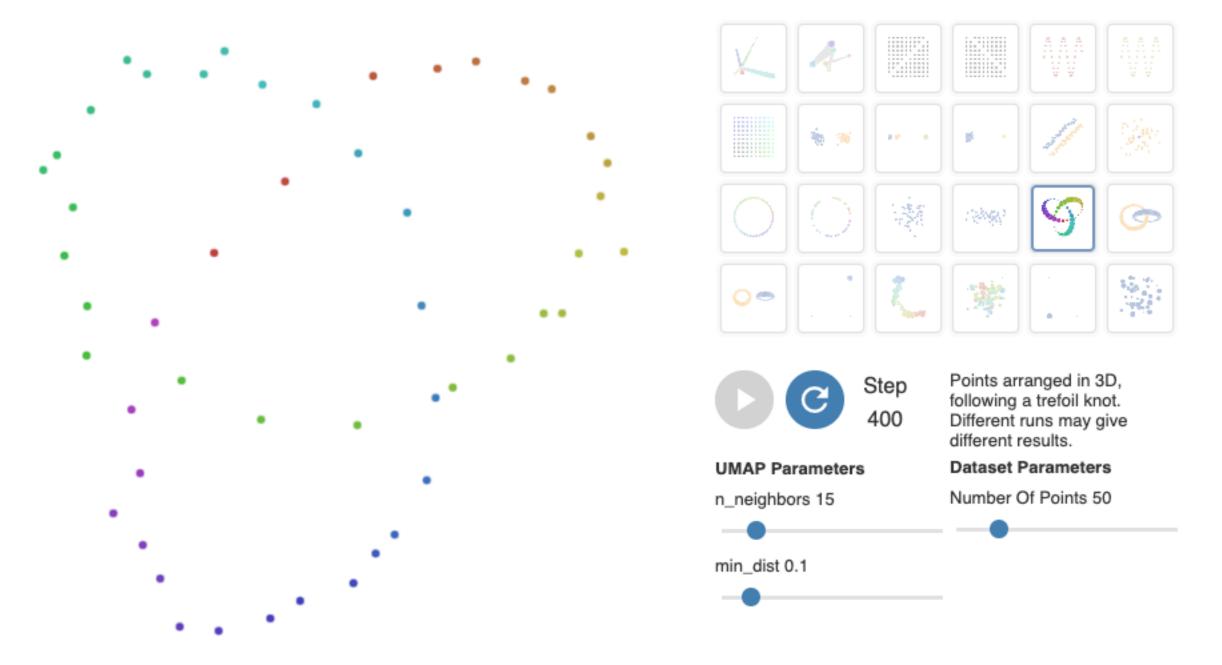


Figure 1: Apply UMAP projection to various toy datasets, powered by umap-js.

MDS for Temporal Data: TimeCurves

